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ABSTRACT

Population projection for many developing countries could be quite a challenging task for the demogra-
phers mostly due to lack of availability of enough reliable data. The objective of this paper is to present 
an overview of the existing methods for population forecasting and to propose an alternative based on 
the Bayesian statistics, combining the formality of inference. The analysis has been made using Markov 
Chain Monte Carlo (MCMC) technique for Bayesian methodology available with the software WinBUGS. 
Convergence diagnostic techniques available with the WinBUGS software have been applied to ensure the 
convergence of the chains necessary for the implementation of MCMC. The Bayesian approach allows for 
the use of observed data and expert judgements by means of appropriate priors, and a more realistic popu-
lation forecasts, along with associated uncertainty, has been possible.
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INTRODUCTION

A widely-used method of forecasting the age- and 
sex-specific population for future years, in which 
the initial population is stratified by age and sex 
and projections, is generated by application of 
survival ratios and birth rates, followed by an ad-
ditive adjustment for net migration. To get this 
information, the behaviour of the related variables 
is analyzed based on the past data by statisticians, 
and then inferences are drawn from the analysis to 
make forecasts of the desired variable. At present, 
there exist two major paradigms in statistics, name-
ly conventional (frequentist) and Bayesian statistics 
for the purpose of data analysis. Use of Bayesian 
methodology in the field of data analysis is com-
paratively new and has found massive support in 
the last two decades from the experts belonging 
to various disciplines. Probably, the main reason 
behind the increasing support is its flexibility and 
generality that allows it to deal with the complex 

situations. Besides, Bayesian method is typically 
preferred over classical approach in parameter esti-
mation because of the intractable form of the likeli-
hood function (1). 

There are a number of methodologies used for 
population projections. One of the most popular 
methods is cohort component method which is 
based on the estimates about the future levels of 
fertility, mortality, sex composition, migration, and 
other parameters. Many studies have examined 
the relative performance of simple mathematical 
models, extrapolation based on time-series and 
cohort-component models of population forecast-
ing. Most have found that constant growth math-
ematical models or standard time-series models of 
population growth are as least accurate as cohor 
component models (2-4). 

The present study is not intended to assess the rela-
tive accuracy of various projection models. Rather, 
it only aims to investigate the usefulness of cohort 
component method in making the population pro-
jection for Bangladesh, using Bayesian approach. 
Bayesian analysis has been applied in cohort com-
ponent model for providing a neat and transparent 
way of estimation. It provides probabilistic point 
estimates of the parameters, along with the highest 
posterior density interval (HPD) or Bayesian cred-
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ible interval. Bayesian credible interval is a measure 
of uncertainty, and it is based on statistical theory 
and data on error distributions that provide an ex-
plicit estimate of the probability that a given range 
will contain the future population. This approach 
develops statistical prediction intervals to accom-
pany population forecasts (5-7). Prediction inter-
vals will provide extremely valuable information to 
data-users and will improve the quality of decision-
making, based on population forecasts.

LITERATURE REVIEW

A cohort component strategy of population pro-
jection is based on the logic of a general popula-
tion-component methodology which examines 
separately the components of population change, 
fertility, mortality, and net migration. The cohort-
component model of population projection (CC-
MPP) is perhaps the iconic method in demography 
(8-16). This classic method forwards, in time, a 
population defined by age according to a specified 
life table and set of age-specific fertility rates, taking 
into account the net migration at each age. A very 
basic equation can show the whole model:

P(t+n)=P(t)+Births−Deaths+Immigrants−Emigrants

where, t is the starting point of time; n is the pro-
jection interval; P(t) is the population-size at time 
t; and P(t+n) is the population size at time t+n. If 
we put immigrants and emigrants together, then 
we get:

P(t+n)=P(t)+Births−Deaths+Net Migrants

where, Net Migrants=Immigrant−Emigrants. A popu-
lation grows through the addition of births and in-
migrants and declines through the subtraction of 
deaths and out-migrants.

