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Bioremediation of contaminated groundwater or soil is currently the cheapest and the least harmful method of
removing xenobiotics from the environment. Immobilization of microorganisms capable of degrading specific
contaminants significantly promotes bioremediation processes, reduces their costs, and also allows for the
multiple use of biocatalysts. Among the developed methods of immobilization, adsorption on the surface is the
most common method in bioremediation, due to the simplicity of the procedure and its non-toxicity. The
choice of carrier is an essential element for successful bioremediation. It is also important to consider the type
of process (in situ or ex situ), type of pollution, and properties of immobilized microorganisms. For these
reasons, the article summarizes recent scientific reports about the use of natural carriers in bioremediation,
including efficiency, the impact of the carrier on microorganisms and contamination, and the nature of the
conducted research.
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1. Introduction

The twentieth century went down in history as a period of
extremely dynamic civilizational and technological development.
Industrialization, wars, and intensive use of large-scale heavy metals
and synthetic xenobiotics led to many environmental problems [1,2].

The contamination of the environment by petroleum products,
pharmaceutical compounds, chloro- and nitrophenols and their
derivatives, polycyclic aromatic hydrocarbons, organic dyes, pesticides
and heavy metals is a serious problem [3,4,5,6,7,8,9]. These pollutants
enter the environment by different ways. For example, one of the
major consequences of the armed conflict between Iraq and Kuwait
was the release into the environment millions of barrels of crude oil.
After the war ended, scientists began numerous studies aimed at the
removal of oil from the contaminated environment. Other sources of
crude oil in ecosystems are accidental oil spills. One of the biggest
marine disasters took place in Mexico in 2010, and it resulted in the
spewing out of about 2.8 million barrels of crude oil from the British
Petroleum (BP) oil rig Deepwater Horizon into the sea [10,11].

Pesticides are other serious pollutants present in soils. USEPA
reported that in 2007, global consumption of pesticides for
agricultural purposes was 2.36 million tonnes [12]. These compounds,
used in bulk for long periods of time in a limited area, lead to serious
disorders in indigenous microflora and humans, because pesticides are
also toxic to non-target organisms [12,13,14]. Moreover, many
metabolites of pesticide biodegradation are also toxic and constitute
priority pollutants. For example, the major metabolites of parathion
and 2,4-dichloropenoxy acetic acid biodegradation are p-nitrophenol
and 2,4-dichlorophenol, respectively [9,15,16,17,18].

It has been reported thatmanymicroorganisms are able to biodegrade
different pollutants [4,5,7,8,19,20]. However, the biodegradation
rate depends on the physiological state of the microorganisms, which
are sensitive to variable environmental factors. It is known that
immobilization improves microorganisms' resistance to unfavourable
environmental impacts [6,8].

The main purpose of this review is to present and discuss the latest
reports about the natural carriers in the processes of bioremediation
by immobilized cells. In the article immobilization methods for
bioremediation are also presented.

2. Bioremediation methods

In 1930 Tausz and Donath [21] presented the idea of using
microorganism to clean soil contaminated with petroleum derivatives,
giving rise to biodegradation processes. Today, bioremediation is a
commonly used method to restore the natural and useful values of
contaminated sites by microorganism able to degrade, transform, or
chelate various toxic compounds [22]. Microorganisms can break
down organic pollutants by using them as a source of carbon and
energy, or by cometabolism. Heavy metals cannot be degraded or
destroyed biologically and undergo transformation from one oxidative
state or organic complex to another. It changes their water solubility
and decreases their toxicity [22,23].

Bioremediation is eco-friendly, non-invasive, cheaper than
conventional methods, and it is a permanent solution that can end
with degradation or transformation of environmental contaminants
into harmless or less toxic forms [23,24,25,26]. Soil bioremediation
can be carried out at the place of contamination (in situ), or in a
specially prepared place (ex situ). In situ technology is used when
there is no possibility to transfer polluted soil, for example when
contamination affects an extensive area [26,27,28].

There are three basic methods of in situ bioremediation
with microorganisms: natural attenuation, biostimulation, and
bioaugmentation [24,29,30].

Natural attenuation is connected with the degradation activities
of indigenous microorganisms. This method avoids damaging the
habitat, allows ecosystem revert to its original condition and enables
detoxification of toxic compounds [24,31].

