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Background: In recent years, Antarctica has become a key source of biotechnological resources. Native
microorganisms have developed a wide range of survival strategies to adapt to the harsh Antarctic environment,
including the formation of biofilms. Alginate is the principal component of the exopolysaccharide matrix in
biofilms produced by Pseudomonas, and this component is highly demanded for the production of a wide
variety of commercial products. There is a constant search for efficient alginate-producing organisms.
Results: In this study, a novel strain of Pseudomonas mandelii isolated from Antarctica was characterized and found
to overproduce alginate compared with other good alginate producers such as Pseudomonas aeruginosa and
Pseudomonas fluorescens. Alginate production and expression levels of the alginate operon were highest at 4°C.
It is probable that this alginate-overproducing phenotype was the result of downregulated MucA, an anti-sigma
factor of AlgU.
Conclusion: Because biofilm formation is an efficient bacterial strategy to overcome stressful conditions, alginate
overproduction might represent the best solution for the successful adaptation of P. mandelii to the extreme
temperatures of the Antarctic. Through additional research, it is possible that this novel P. mandelii strain could
become an additional source for biotechnological alginate production.
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1. Introduction

Alginates, linear polysaccharides composed of β-D-mannuronic and
α-L-guluronic acid, are produced by brown algae and bacteria such as
Azotobacter vinelandii and many Pseudomonas species [1]. Alginates
have been applied as thickening agents, stabilizers, and hydrogels in
food, cosmetics, pharmaceutical, textile, and paper industries [2].
Especially interesting are those bacteria that can be engineered to
produce high-quality alginates, which are even suitable for medical
applications [3]. One of the principal features of the high-quality
alginates is that they form strong gels and form thick aqueous solutions
[4,5]. Some of the medical applications of alginates are as follows:
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i) Pharmaceutical applications: Alginates are used as carriers for
delivering small chemical drugs and proteins [6,7];

ii) Wound dressing applications: Alginate dressings in dry
form absorb wound fluid to re-gel, and gels can moisturize
dry wound, thereby maintaining a physiologically moist
microenvironment and minimizing bacterial infection at the
wound site [8];

iii) Cell culture applications: Alginate gels are being used as scaffolds
for 2-D and 3-D cell culture systems [9]; and

iv) Tissue regeneration applications: In this aspect, alginates are
considered excellent materials for cell adhesion, regenerative
properties, and good slow carriers of proteins, DNA, and
antibodies [10].

Alginates are important components of extracellular polysaccharides,
or exopolysaccharides, in all pseudomonads [11]. In turn,
evier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license
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Table 1
Primers used in this study.

Primer Sequence Annealing T°

aroE F 5′-ACCGTGCCGTTCAAGGAAGA-3′ 55°C
areE R 5′-TACATCATGTCGTAGCA-3′ 55°C
glnS F 5′-ACCAACCCGGCCAAGGAAGACCAGG-3′ 55°C
glnS R 5′-TGCTTGAGCTTGCGCTTG-3′ 55°C
gyrB F 5′-GGTGGTCGAYAAYTCCATCG-3′ 55°C
gyrB R 5′-CGYTGWGGAATGTTGTTGGT-3′ 55°C
ileS F 5′-TTCCCAATGAAGGCCGGCCTGCC-3′ 55°C
ileS R 5′-GGGGTRGTGGTCCAGATCACG-3′ 55°C
rpoD F 5′-CTGATCCAGGAAGGCAACATYGG-3′ 55°C
rpoD R 5′-ACTCGTCGAGGAAGGAGCG-3′ 55°C
16S 27 F 5′-AGAGTTTGATCMTGGCTCAG-3′ 55°C
16S 1492 R 5′-AAGGAGGTGATCCANCCRCA-3′ 55°C
algUF 5′-AGCACAAAATTCTCGGGTTG-3′ 55°C
algUR 5′-CCACGTGTAAAACGCACTGT-3′ 55°C
mucAF 5′-CGTGACACCTGGTCTCGTTA-3′ 55°C
mucAR 5′-CCATGGACCACGAGTAGCTT-3′ 55°C
algA F 5′-TCAAGCACATCTCGGTCAAG-3′ 55°C
algA R 5′-ATCGGGATGTAGGTCGACTG-3′ 55°C
rpsLF 5′-GCAAGCGCATGGTCGACAAGA-3′ 55°C
rpslR 5′-CGCTGTGCTCTTGCAGGTTGTGA-3′ 55°C
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exopolysaccharides form the extracellular matrix structure of biofilms
[12].