The term ‘fertility’ refers to the ability of an indi-
vidual to give a livebirth (or births). This is equally 
applicable to a group or an entire population. Age-
specific fertility rates are required to project the 
number of births in future fertility projections, 
which are made by projecting the course of TFR 
over time and translating this total fertility rate into 
age-specific fertility rates. In general, the projection 
of TFR is divided into assumptions regarding a level 
at which fertility eventually becomes constant in a 
country or a region and the path taken from current 
to eventual levels. Once fertility reaches its even-
tual level, the population will reach a stable age-
structure and constant growth rate assuming that 
mortality and migration rates are also fixed. If the 

eventual fertility level is at replacement level and 
net migration is zero, the growth rate will eventu-
ally be zero. Both projected pace of fertility decline 
and the assumed eventual fertility level are impor-
tant for determining trends in population-size and 
age-structure. The lower the assumed eventual fer-
tility level, the more important the pace of fertility 
decline becomes to projected population-size (17). 

Births in cohort component models are typically 
projected by applying projected age-specific birth 
rates to projections of the female population by 
age. In this approach, the size and age composition 
of the female population of childbearing ages have 
a major impact on the projected number of births. 
Since most mothers for the first 25 years of the 
projection period are already alive at the time the 
projection is made, the size and age composition of 
the female population are the most predictable ele-
ments in short-term fertility projections.

Time-series techniques have been used for pro-
jecting births or birth rates. Several authors have 
applied time-series methods by themselves, us-
ing autoregressive integrated moving average 
(ARIMA) methods to forecast total births (18-20). 
While these efforts yielded some insights into the 
use of time-series methods on fertility, the fore-
casts ignored the advantage of using cohort com-
ponent methods (21). This omission was partially 
remedied by Lee (22-23) who applied time-series 
methods to TFR, the sum of all age-specific rates 
that occur in a given year. In our study, we have 
applied the Gompertz model, using Bayesian 
methodology to TFR.

The representation of mortality data via a paramet-
ric model has attracted the attention of actuaries, 
demographers, and statisticians for over a century. 
One of the most common models is that of logis-
tic curve (13). In this paper, we adopt a Bayesian 
analysis to this curve, using MCMC technique to 
produce the posterior summaries required. For oth-
er Bayesian work relating to mortality smoothing 
and life-table construction (24-25), Carlin (26) used 
MCMC methods but not in a parametric curve 
modelling context.

MATERIALS AND METHODS

Table 1 provides TFR in Bangladesh from 1991 to 
2001, which have been used for a fertility model fit 
to making future fertility projections. Using these 
data and the Gompertz growth model, a WinBUGS 
program has been developed to make a Bayesian 
analysis of the data and to provide projections of 
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Table 1. Total fertility rate in Bangladesh from 1991 to 2001

Year (ti) 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

TFR (Yi) 4.24 4.18 3.84 3.58 3.45 3.41 3.10 2.98 2.64 2.59 2.56

Source: Statistical Pocket Book; 2001-2007, Bangladesh Bureau of Statistics (BBS)

sis, we need to provide prior distributions to all the 
parameters a, b, c, d and τ. A massive discussion on 
the choice of priors is also available in the BUGS 
manual (28).

Mortality projections are based on projecting fu-
ture life-expectancy at birth for males and females, 
defined as the average lifespan of a child born to-
day if current age-specific mortality levels were held 
fixed in the future. In developing countries where 
mortality remains high, future life-expectancy will 
be determined by the effciency of local health serv-
ices, the spread of traditional (e.g. malaria) and new 
(e.g. AIDS) diseases, and the general standards of 
living and education. In this paper, we avoid the 
new epidemics (AIDS).

The life-expectancy at birth (average number of 
years lived by a newborn baby if he/she follows the 
current age-specific mortality patterns) is projected 
on the basis of the past experience of increase in the 
life-expectancy at birth. A logistic curve has been 
fitted using trends in life-expectancy at birth, and 
it assumes that increase in life-expectancy at birth 
follows an S-shaped curve. The logic behind using 
logistic curve is that when the life-expectancy at 
birth is very low, the increase is expected to be slow 
due to poor health facilities. Once the health facili-
ties are provided and with improvement in socio-
economic conditions, the life-expectancy increases 
at a faster rate. At the higher level of life-expectan-
cy, the rate of increase is slow, and it would stabilize 
at the biological maximum. To project the popula-
tion from one year to the next, survival rates by age 
and sex are needed and, to obtain future survival 
rates, future life tables may be constructed. Model 
life tables developed by United Nations (29), Coale 
and Demeny (30), Regional life tables, and South 
Asian model life tables, whichever is applicable for 
Bangladesh, should be used. In this study, South 
Asian model life table has been used.