Removal of contaminations by the natural attenuation takes a long
time because degrading microorganisms in soil represent only about
10% of the total population. The increase of bioremediation efficiency
in situ may be realized in the bioaugmentation process, in which the
specific degraders are introduced into the soil [30,31]. This method is
applied when the indigenous microflora are unable to break down
pollutants, or when the population of microorganisms capable of
degrading contaminants is not sufficiently large. To make the process
of bioaugmentation successful, microorganisms introduced into the
polluted environment as a free or immobilized inoculum should be
able to degrade specific contamination and survive in a foreign and
unfriendly habitat, be genetically stable and viable, and move through
the pores in the soil. Microorganisms can be previously isolated from
the contaminated soil and propagated, or their functional ability can
be enhanced in the laboratory. Nonindigenous strains or genetically
modified microorganisms (GMM) can also be incorporated into the
remediated soil [31,32,33,34]. However, the result of bioaugmentation
depends on the interaction between exogenous and indigenous
populations of microorganisms because of the competition, mainly for
nutrients [31].

To accelerate in situbioremediation processes, biostimulation is used
in order to modify the physical and chemical parameters of the soil. For
this purpose, compounds such as nutrients (e.g. biogas slurry, manure,
spent mushroom compost, rice straw and corncob) or electron
acceptors (phosphorus, nitrogen, oxygen, carbon) are introduced into
the soil [29,30,32,35].

Because in situ processes are out of hand it is difficult to predict
the effect of remediation of contaminated sites [28]. Ex situ methods
allow more efficient removal of pollutants, by controlling the
physico-chemical parameters, resulting in a shortening of the total
time of reclamation. These advantages outweigh ex situ methods'
disadvantages such as additional cost and risk connected with the
possibility of dispersion of the contamination during transport. During
the ex situ processes contaminated medium is excavated or extracted
and moved to the process location. Liquids can be clean in constructed
wetlands while semi-solid or solid wastes in slurry bioreactors. Solid
contaminations are biodegraded through land farming, composting
and biopiles [26,28,36,37].

Constructed wetlands are used with success in the treatment of
wastewater derived from domestic, industrial or agricultural sources
[38]. They require the competition of microbes (bioremediation) and
plant (phytoremediation). Microorganisms degrade or sorb organic
substance present in the water undergoing treatment. Plants are used
to remove, transfer or stabilize contaminants through metabolism,
accumulation, phytoextraction or immobilization at interface of roots
and soil [37]. Bioremediation processes in slurry bioreactors can be
performed under aerobic or anaerobic conditions [28]. These systems
utilize naturally occurring microorganisms or strains possessing
specific metabolic capabilities to transform toxic compounds [27].
Slurry bioreactors are one of the best applied technologies used in the
bioremediation of contaminated soils because they undergo under
controlled operating conditions. It allows for the enhancement of
microorganisms activity [27,39,40].

Landfarming is one of the most widely used soil bioremediation
technologies. In this technology, excavated contaminated soils are
spread out in a thin layer on the ground surface. Aerobic microbial
activity within the soil is stimulated through the aeration and addition
of minerals, nutrients and moisture [41,42]. Landfarming is a relatively
simple technology however it is inexpensive and effective for easily
biodegradable contaminants only at low concentration [28,37,41,42,43].
Composting is a controlled biological process that treats of agricultural
and municipal solid wastes and sewage sludge using microorganisms
under thermophilic and aerobic conditions [28,37]. Through
composting, it is possible to reduce the volume of residues in landfills.
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Biodegradation of solid contaminants takes place mainly as a result of
oxidation and hydrolysis. The optimum temperature for growth of
microorganisms engaged in composting is in the range of 40 to 70°C.
The risk of contamination by pathogens is small, because most of them
are inactivated at 70°C. A key factor during composting is microbial
accessibility to the pollutants and the characteristics of the amending
agents. This method is eco-friendly, has simple protocols, allows
the control of large volumes of waste and ends with the total
mineralization of pollutants [26,44,45]. Composting has been applied to
bioremediation of soils contaminated with petroleum hydrocarbons,
solvents, chlorophenols, pesticides, herbicides, polycyclic aromatic
hydrocarbons and nitro-aromatic derivatives [28,37,46]. More advanced
systems of composting are biopiles that are more expensive but enable
more effective control of the process and its higher efficiency [28]. It
is possible as the aerated composted piles are equipped with the
dissolved oxygen, moisture and nutrient control systems and the
proper aeration is forced by vacuum or injection system. This
technology has been used for remediation of petroleum-contaminated
soil [28,37,46].

