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Mannheimia haemolytica leukotoxin (LKT) is a known cause of bovine respiratory disease (BRD) which results in
severe economic losses in the cattle industry (up to USD 1 billion per year in the USA). Vaccines based on LKT
offer the most promising measure to contain BRD outbreaks and are already commercially available. However,
insufficient LKT yields, predominantly reflecting a lack of knowledge about the LKT expression process, remain
a significant engineering problem and further bioprocess optimization is required to increase process
efficiency. Most previous investigations have focused on LKT activity and cell growth, but neither of these
parameters defines reliable criteria for the improvement of LKT yields. In this article, we review the most
important process conditions and operational parameters (temperature, pH, substrate concentration, dissolved
oxygen level, medium composition and the presence of metabolites) from a bioprocess engineering
perspective, in order to maximize LKT yields.
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1. Introduction

Bovine respiratory disease (BRD) is economically the most
important disease in the cattle industry although it also affects other
wild and domestic ruminants [1,2,3,4]. The high morbidity and up to
50% mortality result in considerable losses [5] often approaching
$US 1 billion per year in the US cattle industry alone [6,7,8,9].

BRD is a complex multifactorial disease causing a severe form
of pneumonia. A BRD outbreak typically occurs after transportation
to feedlots, hence the common name for the disease is ‘shipping fever’
[4,10]. Although the mechanism of infection and the complex
interactions among the host, pathogen and environment are not
fully understood, Mannheimia haemolytica leukotoxin (LKT) is the
predominant virulence factor [6,11,12,13,14,15].

M. haemolytica is a Gram-negative, facultative anaerobic, non-motile,
opportunistic pathogen [16]. As a commensal organism of the upper
respiratory tract and nasopharynx of healthy ruminants, it can colonize
the lower respiratory tract of stressed or immunocompromised
animals and overcome their innate immunity, causing pneumonia
[7,16]. LKT is a 105-kDa, soluble, heat-labile protein that belongs to the
repeat-in-toxin (RTX) family, and it has a dose-dependent effect. At
low concentrations, LKT induces bovine cells to undergo a respiratory
burst and degranulation thus causing inflammatory cytokine
production. At higher concentrations, LKT induces apoptosis and the
formation of transmembrane pores, the latter resulting in necrosis and
the breakdown of the pulmonary immune system [8,13,17]. LKT is
closely related to Escherichia coli &«-hemolysin and is similarly encoded
by a four-gene polycistrionic operon (lktCABD). The lktA gene encodes
the inactive proLKT protein, whereas lktB and [ktD encode proteins that
promote secretion [18,19,20,21], and [ktC encodes the enzyme that
activates LKT by acylation [19]. The expression and activation of LKT
has been comprehensively reviewed [12,19,22,23,24,25,26,27].

More than 20 M. haemolytica serotypes, subdivided into two
biotypes (A and T), have been identified thus far, revealing a high
degree of amino acid sequence diversity for LKT due to the complex
gene mosaic structure [3,8,28,29,30]. The most relevant forms from a
veterinary perspective are biotype A serotype 1 in cattle and biotype A
serotype 2 in sheep [28,31]. The treatment of BRD typically involves
aggressive antimicrobial therapy, combined with improved feedlot
management and vaccination to prevent further outbreaks [6,8].
Although antimicrobials are widely used, they are becoming less
effective due to the spread of antibiotic resistance [2,8,15,32]. The
demand for BRD vaccines is therefore rising, and currently-available
vaccines based on LKT as the predominant antigen are highly effective
[33,34,35,36]. The role of several other virulence factors of M.
haemolytica such as the capsule, outer membrane proteins (e.g. PIpE),
neuraminidase, adhesins, and lipopolysaccharides have also been
investigated for vaccine formulation [8,28,37,38,39,40]. A PIpE-LKT
fusion protein as antigen showed a significant protection against a
bacterial challenge [39,41,42]. Nevertheless, LKT provided as M.