Let Qij be the life-expectancy at birth for males and 
females of Bangladesh in the year ti (i=1, 2, ..., 21)  
where i represents time and j sex. The data were 
collected from office of the Bangladesh Bureau of 
Statistics [Sample Vital Registration System (SVRS): 
2002, 2003, 2005-06, BBS], and a logistic growth 
model is used. In this model, the life-expectancy at 
birth Qij in the year ti has been assumed to follow 

the TFR of Bangladesh. In this paper, we follow the 
time-series tradition in developing a method to 
forecast TFR and then convert it to the age-specific 
fertility rates on the basis of base-year age-specific 
fertility rates. Multiplying these forecasts by fore-
casts of the size of the age-specific female popula-
tion would then yield fertility forecasts derived 
from both time-series and demographic cohort 
component traditions. In this way, the advantages 
of the demographic tradition in taking account of 
the predictability of the size and age composition 
of the female population can be combined with the 
more statistically-rigorous time-series techniques 
of modelling the short-term variability of the age-
specific fertility rates.

Let Yi to denote TFR in Bangladesh in the year ti 
(i=1, 2, ..., 11) where i refers to successive censuses 
starting from 1991, for which i=1 and the data are 
given in Table 1. The most famous growth model 
is that of Gompertz (27) and is used for TFR where 
TFR Yi in the year ti has been assumed to follow 
normal distribution with respective means hi and 
common precision τ. Non-informative priors have 
been assigned to all the parameters of the model. 
The nonlinear regression model for TFR is de-
scribed as:

	 Yi=hi+ei

where hi is the deterministic part, and ei is the 
disturbance part; assuming the disturbance to be 
ei~iid N (0, τ), where τ is the precision (=1/vari-
ance), the fertility model and the non-informa-
tive priors might be defined as:

hi=d+ce -e(a–bti)

Yi~N (hi,     )

a~N (0,0.01)

b~N (0,0.1)
c~N (0,0.1)
d~N (0,0.1)

τ~Ga (0.0001, 0.0001)

where d is the lower asymptote, c is the upper 
asymptote, b is the rate at which the fertility in-
creases, and a is the parameter that determines the 
shape of the Gompertz curve. For Bayesian analy-
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Bayesian inference can be found elsewhere (31-35). 
As an iterative tool, the MCMC methods are a class 
of algorithms for sampling from probability distri-
butions based on constructing a Markov chain that 
has the desired distribution as its equilibrium dis-
tribution (33). 

MCMC tool has been used in the WinBUGS to 
obtain the posterior distribution of the unknown 
parameters in the model. In the process, we need 
to run a number of chains for each parameter for a 
long time. When the chains have run sufficiently 
large number of iterations and have reached the 
stationary distribution, the samples obtained by 
further running of the chains are supposed to be 
drawn randomly from the posterior distribution 
of the parameter. WinBUGS provides a number 
of inbuilt diagnostics to assess the convergence of 
chains. For a more formal approach to convergence 
diagnosis, the software also provides an implemen-
tation of the techniques described in Brooks and 
Gelman (34), and a facility for outputting moni-
tored samples in a format that is compatible with 
the CODA software (36). 

In practice, WinBUGS allows multiple chains for 
each parameter to run simultaneously. Running 
multiple chains is a way to check the convergence 
of MCMC simulations. Two chains have been set 
in the model of this problem. When the diffierent 
chains do not provide sufficient mixing of chains 
even after a long run, it will be an evidence of lack 
of convergence of the chains. Once we are con-
vinced that chains have been converged through 
the diagnostics, we will need to run the simulation 
for a further number of iterations to obtain sam-
ples that can be used for posterior inference. The 
more samples we save, the more accurate will be 
our posterior estimates. Once we have run enough 
updates and are satisfied with the history of the 
chains, we discard the earlier samples. We obtain 
the summary statistics only from the samples gen-
erated afterwards.

