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Clinical relevance of alternative splicing 
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The unique phenomenon of alternative splicing is gathering 
concern due to its promising therapeutic potential. The 
human genome sequencing project suggests approximately 
20,000-25,000 genes. Among these, about 35-60% of 
genes generate multiple mRNAs by alternative splicing 
mechanism and contribute to the diversity of the proteomic 
world. This ‘gene shortfall’ has ignited considerable interest 
in alternative RNA splicing.This process leads to expression 
of a single gene responsible for the transcription of different 
mRNA isoforms that might have multiple biological 
functions. The disruption of splicing pattern can produce 
aberrant splice variants, which are implicated in more than 
50% of genetic disorders including cancer. Altered splice 
sites in neoplastic cell contribute to the development, 
progression and/or maintenance of tumorous growth. The 
repertoire of tumor-specific variant represents a potential 
marker in pharmacogenomic diagnostic relevance. 
Alternative splice isoforms have been analyzed 
serendipitously by qualitative gene profiling with in silico 
gene prediction software. Computational approach in 
identifying exonic splicing enhancers in genomic DNA and 
focus on microarray technology will elucidate differential 
expression of alternative splice variants. The antisense 
oligonucleotides modulate alternative splicing and 
engender the production of therapeutic gene products. 
Oligonucleotides have the potential to silence the mutations 
caused by aberrant splicing. The efficacy of the antisense 
oligonucleotides lies in the chemical configuration, affinity 
and delivery strategies. Hence the therapeutic potential of 
antisense oligonucleotides as modulators of aberrant 
alternative splicing would be a major challenge to the 
upcoming proteomic era. 
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A 13-year (1990-2003) worldwide effort contributed 

to the completion of human genome project with 2.91 

million base pairs. The complete coverage of human 

genome indicated that it encodes only 20,000-25,000 

genes for approximately 90,000 diversified protein 

isoforms.[1] Today, the gene count has been drastically 
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trimmed down from our previous expressed sequence 

tag (EST) analysis estimates of between 100,000 and 

150,000.[2,3] This ‘gene shortfall’ has ignited considerable 

interest in a mechanism called alternative splicing, a 

natural biological process generating multiple different 

transcripts from the same precursor gene. 

The mechanism of alternative splicing explains the 

vast disparity between the predicted human genome and 

the highly diverse proteome.[4] Comparison of human 

genome with those of other organisms paved the way 

to realize the contribution of alternative splicing 

mechanism to the complexity of evolution. It accounts 

for much of the diversity among organisms with relatively 

similar gene sets. In addition, the prevalence of 

alternative splicing appears to increase with an 

organism’s complexity. 

Large scale bioinformatic analyses have indicated 

high rates of alternative splicing, with over 60% of all 

human genes expressing multiple mRNAs.[2] Eighty 

percent of these alternative spliced genes result in 

changes in encoded proteins revealing the proteomic 

expansion,[5] which also encompasses the regulatory 

processes for normal development. 

The importance of alternative splicing is underlined 

by the recent discovery of deregulation, which has been 

documented in a diverse range of human pathologies, 

including neurodegenerative, cardiovascular, respiratory 

and metabolic diseases, as well as cancer.[6-10] The 

tissue- and disease-specific splice variants are analyzed 

by ESTs which elicit the molecular mechanism of normal 

cellular physiology as well as the disease states. In silico 

gene prediction tools offer biologists an opportunity to 

study gene expression on genomic scale. Lately, ever 

increasing efforts are being made to fully understand 
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the functional impact of alternative splicing on 

physiopathological conditions and to exploit the 

mechanism to develop new diagnostic and 

pharmacogenomic tools. 

Mechanism of Alternative Splicing 

Alternative splicing of pre-mRNAs is a powerful and 

versatile regulatory mechanism that can affect 

quantitative control of gene expression and functional 

diversification of proteins. The joining of different 5’ and 

3’ splice sites allows individual genes to express multiple 

mRNAs that encode proteins with diverse and 

antagonistic functions.[11] The regulation of splicing 

commonly involves the modulation of early steps in 

spliceosome assembly. Factors involved in the regulation 

of alternative splicing include the serine-arginine 

proteins, heterogeneous ribonuclear protein (hnRNP) 

and other gene-specific factors.[12] Alternative splicing 

is regulated by the binding of trans-acting regulatory 

factors to exonic and intronic splicing enhancer and 

inhibitor sequences.The cis elements comprise splicing 

enhancers and silencers that are located in either the 

exons or the introns and bind to activator and repressor 

proteins. There are a number of different alternative 

splice sites, including exon skipping, inclusion of 

alternative exons, use of alternative splice donor and 

acceptor sites and intron retention [Figure 1]. Alternative 

splicing not only generates segments of mRNA variability 

that have the potential to insert or remove amino acids, 

shift the reading frame or introduce a termination codon 

[Figure 2], but also affects gene expression by removing 

Figure 1: Types of alternative splicing and spliced 
isoforms 

Figure 2: Differential analysis of transcripts with 
alternative splicing technology: Differentiates two 

alternative variants in comparison with two different 
cellular conditions 

or inserting regulatory elements controlling translation, 

mRNA stability and localization. 