3. Immobilization methods

In recent times, bioremediation processes more and more
often employ immobilization methods. Immobilization is defined as
limiting the mobility of the microbial cells or their enzymes with
a simultaneous preservation of their viability and catalytic functions
[47,48,49,50,51]. This process may use the natural ability of
microorganisms to form biofilms on the surface of various materials,
which is commonly observed in the environment. Immobilization
significantly reduces costs of bioremediation processes and improves
their efficiency. This method brings many benefits to bioremediation,
such as higher efficiency of pollutant degradation, multiple use of
biocatalysts, reduced costs — the stage of cell filtration is eliminated,
Fig. 1.Methods of immobilizat
ensuring a stable microenvironment for cells/enzymes, a reduced
risk of genetic mutations, ensured resistance to shear forces present
in bioreactors, increased resistance of biocatalysts to adverse
environmental conditions and heavy metals, increased biocatalyst
survival during storage, and increased tolerance to high pollutant
concentrations [1,47,51,52].

There are five main techniques of immobilization: adsorption,
binding on a surface (electrostatic or covalent), flocculation (natural
or artificial), entrapment, and encapsulation (Fig. 1). Flocculation does
not require carriers, and therefore will not be discussed [1,47].

3.1. Adsorption

Immobilization of microbial cells and enzymes by adsorption
takes place through their physical interaction with the surface
of water-insoluble carriers. This method, commonly used in
bioremediation processes, is quick, simple, eco-friendly and
cost-effective. Adsorption on a carrier surface is achieved by the
formation of weak bonds. For that reason there is a high probability of
cells leaking from the carrier into the environment, and this method is
not used for GMM immobilization [1,53,54].

3.2. Binding on a surface

Electrostatic binding on a surface is very similar to physical
adsorption, but the probability of microorganisms leaking is lower.
This method requires washing the surface of the carrier with a buffer
solution to obtain a hydrophilic surface that can attract the negatively
charged cells or enzymes [55,56].

The procedure for immobilization is different in the case of covalent
binding, because it requires the presence of a binding agent.
Immobilization can be performed only on chemically activated
carriers enriched with amide, ether and carbamate bonds. This
ion [12,129,130,131,132].
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method is mainly used for the immobilization of enzymes, because
binding agents are often toxic to cells, and for that reason microbial
viability and activity are lowered. The advantage of the covalent bonds
is that they are strong enough to prevent the leaking of molecules into
the environment [1,48,57,58].

3.3. Entrapment in porous matrix

Entrapment of microorganisms is well-known and widely used in
bioremediation. After the entrapment, microbial cells are able to move
only within a carrier. This prevents the cells from leaking into the
environment but may limit the exchange of nutrients and metabolites.
Microorganisms entrapped in the heterogeneous carrier are
physiologically diverse. The cells located near the surface have high
metabolic activity in contrast to starved cells in the interior of the
carrier [1,47,51,59]. Entrapment is a rapid, nontoxic, inexpensive and
versatile method [8,51]. Entrapped microorganisms are protected
against environmental factors. The most important parameter in
entrapment of microorganisms is the ratio of the size of the pores of
the carrier to the size of the cells. In a situation where the pores
are larger than the immobilized cells, they leak into the environment
[1,47,51,59].

3.4. Encapsulation

Encapsulation is very similar to the entrapment, but in this case
immobilized particles are separated from the external environment
with a semi-permeable membrane. The biggest advantage of this
method is the significant protection of biological material against the
adverse conditions of the external environment. However, due to the
limited permeability of the used membrane and the probability of its
damage by growing cells, encapsulation is rarely used in ex situ
bioremediation [1,47,60].

4. Support materials

Not every material is suitable for immobilization. A good carrier
should be insoluble, non-toxic, both for the immobilized material and
the environment, easily accessible, inexpensive, stable and suitable for
regeneration. The immobilization process should be simple and
harmless. Another important aspect is that different immobilization
methods require carriers with specific properties. For example,
carriers used for adsorption or binding on the surface should have a
high porosity to ensure that the contact area of the immobilized
material and the carrier is as large as possible [1,61,62]. The nature of
performed bioremediation processes also has an impact on the choice
of the carrier. Carriers used in bioaugmentation ought to be readily
biodegradable. In wastewater treatment processes the carrier should
have a high mechanical resistance because it may be exposed to
different kinds of physical forces [1,63].