RESULTS

The summary statistics of the estimated parameters 
of the fertility model after 10,000 initial updates 
were discarded and 80,000 updates were run after 
the initial burn-in is presented in Table 2. During 
these updates, none of the diagnostics indicated 
any symptom of non-convergence of the chains. 
The number of iterations required to run after the 
convergence of the chains is assessed on the basis 
of Monte Carlo error (MC error) for each parameter. 
MC error is an estimate of the difference between 
the mean of the sampled values (which we are us-

normal distribution with respective means pij and 
common precision τj. Non-informative priors have 
been assigned to all the parameters of the model. 
The non-linear regression model for the popula-
tion growth is described as:

Qij=pij+εij

where pij is the deterministic part, and εi is the ran-
dom error part; assuming the error to be εij~N (0, τj)  
where τj is precision, the mortality model and the 
non-informative priors are:

pij 1+eq2j e–q3j ti 
+q4j

Qij~N (pij,     ); j=1,2

q1j~N (0,0.01)

q2j~N (0,0.01)

q3j~N (0,0.01)

q4j~N (0,0.01)

τj~Ga (0.0001, 0.0001)

where q1 is the upper asymptote, q4 is the lower 
asymptote, q2 and q3 are the other parameters that 
define the shape of the logistic curve, and e is the 
base of the natural logarithm.

Future international migration is more difficult to 
project than fertility or mortality. Migration can 
be volatile since short-term changes in economic, 
social, or political factors often play an important 
role. In addition, projections are generally based 
on past trends and current policies since no single, 
compelling theory of migration exists; however, 
data on historical migration are sparse for Bangla-
desh. In this work, we assumed that the population 
is closed, i.e. no migration takes place, or even if it 
does, net effect is zero.

As for the sex ratio at births which divide the future 
number of newborns into male and female, the fe-
male to male ratio is set at 100:105 based on the 
results of the last five years, and it remains consist-
ent from 2001 onward.

Diagnostics

Bayesian approach faces serious computational dif-
ficulties due to likely involvement of complicated 
mathematical expressions in the posterior distribu-
tions. Many of these have been suitably addressed 
with greater ease, using MCMC methods. These 
methods enable us to carry out analysis on a wide 
range of Bayesian statistical models. More details 
with examples of the MCMC implementation in 
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ing as our estimate of the posterior mean for each 
parameter) and the true posterior mean.

It has been suggested by the WinBUGS manual as 
a rule of thumb that the simulation should be run 
until the MC error for each parameter of interest is 
less than about 5% of the sample standard devia-
tion, and this was followed in our analysis. From 

Table 2. Summary statistics  of the node of fertility model

Node Mean SD MC error
HPD region

2.50% Median 97.50%

a 3.625 2.095 0.0831 -1.13 3.9 7.496

b 0.1878 0.07114 0.00247 0.08302 0.1769 0.3508

c -3.488 1.23 0.04591 -6.537 -3.226 -1.857

d 5.058 0.7275 0.02837 4.168 4.871 6.952

σ 0.1011 0.03013 3.61E-04 0.06131 0.09513 0.1768
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Figure 1. Fitted, projected and HPD region of 
the estimates on Gompertz model

Model fit: Total fertility rate in Bangladesh (1991-2051)

Table 2, it is obvious that MC errors for each pa-
rameter were less than 5% of the sample standard 
deviation.

Figure 1 illustrates a graphical presentation of the 
fitting of the Gompertz model. The graph shows 
that the model provides a close fit (the closeness of 
the smoothed line representing the estimated val-
ues and the dots showing the observed values) to 
the  observed data. Dotted blue lines provide 95% 
HPD (highest posterior density) region.