Table 1

haemolytica supernatant is still the most relevant and successfully
applied antigen for vaccination. However, the yields of LKT are
often low [43,44] and it is unclear whether the rising demand for the
vaccine can be met by current processes. This review article therefore
focuses on the optimization of LKT yields in M. haemolytica from a
bioprocess engineering perspective. Major process parameters such as
temperature, dissolved oxygen concentration and media composition
are considered based on the hypothesis that M. haemolytica
experiences comparably dramatic changes in its physical environment
during the course of infection.

2. The expression profile of LKT

LKT expression should occur during the log phase of cell growth but
the precise expression profile remains uncharacterized [12,19,45,46,47,
48]. Moreover, higher growth rates and more biomass do not necessarily
lead to higher LKT yields [44,49,50]. However, previous investigations
often focused on M. haemolytica growth and LKT activity, and there is
little correlation between the total amount of LKT in the culture
supernatant and LKT activity [45]. One potential reason for this is the
strong dependence of LKT activity on temperature. The complex and
non-standardized preparation of samples for current LKT activity
assays can lead to the rapid thermal inactivation of LKT, resulting in
high standard errors [51]. Furthermore, there is high strain-dependent
variability in terms of optimum LKT expression, making it difficult to
generalize previous investigations [30,43,47,48,49]. As a result, cell
growth rate and LKT activity are not strictly reliable as criteria for the
optimization of LKT expression, and a clear differentiation among
optimal cell growth, LKT activity and LKT expression is therefore
necessary. The Enzyme-linked Immunosorbent Assay (ELISA) is
the most common and well established method to quantify LKT
expression [38,52].

3. Process and kinetic parameters

The available data concerning M. haemolytica media and process
requirements for cell growth and LKT production are limited and
often contradictory (Table 1). However, M. haemolytica experiences
dramatic changes in its physical environment during the course of
infection, including changes in temperature, oxygen levels and nutrient
availability. Therefore, critical factors such as media composition, pH,
dissolved oxygen, inoculum density and their effects on cell growth
and LKT expression are discussed in more detail below, including the
impact of acetic acid as the major metabolic byproduct (Table 2, Table 3).

3.1. Medium requirements and supplements
LKT production usually involves a two-stage batch process including

a change in the medium composition [44,47]. The most common media
for LKT production are brain heart infusion (BHI) broth and chemically

Critical medium components affecting M. haemolytica cell growth, LKT activity and LKT expression.

Inhibitory/sub-optimal

Beneficial/essential

Complex media supplements Growth N/A Yeast extract
LKT expression Yeast extract N/A
LKT activity N/A BSA, FCS
Carbon source Growth Galactose, glycerol, sucrose, lactate Glucose
LKT expression N/A N/A
Amino acids Growth L-Methionine L-Alanine, L-Isoleucine
LKT expression The absence of amino acids N/A
Vitamins Growth N/A Calcium pantothenate, nicotinamide, thiamine
LKT expression N/A N/A
Trace elements Growth BSA + Fe*T+Mg?*, Ca®* Fe3, Mg?™
LKT expression BSA + Fe* T +Mg? ", Ca®* Mn?*++Fe*
LKT activity BSA + Fe*T+Mg? ™, Ca®™ N/A




T. Oppermann et al. / Electronic Journal of Biotechnology 28 (2017) 95-100 97

Table 2
Critical process conditions affecting M. haemolytica cell growth, LKT activity and LKT
expression.

Non-permissive Sub-optimal Optimal
pH Growth <6.5,28.8 <7.1,279 7.2-7.8
LKT activity <6.2 <6.7,26.9 6.8
LKT expression N/A <7.2¢ 7.3-8.0°
DO Growth N/A Non-aerated Aerated
LKT activity N/A Non-aerated Aerated
LKT expression N/A Non-aerated Aerated
Temp. Growth <15.3°C, 243.2°C <36°C, 241°C 37-40°C

LKT activity N/A N/A N/A
LKT expression <30°C <36°C, 241°C 37-40°C

@ Qualitative SDS-PAGE analysis.

defined RPMI-1640 medium, which is often supplemented with fetal
calf serum (FCS) or bovine serum albumin (BSA) [44,47]. However,
FCS and BSA enhance LKT activity more than LKT expression [43,44,47,
53,54,55,56,57].