The genes directly involved in pseudomonads alginate synthesis are
organized in an operon controlled by a single promoter [1,13,14,15],
the regulation of which is highly complex and influenced by the
quorum sensing system [16,17]. In Pseudomonas species, this operon is
formed by 12 genes (algD-alg8-alg44-algK-algE-algG-algX-algL-algI-
algJ-algF-algA), and operon expression is controlled by algU, a sigma
factor and activator of the alginate operon [18]. Operon expression is
also regulated by the MucA protein coded by mucA, which binds
to AlgU to prevent the transcription of the alginate operon [19]. In
Pseudomonas aeruginosa, the model species of the genus, more than
80% of alginate overproducer strains present a mutated mucA that
inhibits AlgU binding, thus resulting in the uncontrolled production of
alginate [20].

Biofilms originate from the assembly of individual sessile cells into a
complex and organized “multicellular” system by a highly regulated
developmental process that involves a coordinated sequence of
events, including primary surface attachment, micro-colony formation,
maturation, expansion, and, finally, dissemination [21]. This transition
from a single cell state to the biofilm architecture is dependent on the
production of adhesins and on the formation of a polysaccharide-rich
extracellular matrix responsible for intertwining individual cells
to provide fundamental support for the newly formed bacterial
community. In addition to the aforementioned polysaccharides, the
matrix is also composed of proteins and extracellular DNA in
proportions carefully regulated by a complex cellular system [16,22].
Biofilm formation by many environmental bacteria appears to be an
efficient strategy for overcoming stressful conditions [23,24].

Antarctica is the coldest, driest, and windiest continent in the world
where the minimum and maximum winter temperatures reach -25°C
and barely over -2°C, respectively. During summer, temperatures
range between -8 and 3°C [25]. The most adapted bacteria to these
harsh conditions are the psychrophilic bacteria because they can grow
at temperatures as low as -15°C, while optimum growth temperatures
never reach above 10°C [26]. In recent years, however, many
psychrotolerant bacteria have been isolated from the Antarctic and
Arctic regions [27,28,29,30,31]. Although psychrotolerant bacteria
display optimum growth at temperatures N20°C, they can grow at 0°C
[26,32]. Considering the wide and abrupt seasonal temperature
variations that psychrotolerant Antarctic bacteria must endure for
survival [33,34], it can be expected that these bacteria have efficient
and highly regulated strategies for tolerating low temperatures.

Alginates, which are important components of exopolysaccharides
in pseudomonads, could play an important role in bacterial adaptation
to low temperatures. Therefore, the main objective of this study
was to determine whether alginate synthesis increases at low
temperatures as an adaptation strategy by a novel Antarctic isolate of
Pseudomonas mandelii (6A1). To achieve this objective, the following
assessments were performed: 1) the 6A1 isolate was phylogenetically
characterized to determine its possible species, 2) biofilm formation
capacity at low temperatures was assessed, 3) the expression of genes
forming the alginate operon at low temperatures was evaluated, and,
finally, 4) the amount of alginate produced at different temperatures
was measured. The Antarctic 6A1 isolate was classified as a new strain
of P mandelii. This strain produces high amounts of alginate, thus
providing a possible adaptation strategy at low temperatures.

2. Materials and methods

2.1. Bacterial strains and growth media

The bacterial strain 6A1 was isolated in 2008 from a marine
sediment sample collected at Fildes Bay (62°13′28.8″S, 58°58′42.7W)
of King George Island, Antarctica. The strain was maintained under
standard conditions in lysogeny broth (LB) agar and routinely grown
in the LB medium at 25°C. The doubling time was determined by
OD600 monitoring at different temperatures (4, 15, 25, 30, and 37°C)
in 25 ml of LB medium in 100 ml flasks and with agitation at 240 rpm.
All experiments were performed on culture duplicates on three
different days (six cultures in total). Pseudomonas fluorescens (ATCC®
31948™) and P. aeruginosa PAO1-V [35] were used as controls of
alginate production.

