
* Corresponding Author: Email-a_mahini@yahoo.com

Int. J. Environ. Res., 1(3): 272-279, Summer 2007
ISSN: 1735-6865

Dynamic Spatial Modeling of Urban Growth through Cellular
Automata in a GIS Environment

ABSTRACT: Urban settlements and their connectivity will be the dominant driver of global change
during the twenty-first century. In an attempt to assess the effects of urban growth on available land
for other uses and its associated impacts on environmental parameters, we modeled the change in
the extent of Gorgan City, the capital of the Golestan Province of Iran.  We used Landsat TM and
ETM+ imagery of the area and evaluated possible scenarios of future urban sprawl using the SLEUTH
method. The SLEUTH is a cellular automaton dynamic urban-growth model that uses geospatial
data themes to simulate and forecast change in the extent of urban areas. We successfully modeled
and forecasted the likely change in extent of the Gorgan City using slope, land use, exclusion zone,
transportation network, and hillshade predictor variables. The results illustrated the utility of modeling
in explaining the spatial pattern of urban growth. We also showed the method to be useful in providing
timely information to decision makers for adopting preventive measures against unwanted change in
extent and location of the built-up areas within in the city limits.
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INTRODUCTION
Urbanization is one of the most evident global
changes. Small and isolated population centers
of the past have become large and complex
features, interconnected, economically, physically
and environmentally (Acevedo, et al., 1996). One
hundred years ago, approximately 15% of the
world’s population was living in urban areas.
Today, the percentage is nearly 50%. In the last
200 years, while the world population has
increased six times, the urban population has
multiplied 100 times (Acevedo, et al., 1996).
Urban settlements and their connectivity will be
the dominant driver of global change during the
twenty-first century. Intensely impacting land,
atmospheric, and hydrologic resources, urban
dynamics has now surpassed the regional scale
of megalopolis and must now be considered as a
continental and global scale phenomenon
(Acevedo, et al., 1996).

Theoretical and descriptive explanations of
urban growth have been well developed and
documented in the literature since the middle
1950s. A half century of development in the field
has involved great advances and significant
changes in the theory and methodology,
particularly the evolution of computer graphic
technologies, and the introduction of new
paradigms. During the 1950s and 1960s, research
on urban modeling attempted to build large scale
urban models (LSUMs), which Lee (1994)
defined as models that seek to describe, in a
functional/structural form, an entire urban area,
in spatial, land-use, demographic and economic
terms. According to Batty (1994), these modeling
attempts were part of an effort to transform
planning from an architectonic and intuitive art
into an objective and rational activity. The LSUMs
were severely criticized during the early 1970s.
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However, large scale urban models have been
blamed for  problems such as hyper-
comprehensiveness; grossness; hungriness wrong-
headedness; complicatedness; mechanicalness;
and expensiveness (Lee, 1973). Geographic
information systems were a central component of
these developments and there was much effort in
linking these systems to traditional spatial models
(Batty, 1994).

Understanding land use change in urban areas
is a key aspect of planning for sustainable
development. It also helps in designing plans to
counter the negative effects of such changes.
According to Clarke et al., (1997), simulation of
future spatial urban patterns can provide insight
into how our cities can develop under varying
social, economic, and environmental conditions.
Since the late 1980s, applications of computers
in urban planning have changed dramatically. The
traditional top-down approaches described before
were replaced by bottom-up approaches where
complexity, self-organization, chaos and fractals
are taken into consideration. The advances in the
computing technology have contributed very
much to make the approach a reality (Batty and
Densham, 1996). In the bottom-up approach,
system behavior is rendered deterministic and
small changes at the micro-level can result in
dramatic changes at the macro-level. Some
examples of these new concepts and techniques
in urban modeling include fractals and cellular
automata (CA). Batty et al. (1989), were the
pioneers of the application of these new
paradigms in the urban dynamics research field.

The study of CA goes back to the late 1940s
with the research of Neumann and Ulgam. Some
examples of CA-based models developed and
applied to the simulation of urban evolution are
found in White and Engelen (White et al. ,
1993;1994; 1997; Engelen et al., 1995;1997), US
Geological Survey (Clarke et al., 1997; 1998), Li
and Yeh (2000), AUGH-Generalised Urban
Automata with help on line (Cecchini, 1996), Wu
(1998), Phipps and Langlois (1997), Sembolini
(1997), DUEM (Dynamic Urban Evolutionary
Modeling developed by Batty et al., 1999) and
Barredo et al., (2003).

Markov Chain Analysis has also been used to
model change in land use and land cover (Mahiny,

2003 a).  A Markovian process is simply one in
which the future state of a system can be modeled
purely on the basis of the immediately preceding
state and will describe land use change from one
period to another (Eastman, 2001b). This is
accomplished by developing a transition
probability matrix of land use change from time
one to time two, which will be the basis for
projecting to a later time period. The output from
Markovian process has only very limited spatial
knowledge (Eastman, 2001).