3.1.1. Carbon source

Various carbon sources have been used with M. haemolytica but
glucose is the substrate of choice (Table 1, Table 3) [56,58]. However,
glucose favors the production of large amounts of acetic acid as a
metabolic byproduct, and the resulting drop in pH inhibits cell growth
[44,58]. Up to 87% of the carbon derived from glucose can be
channeled into acetic acid production once the glucose concentration
rises above a certain threshold [44]. Although the critical glucose and
acetic acid concentrations in M. haemolytica are unknown, the carbon
overflow mechanism is probably similar to that reported in E. coli [44],
which has a glucose threshold of 30 mg L! and an acetic acid
inhibition constant (k;) of 9 g L™! [59,60].

Alternative carbon sources that support the efficient growth of
M. haemolytica include p-xylose, b-mannitol, b-ribose, p-sorbitol and
fructose, but these also promote the synthesis of acetic acid. In
contrast, galactose, glycerol, sucrose and lactate do not promote the
synthesis of acetic acid as much as other carbon sources, but they also
result in slow growth rates [58].

3.1.2. Amino acids

The amino acid requirements of M. haemolytica are strictly limited to
L-amino acids. Alanine and isoleucine are essential for rapid cell growth,
whereas hydroxyproline, serine and either threonine or tryptophan are
completely dispensable, and methionine even has a small inhibitory
effect [61]. Furthermore, LKT is not produced under amino acid
limiting conditions [56]. Therefore, amino acid supplements can
achieve a significant boost in LKT expression levels especially when
defined or semi-defined media are used. This predominantly reflects
the increase in cysteine and glutamine levels, revealing a possible
bottleneck for further optimization [44,49].

In contrast to the reports summarized above, van Rensburg and
du Preez [49] found that when yeast extract is used as the amino
acid source, LKT production is favored under amino acid limiting
conditions compared to carbon limiting conditions. Nevertheless, du
Preez [44] found that although yeast extract promotes cell growth, it
also reduces the amount of LKT produced per cell because precursors
and energy are committed to the accumulation of biomass, and this
may explain the results presented by van Rensburg and du Preez [49].
The essential role of amino acids is supported by two hypotheses:
(i) cysteine is essential for amino acid metabolism in M. haemolytica
because this species cannot reduce sulfate for incorporation into
sulfur-containing amino acids, and (ii) amino acids can also serve as a
nitrogen source for M. haemolytica [44,56].

3.1.3. Vitamins

Only calcium pantothenate, nicotinamide, and the monophosphate
or pyrophosphate of thiamine are thought to be essential for the
optimal growth of M. haemolytica, but increasing the initial vitamin
concentration does not appear to boost LKT expression [44,56,58].
Other common components such as biotin, folic acid, p-aminobenzoic
acid, pyridoxine, riboflavin, hemin and oleic acid do not appear to
affect cell growth [58,61].

3.1.4. Trace elements

Iron may be a key trace element required for the growth of
M. haemolytica and this mineral is physiologically available as bovine
transferrin with an iron level regulated by receptor expression [37,62].

Table 3

Overview of published process settings and yield coefficients for different M. haemolytica strains.
Strain H-44L H-44L Biotype A, serotype 1¢ OVI-1 OVI-1 OVI-1
Medium Casein CDM RPMI 1640 BHI BHI + Yeast extract BHI RPMI 1640 SDMP SDM® SDMP
Carbon source Glc Gal/Glc Glc Glc Glc Glc Glc Glc Glc Glc
Equipment SF SF SF SF SF BR BR BR BR BR BR
Process mode Batch Batch Batch Batch Batch Batch Batch Batch Batch Batch Conti.
T[°C] 37 37 37 37 37 37 37 37 37 37 37
pH 7.44 7.44 6.84 6.8¢ 7.34 7.34 7.3 7.3 7.3 73 7.3
DO [%] N/A N/A N/A N/A N/A >30 230 230 230 230 230
n [rpm] 150 150 120 120 200 400-550 400-550 400-550 400-550 400-550 400-550
t[h] 12 25 4.0 4.0 3.5 3.0 35 5.5 45 9.5 N/A
0ODs75/600 0.52 0.60 0.621 0.594 N/A N/A N/A N/A N/A N/A N/A
CBiomass |&/L] N/A N/A N/A N/A 1.6° 2.3¢ 1.80 0.41 1.62 0.88 1.08
Umax [h7'] N/A N/A 0.56 1.03 1.19 1.15 1.56 0.62 1.25 0.71 1.0
Yys N/A N/A N/A N/A N/A N/A 0.56 0.20 0.52 0.17 0.60
can [g/L] N/A N/A N/A N/A 1.9¢ 2.08 1.80 1.73 1.40 241 1.05
cr [g/L] N/A N/A 0.04® 0.06® N/A N/A 0.02 0.04 0.07 0.33 0.04%
Reference [58] [61] [43] [70] [49] [44]