2.2. Amplification of the 16S rRNA gene and phylogenetic analysis

To identify and phylogenetically characterize the 6A1 isolate, DNA
was isolated using the AxyPrep™ Bacterial Genomic DNA Miniprep Kit
(Axygen® Biosciences, Corning) following the manufacturer's
instructions. The 16S rRNA gene was amplified by PCR using the
primers EubB/27F (5′-AGAGTTTGATCMTGGCTCAG-3′) and EubA/
1522R (5′-AAGGAGGTGATCCANCCRCA-3′). The generated PCR
product (≈1530 base pairs) was purified using the AxyPrep™ PCR
Clean-up Kit (Axygen® Biosciences, Corning) and sequenced using
Macrogen (Korea). The obtained sequences were assessed by BLAST
analysis against the NCBI GenBank database. Phylogenetic analysis
was performed using the Phylogeny.fr software [36,37] by using the
maximum likelihood method and a GTR approach.

2.3. Multilocus sequence analysis

Analysis of the 16S rRNA gene sequence demonstrated that the 6A1
isolate belonged to thefluorescens groupof the genus Pseudomonas. The
primers of housekeeping genes (glnS, gyrB, ileS, and rpoD; Table 1)
previously used in a multilocus sequence typing analysis of the
P. fluorescens group were used in the present study [38]. Additionally,
the aroB gene was used in the multilocus sequence analysis (MLSA);
the primers for this gene were designed on the basis of the alignment
with the homologous gene of P. mandelii (complete genome
NZ_CP005960.1), P. fluorescens SBW25, and P. fluorescens A506 [39].
PCR amplifications were performed with an initial denaturation at
95°C for 10 min; then 35 cycles of 95°C for 1 min, 55°C for 1 min, and
72°C for 1 min; and a final extension at 72°C for 10 min. The PCR
products were cloned into the pCR2.1-TOPO® TA Cloning System
(Invitrogen) and sequenced using Macrogen (Korea). The obtained
sequences were alphabetically organized, phylogenetically analyzed,
and compared with a concatenated structure with the orthologous
genes of 30 different Pseudomonas species from the sampled site
www.pseudomonas.com [39]. Similar to that done for 16S rRNA, the
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Table 2
Percentage identities of individual genes used in MLSA analyses indicating that 6A1 is a
novel strain of Pseudomonas mandelii.

% identity Species

aroE 98% Pseudomonas mandelii JR-1
87% Pseudomonas fluorescens NCBIMB

glnS 97% Pseudomonas mandelii JR-1
95% Pseudomonas fluorescens NCBIMB

gyrB 98% Pseudomonas mandelii JR-1
93% Pseudomonas fluorescens NCBIMB

ileS 98% Pseudomonas mandelii JR-1
93% Pseudomonas fluorescens FW300

rpoD 99% Pseudomonas mandelii JR-1
97% Pseudomonas fluorescens FW300
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sequences were analyzed using the Phylogeny.fr software [36,37] by
using the maximum likelihood method.

2.4. Real-time reverse transcription PCR (RT-PCR) assays

RNA was isolated as described previously [40]. cDNA was
synthetized using the M-MLV Reverse Transcriptase System
(Promega). Real-time RT-PCR was performed in triplicate using the
CFX96 Touch™ Real-Time PCR Detection System (BioRad) and the
Brilliant III Ultra-Fast SYBR® Green QPCR Master Mix (Agilent) with
100 mM of each primer and 50 ng of RNA. The rpsL gene was used as
a housekeeping gene to normalize the real-time RT-PCR results, and
the amount of each RNA was calculated following the 2-ΔΔCt method
[41]. The oligonucleotides used in the real-time RT-PCR experiments
are listed in Table 1.