Cellular automata can be used and linked to
the Markov chain results to compensate the lack
of spatial knowledge. A cellular automaton is a
cellular entity that independently varies its state
based on its previous state and that of its
immediate neighbors according to a specific rule.
In the process, only a transition rule is applied
that depends not only upon the previous state, but
also upon the state of the local neighborhood
(Eastman, 2001). Cellular automata (CA) are
discrete dynamic systems whose behavior is
completely specified in terms of a local relation.
They are composed of four elements: cells, states,
neighborhood rules and transition rules. Cells are
objects in any dimensional space that manifest
some adjacency or proximity to one another. Each
cell can take on only one state at any one time
from a set of states that define the attributes of
the system. The state of any cell depends on the
states of other cells in the neighborhood of that
cell, the neighborhood being the immediately
adjacent set of cells that are ‘next’ to the cell in
question. And, finally, there are transition rules
that drive changes of state in each cell as some
function of what exists or is happening in the
neighborhood of the cell (Batty and Xie, 1997).
According to Dietzel and Clarke (2006), of all
the CA models available, SLEUTH may be the
most appropriate because it is a hybrid of the two
schools in CA modeling—it has the ability to
model only urban growth and incorporate detailed
land use data. Reasons attributed to choosing this
model are: (1) the shareware availability means
that any researcher could perform a similar
application or experiment at no cost given they
have the data; (2) the model is portable so that it
can be applied to any geographic system at any
extent or spatial resolution; (3) the presence of a
well-established internet discussion board to
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support any problems and provide insight into the
model’s application; (4) a well documented
history in geographic modeling literature that
documents both theory and application of the
model; and (5) the ability of the model to project
urban growth based on historical trends with
urban/non-urban data.

The main component of the SLEUTH is the
Clarke Urban Growth Model (UGM) which drives
a second component, the Deltatron land cover
model. SLEUTH is the evolutionary product of
the Clarke Urban Growth Model that uses cellular
automata, terrain mapping and land cover
deltatron modeling to address urban growth. The
name SLEUTH was derived from the simple
image input requirements of the model: Slope,
Land cover,  Exclusion, Urbanization,
Transportation, and Hillshade.

In order to run the model, one usually prepares
the data required, verifies the model functions,
calibrates the model, predicts the change and
builds the products. The user can implement
SLEUTH modeling in different modes. The test
mode is intended to give the user an easy way to
execute a single run on a data set to confirm that
the model is performing correctly, or produce
output files for a specific set of coefficients.

In calibration mode, the large number of
possible coefficient sets is narrowed down to a
reasonable estimate of best fit values using brute
force calibration methods. Typically the
calibration of SLEUTH is a three-step process.
In the first step which is a coarse calibration, a
variety of spatial metrics are produced, the most
common being the Lee–Sallee metric. The Lee–
Sallee metric describes the degree of spatial
matching between the simulated data and the input
historical data, and is a rigorous measure of the
ability of a parameter set to replicate historical
urban growth patterns. The tested parameter sets
are sorted based on their goodness of fit, and the
parameter values are narrowed to values around
the parameter set that produced the best fit
between the historical and simulated data.

In the fine calibration step, the narrowed range
of parameters from the previous step is used to
simulate the historical growth patterns. Results
of these simulations are evaluated using spatial
metrics of fit, and the range of parameters is

narrowed one last time. Finally, the historical data
is simulated one last time using the re-narrowed
set of parameters, and the one that best recreates
the urban growth is then used in model
forecasting. After calibration, a set of five
parameters or coefficients are produced that
describe the historical growth patterns of the
system over time based on a fixed set of transition
rules. Five coefficients (with values 0 to 100)
control the behavior of the system, and are
predetermined by the user at the onset of every
model run (Clarke et al., 1998). These parameters
are diffusion that determines the overall
dispersiveness nature of the outward distribution,
breed coefficient which is the likelihood that a
newly generated detached settlement will start on
its own growth cycle. Spread coefficient is another
parameter that controls how much contagion
diffusion radiates from existing settlements. Slope
resistance factor influences the likelihood of
development on steep slopes, and finally road
gravity that is produced to show the attraction
roads create in drawing new settlements towards
and along them. These parameters drive the
transition rules that simulate four types of urban
growth. These are spontaneous growth showing
the urbanization of land that is of suitable slope,
yet not adjacent to preexisting urban areas,
diffusive growth when newly established urban
areas begin to transform the land around them
from other uses into urban land cover, organic
growth at the urban fringe and as infill within
areas that may not have fully made the transition
from another land use to urban. Road influenced
growth is another type of growth that takes into
account the influence of roads over urbanization
and land use change while prediction growth type
is a collection of Monte Carlo simulations.