Carriers are classified as organic and inorganic or natural or
synthetic. Natural organic carriers have many functional groups
which stabilize biocatalysts. This class of carriers includes: alginate,
κ-carrageenan, chitosan, sawdust, straw, charcoal, plant fibres,
corncob, bagasse, rice, husks of sunflower seeds, diatomite and
mycelium [64,65,66,67,68,69,70,71,72,73,74,75,76]. These supports are
hydrophilic, biodegradable, biocompatible, and inexpensive because
they are mostly waste from the food industry. However, the possibility
of their application in bioremediation processes is limited because of
low resistance to biodegradation, sensitivity to organic solvents, and
stability in a narrow pH range [1,52,74,77].

Synthetic organic carriers have numerous functional groups with
diversified characters. This class includes polypropylene, polyvinyl
chloride, polystyrene, polyurethane foam, polyacrylonitrite and
polyvinyl alcohol [78,79,80,81,82,83,84,85]. Their advantage is the
possibility to regulate their structure at the macromolecular level —
the selection of the proper molecular weight, the spatial structure and
the manner and arrangement order of each active functional group
in the chain. Moreover, during synthesis, the porosity, pore diameter,
polarity and hydrophobicity of the carrier may be controlled.
Furthermore, synthetic supports can be formed into various shapes
(tubes, membranes, coatings, carriers of various shapes from spherical
to oval), and they are easily available and relatively inexpensive [1,86,87].

Inorganic carriers (natural and synthetic) have a high chemical,
physical and biological resistance. They are represented by magnetite,
volcanic rocks, vermiculite, porous glass, silica-based materials,
ceramics and nanoparticles [88,89,90,91,92]. A significant disadvantage
of these carriers is the presence of a small number of functional groups,
which prevents sufficient bonding of the biocatalyst. For that reason
they are used in the formation of hybrid carriers, combining natural
polymers and synthetic nanoparticles [47,88,93].

5. Immobilization in bioremediation

Higher biodegradation efficiency observed after the use of
immobilized microorganisms in comparison to free ones caused
the increase interest in their application in bioremediation processes
[94,95]. It is assumed that carrier protects and hinders the spread of
organic pollutants and in this way reduces the surface contaminants
concentration on the immobilized microorganisms. Moreover, changes
in microenvironment after immobilization may lead to changes in cell
morphology, physiology and metabolic activity [96,97]. Wastes from
the food industry are very good and inexpensive candidates for
carriers [52,98,99,100,101]. Some researchers have also started to
explore inorganic adsorbents, such as expanded perlite or tezontle
[99,102,103]. Table 1 presents a list of carriers used in bioremediation
processes.

5.1. Plant fibres

Themost often applied vegetable fibre in immobilization is a sponge
derived from Luffa cylindrica or Luffa aegyptiaca. These plants grow in
tropical and subtropical climates. The loofah sponge shows important
advantages required for immobilization processes: high porosity
(85–95%) with simultaneous low density (0.018–0.05 g/cm3). The
sponge is composed of fibre networks that form an open and free
space for the exchange of matter [2,104].

The first usage of the loofah sponge was reported in 2003.
Microalgal-luffa sponge immobilized discs were applied in nickel
biosorption processes. It has been shown that loofah sponge restricts
the leaking of the immobilized biomass into the environment. It is an
extremely stable carrier and can be regenerated at least 7 times [2].
Mazmanci et al. [105] reported that the loofah sponge was a source of
carbon and energy for white rot fungi, and therefore should not be
used for their immobilization (long-term bioremediation). On the
other hand, it provides an excellent support for in situ or short-term
bioremediation (without a source of carbon and energy) with these
fungi.

5.2. Sugarcane bagasse

Sugarcane bagasse, derived from the extrusion of a plant Saccharum
officinarum, is widely used for the production of ethanol, and is an
excellent biosorbent. Bagasse is rich in carbohydrates, mainly lignin
and cellulose. The spatial structure of bagasse is formed by
parallel-arranged fibres and micropores (0.5–5 μm). It is an ideal place
to attachment bacteria and fungal hyphae. Another advantage of this
carrier is its mechanical strength. After centrifugation at 1500 rpm no
disintegration or microorganism leaking into the medium were
observed [100,106].

Mohammadi and Nasernejad [72] demonstrated that immobilization
of Phanerochaete chrysosporium on sugarcane bagasse significantly



Table 1
Natural carriers used in bioremediation.