Table 3 presents the summary statistics of estimated 
parameters of the mortality model on life-expect-
ancy at birth for both males and females after dis-
carding 10,000 initial updates and 70,000 updates 
were run after the initial burn-in. During these up-
dates, none of the diagnostics indicated a symptom 
of non-convergence of the chains. While running 
our model with the WinBUGS, we have monitored 
five nodes q1, q2, q3, q4, and τ. 
The graphical presentation of the models fitted and 
forecasted to both males and females are depicted 
in Figure 2 and 3. The graphs show that the model 
provides a close fit (the closeness of the smoothed 
line representing the estimated values and the dots 
showing the observed values) to the observed data. 
Dotted blue lines provide 95% HPD (highest pos-

Table 3. Summary statistics of the node for life-expectancy at birth for both males and females

Node Mean SD MC error
HPD region

0.025 Median 0.975

q1 Male 16.35 4.579 0.1705 9.589 15.65 27.05

Female 18.21 4.442 0.1735 11.59 17.56 29.1

q2 Male 4.873 0.9117 0.03781 3.459 4.725 7.185

Female    5.308 0.6038 0.02583 4.27 5.252 6.593

q3 Male 0.2561 0.06799 0.002848 0.1583 0.2424 0.4299

Female 0.268 0.0471 0.00204 0.1887 0.2622 0.372

q4 Male 54.8 0.5047 0.01926 53.68 54.85 55.61

Female 54.46 0.3151 0.01172 53.77 54.48 55.0

σ Male 0.6012 0.1136 0.001698 0.4279 0.5849 0.8674

Female 0.5063 0.09371 0.00126 0.3617 0.4934 0.7248
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terior density) region. The graph of the projections 
approaches to S-shape, indicating the stabilization 
of the life-expectancy at birth for males as well as 
females. 

DISCUSSION

The final calculations of cohort component meth-
od combine the results from the mortality, migra-
tion, and fertility modules. On the basis of the fu-
ture forecasts of population growth components, 
the forecasted population of Bangladesh from 2006 
to 2051 has been presented in Appendix.

The present study was an attempt to show the 
application and suitability of the MCMC tool in 
Bayesian data analysis for fitting population data 
and making projection of the future population, 

Figure 2. Fitted, projected and HPD region of the 
estimates under logistic model (male)
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Model fit: LE at birth (male) in Bangladesh (1981-2051)

Figure 3. Fitted, projected and HPD region of the 
estimates under logistic model (Female)
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Model fit: LE at birth (female) in Bangladesh (1981-2051)

using cohort component model. The use of Baye-
sian approach in fitting the components of growth 
models allows for further extensions over classical 
estimation methods, leading to a more realistic 
forecasts and associated uncertainty measures. The 
cohort component population projection method 
follows the process of demographic change and is 
viewed as a more reliable projection method than 
those that primarily rely on census data or informa-
tion that reflect population change. In this paper, 
we had been presenting the basics of the imple-
mentation of the Bayesian data analysis with an 
illustration of the population projection. We have 
not performed the sensitivity analysis taking differ-
ent prior distributions mainly because the selected 
priors were non-informative. These priors did not 
provide substantial information to the posterior 
distribution. However, they were necessary for the 
implementation of the Bayesian data analysis.

Limitations

In this study, we are unable to provide future fore-
casts for the component of migration because of 
sparse data for Bangladesh. To overcome this prob-
lem, we have used a strong assumption, and this is 
the major drawback of our study. Apart from this 
shortcoming, the total fertility rate has declined to 
replacement level in 2010 and afterwards, which 
is unrealistic for Bangladesh but it is evident from 
Figure 2 and 3 that the mortality component has 
fitted very well. In both fertility and mortality 
models, we have applied non-informative priors, 
and it is also a limitation of this study. We hope 
to further explore these areas in future, using Baye-
sian methods motivated by the augments provided 
throughout this paper. 

Conclusions

Utilizing Bayesian methods to the growth compo-
nents, a more realistic summary in population fore-
casts has been produced because it allows formal 
incorporation of expert judgement embodied in 
priors and, hence, alter the forecasted population 
characteristics and their levels of uncertainty. In 
this paper, we have applied non-informative pri-
ors to fertility and mortality models and, thus, a 
large level of uncertainty in the forecasted popula-
tion is resulted. This level of uncertainty could be 
reduced through the inclusion of informative pri-
ors. Moreover, informative priors based purely on 
expert opinions regarding the future of population 
growth rates could have been included. Such prior 
information would result in further reductions in 
the estimated uncertainty due to added informa-
tion in the parameter estimation and model-choice 
procedures.