2.5. Differential expression of the alginate operon genes

Primers to measure the expressions of algU, mucA (regulators:
sigma and anti-sigma factors, respectively), and algA (enzyme:
mannose-6-phosphate isomerase) were designed using the complete
genome of the P. mandelii JR-1 (NZ_CP005960.1) and are listed in
Table 1. An overnight culture grown at 25°C in the LB medium was
used to seed 6-well plates at an initial concentration of OD600 = 0.1.
The plates were then incubated at 4, 15, and 25°C. RNA was isolated
after 24, 48, 72, and 48 h of incubation, and gene expression was
measured by real-time RT-PCR according to the protocol detailed above.

2.6. Crystal violet biofilm assays

Biofilm formation was estimated using the crystal violet procedure
[42]. An initial inoculum was grown overnight at 4, 15, and 25°C in a
100-ml flask containing the LB medium. Subsequently, 96-well
microtiter plates were seeded with the LB medium at an initial
concentration of OD600 = 0.1. The plates were incubated for 24, 48,
72, and 96 h. After incubation, the cells were removed by turning the
plates upside down and draining the liquid. Next, 125 μl of 0.1%
crystal violet was added to each dish, and the plates were incubated
for 20 min. The plates were then washed four times with water,
shaken, and blotted on a stack of paper towels to remove excess dye.
The plates were dried overnight at room temperature. To quantify the
amount of biofilm formed, 125 μl of 30% acetic acid was added to each
well and incubated for 15 min at room temperature. Finally, the
solution was transferred to a new flat-bottomed microtiter dish, and
its absorbance was read at 550 nm using 30% acetic acid in water as
the blank.

2.7. Confocal scanning microscopy

Biofilms were formed at 4, 15, and 25°C in six-well plates
with coverslips incubated for 72 and 96 h. After incubation, the
coverslips were washed three times with PBS buffer (NaCl 137 mM;
KCl 2.7 mM; Na2HPO4 10 mM; KH2PO4 2 mM). The samples were
fixed and permeabilized with absolute methanol (Merck) for 15 min
at room temperature. Cell aggregation was identified by staining the
samples with 20 μM of SYTO® 9 (Thermo-Fisher) for 5 min. The
stained samples were then washed five times with PBS buffer.
Exopolysaccharides were stained using 100 μg/ml of the Concanavalin
A, Alexa Fluor® 594 Conjugate (Molecular Probes®, Thermo-Fisher)
and incubated for 2 h at room temperature. Finally, all samples were
mounted for confocal scanning microscopy on a slide with the Dako
Mounting Medium (Agilent Technologies). Samples were analyzed in
a Leica TCS SP5 II spectral confocal microscope (Leica Microsystems
Inc.), and the images were obtained using a Leica 40X/1.25 Oil HCX PL
APO CS lens (Leica Microsystems Inc.). The Java-based image analysis
program Image J (http://rsb.info.nih.gov/ij/) was used for image
analyses. The images were assembled to generate a single image
based on the sum of pixel brightness values through the image stack
(ImageJ: z-project). Fluorescence intensity was measured for each
channel, and three fields were analyzed in all samples. The
experiments were performed in triplicate.

2.8. Alginate measuring assay

To measure the amount of alginate produced, all bacterial strains
used in this study were grown in 50 ml of LB broth at 4, 15, and 25°C
until the culture reached an OD600 of 2.0. The bacterial cells were then
collected by centrifugation at 7000 × g for 20 min and suspended in
10 ml of PBS buffer. Simultaneously, another culture was used to
correlate OD600 2.0 with the dry cell weight. To remove any
contaminants such as RNA and DNA from the alginate, the samples
were treated with RNAse A (Promega) and DNAse I (Sigma). The
samples were then incubated at 37°C for 1 h. To remove the cells, the
mixture was vortexed and centrifuged at 8000 × g for 20 min. The
alginate remaining in the supernatant was precipitated with 25 ml of
95% ethanol. The alginate precipitates were collected by centrifugation
at 10000 × g for 30 min and suspended in 2 ml of 0.85% NaCl. The
uronic acid concentration was determined by a standard colorimetric
assay [43].