Carrier Removed pollution Immobilized microorganisms Efficiency of bioremediation References

Plant fibres (Loofah sp.) Aromatic hydrocarbons Bacillus cereus Unimmobilized — 74%
Immobilized — 79%

[122]

Phenol Trametes versicolor Unimmobilized — 39%
Immobilized — 87%

[96]

Methyl parathion Bacterial consortium Unimmobilized — 55%
Immobilized — 98%

[12]

Carbendazim (pesticide) Bacterial consortium Unimmobilized — 12%
Immobilized — 95%

[70]

Ni Chlorella sorokiniana Unimmobilized — 64%
Immobilized — 88%

[2]

Baggase Tetradecane A. venetianus Unimmobilized — 22.3%
Immobilized — 76.8%

[106]

Anthracene P. chrysosporium Unimmobilized — 43%
Immobilized — 82%

[72]

Mesotrione (herbicide) Bacillus pumilus HZ-2 Unimmobilized — 48%
Immobilized — 75%

[99]

Chromium Acinetobacter haemolyticus Unimmobilized — 38%
Immobilized — 92%

[123]

Sawdust Petroleum oil Arthrobacter sp. Unimmobilized — 18%
Immobilized — 36%

[67]

Crude oil hydrocarbon Bacterial consortium Unimmobilized — 79.37%
Immobilized — 95.9%

[101]

Chromium A. haemolyticus Unimmobilized — 80%
Immobilized — 99.8%

[124]

Corncob p-Nitrophenol Arthrobacter protophormiae RKJ100 Unimmobilized — 39%
Immobilized — 79%

[99]

Carbofuran B. cepacia PCL2 Unimmobilized — 67.69%
Immobilized — 96.97%

[125]

Hexadecane Pseudomonas sp. Unimmobilized — ~33%
Immobilized — ~56%

[52]

Chlorophenols Bacterial consortium Unimmobilized — 87%
Immobilized — 89.7%

[77]

Expanded perlite Methyl tert-butyl ether Soil consortium Unimmobilized — 22%
Immobilized — 50%

[110]

Hexadecane Aspergillus niger Unimmobilized — 81%
Immobilized — 96%

[126]

Styrene P. aeruginosa Immobilized — 90% [111]
Tezontle Sulfonated azo dyes

(Acid Orange 7, Acid Red 8)
Bacterial consortium Abiotic test — 16.8 mg/(L ∗ 24 h)

Immobilized — 80 mg/(L ∗ 24 h)
[127]

Propanil (herbicide) Bacterial consortium Immobilized — 36.78 mg/(L ∗ 24 h) [128]
Methyl paration Bacterial consortium Abiotic test — 9%

Immobilized — 58%
[102]

E. coli RAZEK Unimmobilized — 49%
Immobilized — 95%

[114]

DDT (pesticide) P. fluorescens Unimmobilized — 55%
Immobilized — 99%

[113]

Coco-peat Oil Bacterial consortium Unimmobilized — 51.2%
Immobilized — 86.6%

[115]

Husks of sunflower seeds Crude oil Rhodococcus sp. QBTo Unimmobilized — 28%
Immobilized — 66.1%

[74]

Cotton fibres n-Heptadecane Acinetobacter sp. HC8-3S Unimmobilized — 82%
Immobilized — 96%

[82]
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increased the production and activity of manganese peroxidase during
the biodegradation of anthracene. After the immobilization of
Acinetobacter venetianus on this carrier, a higher rate of tetradecane
degradation was observed. This was probably connected with binding
of the contaminant on the hydrophobic surface of the carrier, and
in consequence the easier access of microorganisms to hydrocarbon
[82]. Increased efficiency of phenol degradation by immobilized
Candida tropicalis PHB5 was also observed [100]. The microorganisms
immobilized on the bagasse are suitable for bioremediation in
bioreactors because they remain active for up to 8 bioremediation
cycles [100,106].