Mahsin M and Hossain SSPopulation forecasts for Bangladesh, using a Bayesian methodology

JHPN462

REFERENCES 

1.	 Meyer R, Yu J. BUGS for a Bayesian analysis of sto-
chastic volatility models. Economet J 2000;3:198-215.

2.	 Pflaumer P. Forecasting U.S. population totals with 
the Box-Jenkins approach. Int J Forecast 1992;8:329-
38.

3.	 Smith SK. Further thoughts on simplicity and com-
plexity in population projection models. Int J Forecast 
1997;13:557-65.

4.	 Smith SK, Sincich T. Evaluating the forecast accuracy 
and bias of alternative population projections for 
states. Int J Forecast 1992;8:495-508.

5.	 Alho J, Spencer B. The practical specification of the 
expected error of population forecasts. J Official Stat 
1997;13:203–25. 

6.	 Cohen JE. Population forecasts and confidence inter-
vals for Sweden: a comparison of model-based and 
empirical approaches. Demography 1986;23:105-26.

7.	 Lee RD, Tuljapurkar S. Stochastic population forecasts 
for the United States: beyond high, medium, and 
low. J Am Stat Assoc 1994;89:1175-89.

8.	 Bowley AL. Births and population in Great Britain. 
Econ J 1924;34:188-92.

9.	 Cannan E. The probability of a cessation of the 
growth of population in England and Wales during 
the next century. Econ J 1895;5:505-15.

10.	Whelpton PK. An empirical method of calculating 
future population. J Am Stat Assoc 1936;31:457-73.

11.	Leslie PH. On the use of matrices in certain popula-
tion mathematics. Biometrika 1945;33:183-212.

12.	Pritchett HS. A formula for predicting the population 
of the United States. Am Stat Assoc 1891;2:278-86.

13.	Pearl R, Reed LJ. On the rate of growth of the popula-
tion of the United States since 1790 and its math-
ematical representation. Proc Natl Acad Sci U S A 
1920;6:275-88.

14.	Dorn HF. Pitfalls in population forecasts and projec-
tions. J Am Stat Assoc 1950;45:311-34.

15.	Long JF, Mcmillen DB. A survey of Census Bu-
reau population projection methods. Clim Change 
1987;11:141-77.

16.	 Judson D. FSCP member survey. Reno: Nevada State 
Demographer’s Office, 1997.

17.	O’Neill BC, Scherbov S, Lutz W. The long-term effect 
of the timing of fertility decline on population size. 
Popul Dev Rev 1999;25:749-56.

18.	McDonald J. Modeling demographic relationships: 
an analysis of forecast functions for Australian births. 
J Am Stat Assoc 1981;76:782-801.

19.	 Saboia JLM. Autoregressive Integrated Moving Aver-
age (ARIMA) models for birth forecasting. J Am Stat 
Assoc 1977;72:264-70.

20.	Alho J, Spencer B. Statistical demography and fore-
casting. New York, NY: Springer, 2005. 412 p.

21.	Long JF. Comment. J Am Stat Assoc 1981;76:796-8.

22.	Lee RD. Forecasting births in post-transition popula-
tion: stochastic renewal with serially correlated fertil-
ity. J Am Stat Assoc 1974;69:607-17.

23.	Lee RD. Natural fertility, population cycles and the 
spectral analysis of births and marriages. J Am Stat As-
soc 1975;70:295-304.

24.	 Jones DA, Kimeldorf GS. Bayesian graduation. Trans 
Soc Act 1967;19:66-112.

25.	Hickman JC, Jones DA, Kabele TG, Klugman S, 
Mckay SF, Miller RB et al. Notes on Bayesian gradua-
tion. Trans Soc Act 1977;29:1-21.

26.	Carlin BP. A simple Monte Carlo approach to Baye-
sian graduation. Trans Soc Act 1992;44:55-76. 

27.	Gompertz B. On the nature of the function expres-
sive of the law of human mortality, and on a new 
mode of determining the value of life contingencies. 
Philos Trans R Soc Lond 1825;115:513-83.

28.	 Spiegelhalter D, Thomas A, Best N, Gilks W. Bayesian 
inference using Gibbs sampling: manual (version ii). 
BUGS 0.5. Cambridge: MRC Biostatistics Unit, Insti-
tute of Public Health, 1996. 59 p.