2.9. Statistical analysis

Student's t-test was performed to determine the statistical
significance of the qRT-PCR results.

3. Results

3.1. 16S and MLSA analyses reveal that 6A1 is a new strain of P. mandelii

To identify at least the genus of the 6A1 Antarctic isolate, the 16S
rRNA sequence was assessed (GenBank accession no. KT377040). The
best homology was obtained with P. mandelii (99%), a member of the
P. fluorescens group in the genus Pseudomonas. To corroborate this
result, an MLSA analysis was performed. The amplified genes were
first individually evaluated by BLAST analysis and then alphabetically
concatenated and compared with 30 concatenated sequences from 30
different Pseudomonas species. From this, the aroE gene (GenBank
accession no. KT820723) was observed to have a 98% identity with
P. mandelii, followed by 87% identity with P. fluorescens SBW25 strain.
Similarly, glnS showed 97% identity with the homologous P. mandelii
gene, while gyrB (GenBank accession no. KT820725) presented 98%
identity with P. mandelii. Similar results were obtained for ileS and
rpoD (GenBank accession nos. KT820726 and KT820727), which had
98% and 99% identity, respectively, with orthologous P. mandelii genes
(Table 2). Finally, phylogenetic analyses of the concatenated genes
(Fig. 1) strongly demonstrated the 6A1 isolate to be a novel strain of
P. mandelii.
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Fig. 1.MLSA phylogenetic analysis revealed that the 6A1 isolate is a novel strain of Pseudomonasmandelii. Maximum-likelihood phylogenetic tree based on concatenated partial aroE, glnS,
gyrB, ileS, and rpoD of strain 6A1 and the type strains of closely related species of the genus Pseudomonas. Numbers indicate the branch length.
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3.2. The growth rate showed the psychrotolerant nature of the 6A1 strain

To investigate the effect of temperature on the growth rate of the
bacterial isolate, 6A1 was grown in the LB medium at different
temperatures (4, 15, 25, 30, and 37°C). The optimal temperature to
grow, the best doubling time, was observed at 25°C (Table 3), and
there was no detectable growth at 37°C. These results support the
Table 3
Doubling time of 6A1 at different temperatures. The optimum growth of P. mandelii 6A1
was at 25°C.

Doubling time (min) ± SD

4°C 15°C 25°C 30°C 37°C

6A1 381 ± 26 158 ± 18 49 ± 9 78 ± 8 N/Ga

a N/G = no growth
psychrotolerant nature of this strain, a behavior that is common
among all known P. mandelii strains.

3.3. Biofilm formation and exopolysaccharide production increase at lower
temperatures

To determine whether there was a correlation between low
temperatures and the increase in biofilm formation, biofilm formation
was assessed with growth at 4, 15, and 25°C by using a microtiter dish
assay. After 72 h, 6A1 showed at least six-fold and three-fold more
biofilm formation at 4 and 15°C, respectively, than that at 25°C
(Fig. 2). After 96 h, biofilm formation at 4 and 15°C increased at least
ten-fold and five-fold, respectively, compared with that at 25°C. To
explain the increase in biofilm formation at lower temperatures, the
amount of exopolysacharides produced was measured. One of the
principal components of the bacterial biofilm is the exopolysaccharide
matrix [16,17]. This matrix is secreted and formed by the
bacterial population [44]. The principal component of pseudomonads