5.3. Sawdust

One of the most common agro-wastes is sawdust, which has been
successfully used for the immobilization of bacterial cells. Arthrobacter
sp. immobilized on sawdust did not lose their enzymatic activity after
6 weeks of storage (at 25°C and 45°C) and was still able to degrade
similar quantities of crude oil [67]. Sawdust possesses a labyrinthine
structure providing very high surface area for cellular attachment.
High hydrophilicity of this carrier may hamper the adsorption of
oil-degrading microorganisms on the carrier. However, this difficulty
may be overcome by non-toxic hydrophobic coating of sawdust [107].
Hazaimeh et al. [101] during studies on degradation of oil by a
bacterial immobilized consortium, demonstrated that immobilization
significantly increased the production of biosurfactants by bacteria.
This was to increase the solubility, and thus the bioavailability of
hydrophobic hydrocarbons.

5.4. Corncob

Materials derived from agro-industrial residues (AIR), such as
corncobs, offer many advantages over synthetic matrices. Corncobs
are robust, porous and perforated. This increases the attachment area
for organisms and allows their growth without limiting diffusion.
Corncobs have a high water holding capacity, improve soil structure
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and oxygen diffusion, are readily available in maize processing plants,
and their usage in the processes of bioremediation provides an
alternative method of AIR disposal [12,52,98].

The first study of corncobs used as a carrier in bioremediation [108]
showed that they are a good carrier for the bioaugmentation of soil
contaminated with oily-sludge. It was also noted that after the
introduction of immobilized bacteria, the degree of oxygenation of the
lower layers of the soil had increased as a result of the creation of air
pockets by corncobs. Plangklang et al. [109] showed that Burkholderia
cepacia PCL3 bacteria grow very well on the surface of the corncob,
and thereby leaked into the medium due to the lack of space on the
carrier. Rivelli et al. [52] observed the increased degradative activity
after immobilization of bacteria on corncob powder. Additionally, this
carrier stabilized soil and improved the oxygen diffusion and the
water-mass transfer [52].

5.5. Expanded perlite

Volcanic rocks are known for their sorption and mechanical
properties. They are widely used in construction, filters and
hydroponics. One of these rocks is perlite which is excavated
worldwide. Because crude perlite has a relatively high density and
small surface area, it is subjected to heat treatment, resulting in a
significant extension and the forming of air bubbles inside. Expanded
perlite obtained in this way has a low density (0.032–0.4 g/cm3), high
porosity, and high surface area [89,110].

For the first time, expanded perlite was used for the bioremediation
studies by Paca et al. [111]. It was shown that biofilter consisted of
perlite particles with immobilized cells of Pseudomonas aeruginosa
was more effective in styrene biodegradation [111]. Emtiazi et al.
[112] demonstrated that the transformed cells of Escherichia coli
immobilized on perlite were more genetically stable than in other
carriers, and they were able to produce biosurfactants, which
increased the solubility of petroleum hydrocarbons, and therefore the
degree of their biodegradation.

5.6. Tezontle

Tezontle is a volcanic rock tested recently as a carrier in
bioremediation. This rock is commonly used in Mexico as a building
material, and has a characteristic reddish colour (due to the presence
of iron ions). The surface is highly porous and perforated, which
provides a good place for biofilm formation by microorganisms [102].

Santacruz et al. [113] demonstrated that Pseudomonas fluorescens
immobilized on a tezontle biofilter is able to degrade DDT up to
999.8 mg/L per day and 2,4-dichlorophenoxyacetic acid up to
2634 mg/L per day. Yáñez-Ocampo et al. [103] observed biodegradation
of a methyl-parathion and tetrachlorvinphos mixture by a consortium
of bacteria immobilized on tezontle. They showed a decrease in the
optical density of bacteria after 13 d of the experiment, whereas the
death of free cells occurred after 6 d. In addition, the immobilized cells
did not require supplementation with glucose during pollutant
breakdown. This demonstrates that after immobilization the new
environment is more friendly for bacteria which are able to degrade
greater amounts of insecticides [103]. Similar results were obtained
by Abdel-Razek et al. [114] during research on methyl-parathion
biodegradation by transformed E. coli RAZEK immobilized on tezontle.

5.7. Other carriers

Recently, increasing interest is observed in the usage of coco-peat,
husks of sunflower seeds and cotton fibres as carriers in bioremediation.
These carriers have not gained popularity yet, but so far studies have
shown their promising possibilities in bioremediation [74,82,115].

Nunal et al. [115], during the biodegradation of heavy-oil by a
bacterial consortium immobilized on coco-peat, showed that the
carrier, because of its porous and perforated surface, is a good place to
create a stable biofilm. Moreover, they observed that the immobilized
bacteria, after 60 d of the experiment, degraded 86.6% of the heavy-oil,
while the free cells decomposed only 51.2% of it. After 90 d of storage,
bacteria immobilized on the coco-peat had a greater survival rate than
those encapsulated in sodium alginate. This makes coco-peat an
excellent candidate carrier in bioaugmentation [115].