The prediction mode of the SLEUTH model
uses the best fit growth rule parameters from the
calibration to begin the process of ‘‘growing’’
urban settlements, starting at the most recent
urban data layer. The resulting forecast of future
urban growth is a probabilistic map where each
grid cell has the chance of being urbanized at some
future date, assuming the same unique ‘‘urban
growth signature’’ is still in effect as it was in the
past, while allowing some system feedbacks
termed self-modification (Herold et al., 2003).
Due to its scientific appeal, availability and
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relative ease of use, we adopted the SLEUTH for
modeling Gorgan City change through time, a first
time event in Iran.

MATERIALS & METHODS
Gorgan is the capital city of the Golestan

Province in the north east of Iran. The economic
growth in the area in the recent past has led to a
large increase in population, driving dramatic
urban expansion and land use change.

We used the SLEUTH modeling method to
simulate and project the change in the area of the
city. SLEUTH requires an input of five types of
image files (six if land use is being analyzed).
For all layers, zero is a nonexistent or null value,
while values greater than zero and less than 255
represent a live cell.

We geo-registered and re-sampled a 10 meter
DEM of the area obtained from National
Cartographic Center of Iran to 20 meters
resolution using Idrisi 32 software (Eastman,
2001). Then, we derived the slope and hillshade
layers from the DEM layer. Landsat TM and
ETM+ scenes of the Gorgan City covering around
1316 Km2 were selected for this study. The scenes
which dated July 1987, September 1988, July
2000 and 2001 were imported into Idrisi 32
software (Eastman, 2001), geo-registered to the
other layers and re-sampled to 20 meters
resolution. Then the scenes were classified using
knowledge from the area and Maximum
Likelihood supervised classification method. We
identified seven classes: water, agriculture, fallow
lands, built-up areas, dense broad-leaved forest,
thin forest, pastures and needle-leaved woodlands.
A post-classification comparison was conducted
to detect the change in land use and land cover of
the area. The urban extent was derived through
reclassification of these detailed land cover
classifications into a binary urban / non-urban
map (Fig. 1)

For deriving the transportation and excluded
layers, we used visual image interpretation and
on-screen digitizing to generate individual vector
layers that were transformed into raster layers
with 20 meters resolution. We ensured that all data
layers followed the naming protocol for SLEUTH,
were in grayscale GIF format and had the same
projection, map extent, and resolution.

Model calibration was conducted in three
phases: coarse, fine and final calibration. The
algorithm for narrowing the many runs for
calibration is an area of continuous discussion
among users, and so far no definitive “right” way
has been agreed upon. Examples of approaches
used thus far include: sorting on all metrics equally,
weighting some metrics more heavily than others,
and sorting only on one metric. In this investigation,
the last method, namely sorting on one metric, was
applied.  Simulations were scored on their
performance for the spatial match, using Lee-
Sallee metric.

Adopting the procedure used by Leao et al.,
(2001 and 2004) and Mahiny (2003) we devised
two different urban growth scenarios for model
prediction. One scenario described the city as
growing following historical trends, according to
the parameters calibrated based on historical data.
The second scenario described a more compact
growth as a response to hypothetical policies and
the shortage of land to reduce urban spreading.
This was done by manipulating the value of some
of the calibrated growth parameters. In the
historical growth scenario, when the final
calibration process was completed, the best
selected parameters were run through the historical
data many times and their finishing values were
averaged considering the self-modification
parameters. In the simulation for a compact city,
the spread and road-gravity coefficients were
reduced to half of the calibrated and averaged
best values were derived in the process.
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Fig. 1. Gray scale color composite image of the
study area, bands 2, 3, and 4 of ETM+ sensor of

Landsat satellite, 30th July 2001, with lighter spots
showing the residential areas



2000 2010

2020 2030

2040 2050

2

17
25

1

76

2
17

12

1

38

Diffusion Spread Road
gravity

Five Coefficients of Urban Growth

Co
ef

fic
ie

nt
 V

al
ue

 

100

0

Historical
Compact

Fig. 4. Simulated urban growth of Gorgan in
historical scenario

During final calibration, statistics were
produced for best fit parameters for the Gorgan
City. Some of the statistics are related to the
‘amount’ of growth experienced in the region
(number of cells urbanized). These include the
indexes population ratio, r2 population and
%urbanized. Other indices are mainly related to
the ‘shape’ of the growth simulated by the model,
such as r2edges, r2clusters and the Lee-Sallee
index.