Association of Alternative Splicing with Diseases 

The prevalence of alternative splicing as a general 

mechanism for the control of gene expression renders 

it to be a target for alterations leading to human diseases. 

Deregulation of RNA splicing can be induced by 

mutations or polymorphisms within gene, and it becomes 

part of constitutive or acquired pathologies. Fifteen 

percent of point mutations associated with genetic 

disease were attributed to aberrant splicing.[13] Mutations 

which result in aberrant regulation of alternative splicing, 

causing the expression of protein isoforms that are 

inappropriate for a cell type, are responsible for certain 

diseases [Table 1].[14-37] 

Pre-mRNA splicing is a natural source of cancer, 

causing errors in gene expression; and the affected 

proteins include transcr iption factors, cell signal 

transducers and components of extracellular matrix. 

Many cancers express specific alternative splice variants 

of various pre-mRNAs, suggesting that alternative splice 

site selection is changed in transformed cells. The 

change in alternative splice associated with cancer may 

be caused by the modification of expression of certain 

splicing factors. For example, the trans-acting splicing 

factor polypyrimidine tract binding protein was over­

expressed, and the level of a specific splice variant of 

fibroblast growth factor, receptor-1 (FGFR-1), was 
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Table 1: Aberrant spliced isoforms and related diseases 

Gene Isoforms Disease 

IGHD II Altered /skipped splicing exon 3 Familial isolated growth hormone 

deficiency type II 

WT1 Inclusion of 17 aminoacids exon 9 Wilms tumor-frasiers syndrome 

β-globin Cryptic 3’ splice site (intron 2) β-thalassemia 

FTDP-17 Exon 10 inclusion frontotemporal dementia 

(Tau) and Parkinsonism (FTDP) 

CFTR Exon 9 skipping atypical cystic fibrosis 

PRPF 31 Trans effects-exon 11 retinitis pigmentosa 

SMN SMN2 exon 7 inclusion spinal muscular atrophy 

DM Gain of function myotonic dystrophy 

Type 1,2 CUG/CCTG repeats 

CD44 CD44v6 (exon 11) breast cancer, 

CD44v9 (exon 12) colorectal adenoma 

GI carcinoma 

FGFR FGFR 1 (exon α) brain tumor 

Type FGFR 2 (exon IIIB) prostate cancer 

1,2,3,4 FGFR 3 (exon 7,8,9) colorecter cancer 

FGFR 4 (exon 9) gastric, colon, pancreatic cancer 

BRCA Exclusion of exons 9,10,11 breast, ovarian cancer 

(D9,10,11q, BRCA1) breast cancer 

Exclusion of exon 12 (BRCA2) 

XPG Intron 1 retention (XPG isoformI) lung cancer 

Intron 3 retention (XPG isoformII) 

Intron 6 retention (XPG isoform III) 

Intron 8 retention(XPG isoform IV) 

BDNF Exon 5 inclusion (exon 1,2,3,4,4I,5U) neuroblastoma tumor 

Bcl-x Exon 2-Bcl-x L(Antiapoptotic) leukemia, prostate, 

Bcl-x S (proapoptotic) ovarian cancer 

p73 Exon 2 exclusion breast cancer, 

neuroblastoma tumor 

Trx-1 Exclusion of exon 2, 3 lung cancer 

colon cancer 
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Hutton et al 1998[17] 
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Jin et al 2000[25] 

Kwabi et al 2001[26] 

Jang et al 2000[27] 

Takaishi et al 2000[28] 

Orban et al 2001[29] 
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Cheng et al 2000[31] 

Aoyama et al 2001[32] 

Mercatante et al 2001[33] 
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increased in more advanced brain tumors.[25] Detailed 

studies of specific alternatively spliced genes have 

revealed that splicing could be used to regulate biological 

processes. One of the best-characterized examples is 

the life and death regulatory gene, β-cell Leukemia-X, 

for apoptosis. Bcl-X, which is regulator of apoptosis, is 

alternatively spliced to produce two distinct proteins – 

Bcl-X (L) and Bcl-X (S); the former suppresses apoptosis 

and the latter promotes it.[38] 