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

4°C 15°C 25°C

P. mandelii 6A1

O
D
5
5
0

72h

96h

***

***
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4-fold, respectively, compared with those at 15 or 25°C, thus demonstrating the effect of
temperature on biofilm formation (*** = P N 0.05).
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exopolysaccharide is alginate, and the production of this molecule is
highly regulated [45,46,47]. Confocal laser microscopy was used to
investigate the production of exopolysaccharides during biofilm
formation in P. mandelii 6A1 (Fig. 3). After 72 h of incubation at 4°C, a
very low number of bacterial cells were observed, while a high
amount of polysaccharides was detected (Fig. 3a). This was
significantly different from that observed in biofilm formed after
incubation at 15 and 25°C, where the number of bacterial cells
was consistent with the amount of extracellular matrix generated
(Fig. 3b, c). After 96 h of incubation, the number of bacterial cells
Fig. 3. Exopolysaccharide production increases at lower temperatures independent of cell dens
stainedwith SYTO® 9 (Green), and the exopolysaccharidematrix was detectedwith ConA-Alex
and(c) 25°C. Box 1: bacterial DNA stained with SYTO® 9; Box 2: EPS detected with ConA-Alex
increased depending on temperature, whereas exopolysaccharide
production did not appear to depend exclusively on the number of
cells, but temperature may play a relevant role here.
3.4. Alginate production significantly increases at low temperatures due to
downregulation of mucA

As mentioned above, alginate is the principal component of the
extracellular matrix in pseudomonads biofilms [21,48,49]. This
compound is a negatively charged copolymer formed by O-acetylated
D-mannuronic and L-glucoronic acids [50]. Alginate production is
controlled by the alginate operon in all pseudomonads described
to date [51]. To determine the correlations between low growth
temperature, biofilm formation, and alginate production, the
expression levels of algU and mucA, two relevant regulatory genes
involved in alginate synthesis, and algA, a component of the alginate
synthesis operon, were measured. The expression of these genes was
assessed at three different temperatures (4, 15, and 25°C) after 24, 48,
72, and 96 h of growth. No changes were observed in algU expression
at any of the temperatures or growth times. However, mucA
expression decreased at 4 and 15°C after 24 and 48 h of incubation
(Fig. 4), and this low expression at 4°C was maintained up to 72 h
post incubation. In contrast, algA was overexpressed at 4 and 15°C,
reaching at least six-fold higher by 24, 48, and 72 h of incubation than
the culture growing at 25°C (Fig. 4). After 96 h, the expression levels
of algA at 4 and 15°C were similar to those of the culture grown at
25°C (Data not shown). This evidence supports the temperature
dependence of alginate operon overexpression in this novel strain of
P. mandelii. To validate the results obtained by transcriptional analysis,
the amount of alginate produced was also measured at 4, 15, and 25°C
when the cultures reached an OD600 value of 2.0 and was compared
with those produced by two good alginate producers P. aeruginosa and
P. fluorescens. The amount of alginate produced was fully dependent
on temperature and increased as the temperature decreased (Table 4)
in all tested strains. Specifically, the amount of alginate produced in
6A1 at 4°C was at least 20-fold higher than that produced by a similar
number of cells at 25°C. Similarly, the amount of alginate produced in
6A1 at 15°C was 4.5-fold higher than that produced by cultures grown
ity. Confocal scanning microscopic images of concanavalin A detection. Bacterial DNA was
a592 (red). The EPSmatrix increased at (a) 4°C comparedwith that in cultures at (b) 15°C
a592; and Box 3: Merge.
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at 25°C. The decreased expression of mucA, which is perhaps mediated
by acclimatization to low temperatures, may be responsible for the
overproduction of alginate.

4. Discussion

The present study analyzed the effect of temperature on biofilm
formation and alginate production in a bacterial strain isolated from
the marine sediments of Fildes Bay, King George Island, Antarctica.
The growth rate of this isolate was estimated at three different
temperatures. The behavior of this novel P. mandelii strain was more
similar to that of typical environmental Pseudomonas growing in less
stressful environments, where optimal growth temperatures range
between 25 and 30°C. This indicates that the 6A1 strain is different
from psychrophilic bacteria, which are fully adapted to conditions of
extreme cold [52].

P. mandeliiwas first isolated from mineral waters [53] but has since
then been isolated from agricultural fields [54,55], with both isolation
environments (i.e., water and fields) located in temperate climates.
However, this species is characterized as a cold-adapted bacterium
[56] that shows non-halophilic features and that flourishes at low
temperatures by producing extracellular enzymes [57]. Nevertheless,
the optimum growth temperature of P. mandelii is from 25 to 30°C
[58], although this bacterium can grow at 4°C but not at 37°C [57].
Therefore, P. mandelii is an excellent example of a psychrotolerant
bacterium.