CDM = chemically-defined medium, SDM = semi-defined medium, Glc = glucose, Gal = galactose, SF = shake-flask, BR = bioreactor, T = temperature, DO = dissolved oxygen, n =
agitation, t = cultivation time, Cgjomass = biomass concentration, pimax = maximum growth rate, Yy = biomass yield coefficient on glucose utilized, can = acetic acid concentration, ¢;xr =

leukotoxin concentration.

2 Not further specified.
Glucose limited.
Amino acid limited.
No control.
Data obtained from diagram.
Dilution rate.

b
<
d
e
f
& Rounded to two decimal places.
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Iron-supplemented RPMI-1640 medium increased the total biomass
and maximum cell growth rate of M. haemolytica [43]. Previous
investigations have indicated that iron is required for LKT secretion
and that iron also induces the expression of the IktCABD operon
[18,43,46,49,62,63]. The co-presentation of manganese and ferric
iron boosted LKT expression even further [49]. However, data have
also been published showing greater Ikt promoter activity under
iron-limiting conditions [50]. This contradictory finding is supported by
the regulation of other bacterial toxins, including outer membrane
proteins and siderophores, where iron-limiting conditions stimulated
their production [62,64,65,66,67].

Depending on which culture medium is used, the addition of
0.001-0.01 M magnesium can increase the total biomass [43,58],
whereas the combination of BSA, magnesium and ferric iron resulted
in lower biomass accumulation and a steep decline in the LKT yield
[43]. Taken together, these data suggest that iron, magnesium and
manganese are the most promising trace elements to promote
M. haemolytica cell growth and LKT expression.

3.2. Process conditions

32.1.pH

In complex media, the highest maximum growth rate of
M. haemolytica is achieved when the initial pH lies within the range
7.2-7.8 [49,58]. At pH values of <6.5 or 28.8, growth slows down or
even stops completely [49,58]. A similar optimum pH range (7.3-8.0)
has been reported for LKT expression [46], but the data are based on
qualitative SDS-PAGE analysis and the specific production rate per dry
weight of cell biomass has not been reported. Within this optimum
pH range, Ikt promoter activity remains constant [50], but if the pH
falls below 7.3 there is a reversible decline in LKT expression [46].
Interestingly, the optimum pH for LKT activity is 6.8, which is not
within the optimal ranges for either cell growth or LKT expression [43].

Because M. haemolytica produces large amounts of acetic acid, pH
shifts during cultivation are unavoidable. However, the concentration
of phosphate or tris(hydroxymethyl)aminomethane (Tris) required to
maintain a constant pH is toxic and therefore inhibits cell growth [58].
Recent efforts have focused on pH-controlled cultivation at pH 7.3 in
bioreactor systems, because it is not possible to control the pH
adequately in shake-flasks [49]. The production system and scale
therefore play key roles in determining the yield of LKT.

3.2.2. Dissolved oxygen

M. haemolytica is a facultative anaerobic bacterium and can therefore
grow either in the presence or absence of oxygen. Although the
transcription of the lktCABD operon is not dependent on the oxygen
level [50] or even favored under anaerobic conditions [23], shake-flask
experiments have nevertheless shown that increasing the aeration
increases the growth rate and biomass accumulation [68]. Furthermore,
well-aerated conditions achieved an almost four-fold increase in LKT
production as well as a higher LKT activity compared to non-aerated
conditions [45,49]. As a consequence, aerobic conditions are more
suitable than anaerobic conditions for the production of LKT.