In many cases, alternative isoforms differ by small 

alterations of functional elements or domains. Two of 

the alternative RNA isoforms of the receptor, FGFR2 

(IIIb and IIIc), encode altered Ig domains and show 

variable affinities for the different fibroblast growth 

factors, thereby signaling differentially and promoting 

prostate cancer progression.[39] Alternative splicing of 

pre-mRNA involved in BK potassium channels was seen 

to be affected by the expression of calcium/calmodulin 

dependent protein kinases.[40] It has also been shown 

that stress is able to deregulate alternative splicing of 

TSG101 and that the presence of certain alternative 

splice variants is elevated in breast cancer.[41] 

Neoplastic transformations, which are known to have 

altered signaling pathways, may affect alternative 

splicing patterns. One such example of signaling 

pathways leading to altered splicing of pre-mRNA 

includes the splicing-associated factor, YT521-B, splice 

site selection in response to kinase activity of p59.[42] 

Tools for Predicting Alternative Splice Events: EST 
Clustering 

The mainstream methodology being adopted for the 
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prediction of alternative splicing is with the use of EST 

data. Sequence-based assembly of ESTs, containing 

alternative splice isoforms, provide a good means of 

deciphering the gene structure by gene clusters and 

subsequent mapping of individual genes.[43] 

Several earlier studies have envisaged human ESTs 

to genome mapping based on the number of ESTs in 

UniGene clusters,[44] disease-specific or tissue-specific 

polyadenylation sites[45] and genes differentially 

expressed in normal or cancer tissues.[46,47] Hanqing[48] 

et al. developed a novel computational approach to 

analyze tissue information of aligned ESTs in order to 

identify cancer-specific alternative splicing and gene 

segments highly expressed in particular cancers.

 ESTs from well-defined tissue sources are being used 

to construct sophisticated body map.[49] However, these 

approaches failed to consider alternative splicing 

estimated to occur in over 50% of human genes,[50,51] as 

EST clusters do not have multiple alignments. 

For many genes, the number of corresponding ESTs 

in existing databases is low. ESTs, which are derived 

from the 5’ and 3’ ends of a cDNA and central regions of 

longer mRNAs are not represented adequately. 

Therefore, this approach might miss certain important 

alternative spliced isoforms.[52] 

A gene Profiling Technology DATAS 

Differential analysis of transcripts with alternative 

splicing (DATAS) allows the detection of disease-relevant 

changes in mRNA populations resulting from alternative 

RNA splicing events, providing key insight into biological 

causes of pathology. The technology provides a rapid 

method for generation of unique libraries of alternative 

RNA splicing transcripts between two conditions and to 

identify alternatively used exons and introns between 

these transcripts [Figure 3]. DATAS thus will identify 

specific mRNA variants (intron retention, exon skipping, 

etc.), while other gene profiling approaches do not take 

into account the specific nature of those mRNA variants, 

as they are only designed to characterize global up- or 

down-regulation.[53] DATAS identifies novel markers and 

monitors individual patient’s response to therapy, 

opening up new horizons in target discovery and drug 

development. 

Figure 3: Mechanism of antisense oligonucleotide 
activity 

Splice-Variant Oligonucleotide Microarray 

Microarray, a high-throughput tool, monitors splice­

variant expression for therapeutic studies and 

diagnostics. Differences in hybridization signals between 

two adjacent oligonucleotides from the same gene 

should provide isoform-specific differential expression 

data. Being able to measure variant-level expression is 

important for accurate expression profiling and 

consequently for obtaining a better understanding of the 

biological processes. Genomic tiling arrays and exon 

arrays are used to identify co-regulated exons, which 

allows the inference of variant mixtures.[54] Expression 

arrays with multiple probes are retrospectively analyzed 

to identify exons that are differentially included or skipped 

in a tissue-specific manner. RNA-mediated ligation 

combined with arrays presents a novel method for 

detecting exon-exon junction information of known splice 

variants. The development of mRNA isoform sensitive 

microarrays, which requires precise splice-junction 

sequence information, is a promising approach. Spotted 

oligonucleotide microarrays employing probes designed 

to detect unprocessed and processed RNA have been 

used to monitor pre-mRNA splicing in yeast[55] and the 

processing of non-coding RNAs in yeast and mammalian 

cells.[56] A fiber-optic based array method,[33]  a 

polymerase colony assay[58] and more conventional 

microarray-based approaches utilizing spotted cDNA 

fragments or oligonucleotides[59-60] have been used for 

monitoring alternative splicing in mammalian cells. 

Complementary DNA microarray studies were 
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conducted to investigate development-related alternative 

splicing in the human testis for spermatogenesis.[61] One 

of the major limitations of this process is that all splice 

events that result in the insertion of novel sequences 

have to be identified prior to the initiation of the 

microarray study for accurate interpretation of data. 

Alternative Splicing for Therapeutics 

The impact of alternative splicing in disease and the 

knowledge that these splicing events can be regulated 

by drug actions have opened up completely new 

horizons for target discovery and drug development. 