The resulting forecast of future urban growth
was produced as a probabilistic map. In the map,
each grid cell will be urbanized at some future
date, assuming the same unique ‘‘urban growth
signature’’ is still in effect as it was in the past,
while allowing some system feedbacks termed
self-modification. For both the back-cast and
projected urban layers, a probability over 70%
(given 100 Monte Carlo simulations) was used to
consider a grid cell as likely to become urbanized.
The final results of the model application were
annual layers of urban extent for the historical time
frame (1987–2001) and projected future urban
growth (2002–2050).

RESULTS & DISCUSSION
We conducted 5 Monte Carlo iterations for

the coarse calibration of the model in 3124 runs
which took around 15 hours on a Pentium 4 with 2
GHz CPU speed. For fine calibration, 8 iterations
in 6479 runs were conducted taking around 15
hours on the same computer. The final calibration
was done using 10 iterations in 2999 runs on the
same computer that took around 9 hr.
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Fig. 3. Best fit parameters for final calibration.
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Most of the statistics for best fit parameters
of the simulation results of Gorgan present high
values of fit, indicating the ability of the model to
reliably replicate past growth (Fig 2). This suggests
that future growth predictions can also be used
with confidence. There was a high match for the
amount of urban cells and clusters and the shape
of urban edges between the simulated and control
years (Fig. 2). It can be seen in Figure 2 that the
slope has a low coefficient, translating into a small
effect on the possibility of area becoming urban.

For the simulation of Gorgan city expansion,
the final averaged parameters used in the
prediction phase are presented in Figure 3. Each
parameter in Figure 3 reflects a type of spatial
growth. For Gorgan City, the diffusion coefficient
is very low, which reflects a low likelihood of
dispersive growth. The low value for the breed
coefficient reinforces it, given low probability of
growth of new detached urban settlements. The
spread coefficient stimulates growth outwards of
existing and consolidated urban areas. The high
value of the road gravity coefficient denotes that
the growth is also highly influenced by the
transportation network, occurring along the main
roads. Slope resistance affects the influence of
slope to urbanization. In Gorgan area, topography
was shown to have a very small effect in
controlling the urban development, where even the
hilly areas are likely to urbanize (Fig. 3). This was
also clear in Figure 2 where the statistic of the
parameter was found to be low. Inspection of the
newly developed areas in the Gorgan City proved
this to be reality.

Fig. 4 .illustrates the future urban form and
extent of Gorgan City area according to the model
simulation using the historical scenario.  Looking
at the Figure 4, managers and decision makers
can easily find the locations where the city may
increase and their corresponding intensities. This
information is of great importance, as it gives the
managers an upper hand in controlling the
unwanted situations from happening.

Fig. 5. shows the extent of urban development
over time for the two growth scenarios. Quite
expectedly, the compact city scenario predicts a
smaller increase for the future as compared to the
historical scenario. However, the choices are open
to the users to construct different scenarios and

immediately assess their effects on the fate of
the city. Modification of the driving parameters of
city change, as defined in this study, can help in
defining the best method for preventive measure
in terms of feasibility and economy.

CONCLUSION
Planning and management are based on

generic problem solving. They begin with
problem definition and description, and then turn
to various forms of analysis, which might include
simulation and modeling, and finally move to
prediction and thence to prescription or design,
which often involves the evaluation of alternative
solutions to the problem (Batty and Densham,
1996). According to Rubenstein-Montano and
Zandi (2000) modeling tools form the majority
of approaches developed to assist decision-makers
with planning activities and according to Leao et
al., (2001 and 2004), spatial modeling of urban
growth permits systematic and formal studies of
possible future worlds and provides a basis for
the preparation and evaluation of urban policies.

Models allow the simulation of the real
system, thus allowing the user to get a better
insight into the actual decision domain and
particular decision situations. They also allow the
user to forecast alternative and comparable future
states, and thus constitute an instrument to
investigate the likelihood of a desired situation
through experimentation. Spatial models of urban
growth have the ability to play an important role
in the planning process; if not in aiding in policy
decisions, then in processes such as visioning,
storytelling, and scenario evaluation (Dietzel and
Clarke, 2006).
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Fig. 5. The area of city expansion for the
 two scenarios



We successfully modeled the change in the
extent of the Gorgan City using the SLEUTH
method for the first time in Iran. The process was
found feasible, considering the time, facilities and
the background knowledge it requires. The results,
although not tested thoroughly, were found very
useful in terms of providing insight into the
process of city change to the managers and
decision makers. Using this information, the
authorities can take preventive measures for
controlling negative effects of the predicted
change. They can also use the information for
preparing the   infrastructure required in near
future and mitigate the unwanted changes through
possible means. Using a combination of the past,
present and future city sizes and their impact on
the surrounding land use and land cover,
information can be also compiled for other studies
such as a proper cumulative effects assessment
in the area.
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