As stated, this bacterium has been isolated from mineral waters in
France [53] and Korea [56] and from agricultural fields in China [55];
the climates in these countries are vastly different from that in
Table 4
Alginate production of the Pseudomonas sp. 6A1 strain. Alginate concentrations were indirectly
Production by the 6A1 strain was compared against the strains P. aeruginosa PAO1-V and P. flu

Alginate production in μg/ml of uronic acid per gr

4°C 15°C

Pseudomonas sp. 6A1 26.18 ± 4.63 6.32 ± 0.46
P. fluorescens
(ATCC® 31948™)

1.94 ± 0.41 1.00 ± 0.27

P. aeruginosa PAO1-V N/Ga 1.02 ± 0.30

a N/G = no growth.
Antarctica. With the exceptions of the psychrophilic Pseudomonas
antarctica, Pseudomonas meridiana, and Pseudomonas proteolytica
[59], all members of the Pseudomonas genus are described as
psychrotolerant microorganisms [33].

The current study obtained evidence for the capacity of the novel
P. mandelii 6A1 strain to improve biofilm formation at low
temperatures (4°C), which was mediated by alginate overproduction.
The alginate operon is responsible for the synthesis of all enzymes
participating in the formation of exopolysaccharide extracellular
matrix [19]. To demonstrate the effect of temperature on biofilm
formation, the expression was measured for two genes involved in
alginate synthesis: algU and mucA. In P. aeruginosa, MucA controls
AlgU binding, the transcriptional activator of the alginate operon, to
prevent the expression of the operon acting as an anti-sigma factor
[19]. In the present study, no changes were found in the expression of
algU at different temperatures; however, mucA was downregulated at
lower temperatures (4 and 15°C). This downregulation would explain
the increased alginate production recorded at lower temperatures.

Many strategies for overcoming extremely low temperatures have
been reported in bacteria. One of them is the production of biofilm to
persist in stressful environmental conditions [60,61,62]. Biofilm
formation depends on the capacity of bacteria to sense environmental
signals such as nutrient availability, pH, temperature, osmolality,
fluctuations in oxygen concentration, and the presence of antibiotics
[63,64,65,66]. At 23°C (“low temperature” for Escherichia coli), the
biofilm formation capacity of E. coli K-12 considerably increases [67].
The following three mechanisms have been proposed for classifying
biofilms as resistance structures against environmental stress: i) the
barrier properties of the slime matrix and exopolysaccharide hydrogel
determined using colorimetric reactions that measured the concentration of uronic acid.
orescens (ATCC® 31948™) at 4, 15, 25, 30, and 37°C.

am of dry weight culture

25°C 30°C 37°C

1.28 ± 0.31 1.02 ± 0.18 N/G
1.02 ± 0.37 0.78 ± 0.24 0.62 ± 0.12

0.83 ± 0.12 0.82 ± 0.12 2.22 ± 0.51
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that protect bacteria against ultraviolet light and dehydration [68];
ii) the creation of starved, stationary, and dormant zones inside
biofilms, which is a characteristic that allows bacteria to generate a
reservoir population that can withstand adverse conditions and begin
a new colony when conditions are more favorable [69,70,71]; and
iii) the presence of subpopulations better adapted to the particular
stressor, termed persisters [69]. These three features make biofilms
powerful structures that could fundamentally contribute to the
survival of bacteria in Antarctica.

In conclusion, the present study described that the novel strain 6A1
strain of P.mandelii isolated fromAntarctica increases biofilm formation
at lower temperatures due to alginate overproduction. This behavior
might be caused by the downregulation of MucA, which is the
repressor of the alginate operon. Biofilm over-production in this
Antarctic isolate might represent a useful strategy for adaptation
to low temperatures. These data contribute toward a better
understanding of environmental adaptations in psychrotolerant
Pseudomonads bacteria to low temperatures. Future studies are
needed to elucidate the genetic and metabolic bases for alginate
overproduction in the 6A1 strain. Ultimately, this knowledge could be
used for the biotechnological production of this component.
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