Altered splicing patterns can also serve as markers of 

the altered cellular state associated with disease and 

have the potential to provide diagnostic and prognostic 

information. Novel therapeutic strategies are now 

emerging as approaches, which include (i) over­

expression of proteins that alter splicing of the affected 

exon,[62,63] (ii) use of antisense oligonucleotides,[64,65] (iii) 

SiRNA-based drugs to silence gene expression,[66] (iv) 

use of compounds that affect phosphorylation of splicing 

factors[67] or stabilize putative secondary structures,[68] 

(v) high-throughput screens to identify compounds that 

influence splicing efficiencies of target pre-mRNAs[69] and 

(vi) a trans-splicing approach to replace mutated exons 

with wild-type exons.[70] Alternative splicing has been 

considered for its therapeutic role in designing the 

isoform-specific monoclonal antibody as well.[71] 

The principle of antisense technology is the sequence­

specific binding of an antisense oligonucleotide to the 

target mRNA, resulting in a translational arrest. 

Antisense strategies that include small interference RNA 

(RNAi), ribozymes and antisense oligonuleotides for 

gene silencing have received increased attention in 

functional genomics. The specificity of hybridization 

makes antisense strategy attractive to selectively 

modulate the expression of genes involved in the 

pathogenesis of malignant disease. The antisense 

oligonucleotide appears to be the promising method for 

identifying optimal target sequences within the mRNA 

of interest that has been developed.[49] 

Antisense oligonucleotides (AS-ONs) usually consist 

of 15-20 nucleotides which are complementary to the 

target mRNA. Antisense oligonucleotides combine many 

desired properties such as broader applicability, higher 

direct utilization of sequence information, more rapid 

development at low costs, higher probability of success 

and higher specificity compared to alternative 

technologies for gene function and target validation. 

Two major mechanisms of antisense oligonucleotides 

contribute to their antisense activity.The first is that most 

antisense oligonucleotides are designed to activate 

RNase H, which cleaves the RNA moiety of a DNA-RNA 

heteroduplex and therefore leads to degradation of the 

target mRNA [Figure 3]. In addition, AS-ONs that do not 

induce RNase H cleavage can be used to inhibit 

translation by steric blockade of the ribosome. When 

the AS-ONs are targeted to the 5’ carboxy-terminus, 

binding and assembly of the translation machinery can 

be prevented.[49] 

In the application of antisense oligonucleotides to 

modify splicing, three oligonucleotide backbones have 

been used: 2’-O-methyl- and 2’-O-methoxyethyl­

oligoribonucleoside-phosphorothioates and morpholino 

phosphorodiamidate oligomers.[73] The first antisense 

oligonucleotide chemistry used was phosphodiester, 

followed by the more stable phosphorothioate backbone 

modification.[74] This provided added stability at the 

expense of affinity for the target.The ‘second generation’ 

nucleotides with alkyl modifications at the 2’ position of 

the ribose increases the affinity of phosphorothioate 

DNA oligonucleotides and lowers the toxic side effects. 

More recently, many synthetic oligonucleotides have 

been made that have both remarkable affinity and 

stability.[72] 

A number of methods have been developed for in vitro 

and in vivo delivery of oligonucleotides.[75,76] Recently, 

macromolecular delivery systems have been developed 

to mediate highly efficient cellular uptake and protect 

the bound oligonucleotides from degradation in biological 

fluids. 

The phosphorothioate oligodeoxynucleotides are well 

absorbed from parenteral sites and get distributed to 

organs and peripheral tissues through improved delivery 

systems.[77] The intensive pharmacokinetic studies of 

antisense oligonucleotides with second and third 

generation oligonucleotides had initiated the clinical trials 

in the early 1990s. The antisense drug first to date is 

Vitravene for CMV retinitis, approved by US FDA in the 

year 1998.[77] Many antisense oligonucleotides have 
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been investigated against a broad spectrum of diseases 

staging in different clinical trials. 

Perspectives of Alternative Splicing 

The impact of alternative splicing in disease and the 

knowledge that these events can be regulated by drug 

actions have opened up completely new vistas for target 

discovery and drug development. Some basic questions 

such as drug response; specificity and selectivity of drug 

response; diagnostics for monitoring the disease status, 

progression/relapse; etc., can all be answered through 

more interventions / awareness on alternative splicing. 

Platform technologies such as monoclonal antibodies 

and antisense oligonucleotides have the potential of 

reducing costs for discovery of new drugs. We can look 

forward to intriguing biology and increasing utility as we 

come to understand the diverse mechanisms by which 

disrupted splicing and splicing regulation contribute to 

human disease welfare. For modification of splicing, the 

oligonucleotides can function in two ways, either via 

sequestering the target sequences such as splice sites 

in double-stranded structures or form duplexes with RNA 

that are recognized by RNase H to cleave the RNA 

strand of the duplex, leading to degradation of targeted 

RNA. 
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