3.2.3. Temperature

M. haemolytica grows optimally at 37°C, and increasing the
temperature up to 40°C does not have an impact on the growth rate
[49]. Beyond these ranges, the growth rate decreases and eventually
stops at £15.3°C or 243.2°C [45,49]. The optimum temperature range
for LKT expression is 37-40°C. Expression declines at temperatures
below 37°C and eventually stops at <30°C [45,46]. Studies of the Ikt
promoter have shown a reversible effect caused by shifting the
temperature from 30°C to 42°C [50]. Depending on the individual
needs in terms of product quality, the thermolability of LKT must be
considered in greater detail.

3.24. Inoculum density

The total biomass of M. haemolytica cultures appears to
be independent of the inoculum density at ODs75,, = 0.02 and
ODg50nm = 0.4 [47,58]. Even inoculum densities of <10 cells mL™! can
achieve sufficient biomass concentrations, but the lag phase is longer
when the inoculum density is this low, resulting in an extended
cultivation period [58]. Increasing the inoculum density causes a slight
decrease in the maximum growth rate (calculated from published
data) [47], which may reflect early nutrient limitations in the
RPMI-1640 medium. Depending on the production volume and the
required product quality, it may be necessary to use a sub-optimal
inoculum density. High inoculum densities reduce the overall
cultivation time and therefore also the degree of LKT inactivation,
whereas low inoculum densities are more suitable for seed scale-up.

4. Conclusion and outlook

This review summarizes the knowledge about bioprocess
requirements for M. haemolytica cell growth and LKT production and
emphasizing the importance and possibilities to further optimize the
LKT production process for vaccine manufacturing. Previous
investigations have focused mainly on LKT activity and cell growth,
which are not strictly related to LKT expression. The considerable
M. haemolytica strain variability may explain some of the contradictory
results, and strain-specific optimization is therefore recommended.

Acetic acid is the major metabolic byproduct of LKT production in
M. haemolytica and the amount of acetic acid produced often exceeds
the amount of accumulated biomass. This is because up to 87% of the
carbon from glucose can be channeled into the carbon overflow
metabolism, resulting in the accumulation of acetic acid and a
significant drop in pH. Interestingly, the effect of pH-controlled and
uncontrolled conditions have not yet been compared. Nevertheless,
the large amount of acetic acid produced under optimal conditions in
batch cultures is likely to limit M. haemolytica cell growth and thus
LKT production. Although a pH-controlled process would achieve
better cell growth, the accumulation of acetic acid causes two further
problems: (i) large amounts of ATP are required to expel protons and
avoid the acidification of the cytoplasm [49], and (ii) large amounts of
an alkaline solution would be needed to maintain a constant pH,
which increases the osmolarity of the medium. No studies have yet
been carried out to investigate the impact of osmolarity, and detailed
investigations are necessary to determine the effect of acetic acid and
its concomitant effects on M. haemolytica cell growth and LKT
production. The control of acetic acid production may provide a key
to optimizing the LKT yield. One potential approach would involve
the modulation of the carbon overflow metabolism, which can be
achieved in E. coli by controlling the oxygen level. Bioreactors
are therefore preferable for M. haemolytica cultivation because they
allow the dissolved oxygen and pH to be controlled simultaneously.
Nevertheless, the most promising approach is a carbon limited
fed-batch process to favor biomass accumulation while minimizing
acetic acid production. A better understanding of the metabolic
requirements of M. haemolytica is necessary to optimize the feed in a
glucose-limited fed-batch process.

In addition to these physical parameters, the cultivation medium has
a significant effect on M. haemolytica cell growth and LKT production.
The nutritional requirements of M. haemolytica are not understood in
detail, and the commonly-used RPMI-1640 medium was designed
for mammalian cells. Optimization may require the absence of ferric
iron, as well as low concentrations of glucose, magnesium and amino
acids. More efficient LKT production and/or biomass accumulation is
possible depending on which supplements are provided. Furthermore,
industrial process development would also need to consider the
interactions between upstream production and downstream
purification, e.g. complex supplements and more biomass can make
the purification of LKT more challenging and expensive [43,53,69].
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