Bioremediation of crude oil by Rhodococcus spp. QBTo immobilized
on sunflower seed husks, also shown that immobilization improves
the survival and enzymatic activity of microorganisms. After 120 d
of storage at 10°C the bacterial survival rate was about 76%, and
therefore sunflower seed husks are an appropriate carrier for the
bioaugmentation of contaminated soils [74].

Lin et al. [82] noted that the negative charge and the presence of
hydroxyl and carboxylic acid groups make cotton fibres a good carrier
for immobilization of microorganisms. It was shown that Acinetobacter
sp. HC8-3S degraded more than 70% of the crude oil with 90 g/L NaCl,
whereas free cells degraded about only 15% under the same conditions.
This opens up the possibility of inexpensive bioremediation in areas of
high salinity by immobilized microorganisms. The authors showed that
the adsorption properties of cotton fibres allow the use of this carrier
for the biodegradation of floating oil from oil spills [82].
5.8. Pros and cons of natural and synthetic carriers

Application of immobilized cell systems in bioremediation indicates
several advantages over the usage of free microorganisms: prolonged
activity, stability of biocatalyst, feasibility of continuous processing,
increased tolerance to high toxic compounds concentration, easier
recovery, possibility of regeneration and reuse of biocatalyst,
reduction of microbial contamination risk and ability to use smaller
bioreactors with simplified process [1,94,99,116]. Because each
support has its own requirements in terms of the microorganisms
used and the degraded compounds, the support selection is a key step
which influences the success of bioremediation process [61,94].

The main feature of the carriers is mechanical resistance, which
allows to the recovery, regeneration and reuse of biocatalyst in
bioremediation processes [94,116,117]. This feature is typical for
sawdust, wood chips, shavings, loofah sponge and polyvinyl alcohol
beads, polyurethane foam, among from natural and synthetic carriers,
respectively [94,96,97,117,118]. In bioremediation processes very
important is the use of low-price and easy accessible carriers because
only than they may be applied on the large scale. This condition fulfils
plant residue, polyvinyl alcohol beads, polyurethane foam, different
ceramics, and natural polymers such as agarose, κ-carrageenan,
alginate, agar, and chitosan [52,62,97,103,107]. However, most of the
natural polymers are non-mechanically resistant. One of the most
often described natural carriers is alginate. It is cheap, biocompatible,
non-toxic and easy to use [51,48,49,97,119]. Unfortunately, it cannot
be used in continuous conditions because of the problems with gel
degradation and low physical strength resulting in the leakage of
immobilized microorganisms from the matrix [61,120].

Equally important carriers potentially useful in bioremediation have
to meet other requirements of good matrices: non-toxicity and
insolubility. These features characterize both natural (chitosan, loofah
sponge, corncob, sawdust, tezontle, sugarcane bagasse, wood chips) and
synthetic (polyvinyl alcohol, polyurethane, polypropylene, polystyrene)
carriers [36,52,81,94,95,100,101,103,107,116,117,118,121].

It is possible to find among both natural and synthetic carriers
almost ideal one, which may be used with success in bioremediation.
However, the predominance in the usage of natural carriers is
connected with their biodegradability, renewability and availability in
nature. Moreover, many of natural carriers are agro-waste that may be
further used in biotechnological processes. The immobilization of
microorganisms on natural carriers is environmentally friendly
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because it causes less disposal problems that may occur for synthetic
ones [52,99,100,101,107].

6. Conclusions

Interest in organic carriers, which are wastes from the agricultural
and food industries, increases continuously, because they are very good
material for immobilization. All of them have many functional groups,
which positively affect the degree of colonization by microorganisms.
Moreover, volcanic rocks (expanded perlite and tezontle) are also
known as carriers which have good sorption properties and high
mechanical resistance.

Carriers such as the loofah sponge and corncob have been used with
success in bioremediation in situ, and the former has also shown the
greatest support for pesticide biodegradation. In ex situ bioremediation
the best results have been obtained using carriers such as bagasse,
sawdust, expanded perlite and tezontle. Coco-peat, sunflower seed
husks, cotton fibres and porous glass seem to be promising materials
for immobilization, although their application requires further studies.
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