29.	United Nations. Model life tables for developing 
countries. New York, NY: Department of Internation-
al Economic and Social Affairs, 1982. 362 p. (Popula-
tion studies no. 77).

30.	Coale AJ, Demeny P, Vaughan B. Regional model life 
tables and stable population. 2nd ed. New York, NY: 
Academic Press, 1983. 496 p.

31.	Carlin BP, Louis TA. Bayes and empirical bayes meth-
ods for data analysis. New York, NY: Chapman & 
Hall, 1996. 399 p.

32.	Gelman A, Carlin JC, Stern H, Rubin DB. Bayesian 
data analysis. New York, NY: Chapman & Hall, 
1995.

33.	Gilks WR, Richardson S, Spiegelhalter DJ. Markov 
chain Monte Carlo in practice: interdisciplinary sta-
tistics. New York, NY: Chapman & Hall, 1996. 512 p. 

34.	Brooks SP, Gelman A. General methods for monitor-
ing convergence of iterative simulations. J Comput 
Graph Stat 1998;7:434-55.

35.	Congdon P. Bayesian statistical modelling. Chiches-
ter: John Wiley, 2001. 531 p.

36.	Best NG, Cowles MK, Vines SK. CODA: Convergence 
diagnosis and output analysis software for Gibbs 
sampling output. Version 0.4. Cambridge: MRC Bi-
ostatistics Unit, 1997. (http://www.mrc-bsu.cam.
ac.uk/bugs/classic/coda04/readme.shtml, accessed 
on 21 November 2012).



Mahsin M and Hossain SSPopulation forecasts for Bangladesh, using a Bayesian methodology

Volume 30 | Number 4 | December 2012 463

A
p

p
en

d
ix

. A
ge

- a
n

d 
se

x-
st

ru
ct

ur
e 

of
 t

h
e 

pr
oj

ec
te

d 
po

pu
la

ti
on

 (i
n

 t
h

ou
sa

n
ds

), 
20

06
–2

05
1

A
ge

 (y
ea

rs
)

Se
x

20
01

 (b
as

e)
20

06
20

11
20

16
20

21
20

26
20

31
20

36
20

41
20

46
20

51
A

ll 
ag

es
Pe

rs
on

s
12

3,
85

1
13

3,
43

6
14

3,
51

5
15

4,
21

2
16

4,
89

9
17

4,
49

4
18

2,
38

4
18

8,
57

7
19

3,
43

2
19

6,
93

3
19

8,
96

4
M

al
es

63
,8

95
68

,6
99

73
,7

00
78

,9
57

84
,2

67
88

,9
42

92
,7

39
95

,6
87

97
,9

89
99

,6
71

10
0,

68
2

Fe
m

al
es

59
,9

56
64

,7
37

69
,8

15
75

,2
55

80
,6

32
85

,5
52

89
,6

45
92

,8
90

95
,4

43
97

,2
62

98
,2

82
0-

5
M

al
es

8,
36

2
6,

71
1

6,
72

2
7,

15
8

7,
40

8
7,

17
3

6,
71

7
6,

38
6

6,
27

2
6,

21
0

6,
09

9
Fe

m
al

es
7,

72
4

6,
32

6
6,

36
1

6,
80

5
7,

00
8

6,
81

7
6,

38
3

6,
06

8
5,

96
0

5,
90

2
5,

79
6

>5
-1

0
M

al
es

8,
82

2
8,

18
9

6,
62

3
6,

64
6

7,
08

8
7,

33
5

7,
10

2
6,

65
1

6,
32

3
6,

21
0

6,
14

9
Fe

m
al

es
7,

95
6

7,
53

3
6,

23
4

6,
29

0
6,

72
8

6,
94

0
6,

75
0

6,
32

2
6,

00
9

5,
90

2
5,

84
4

>1
0-

15
M

al
es

8,
42

1
8,

77
9

8,
16

3
6,

60
5

6,
62

9
7,

07
0

7,
31

8
7,

08
4

6,
63

4
6,

30
7

6,
19

4
Fe

m
al

es
7,

43
2

7,
91

4
7,

51
0

6,
22

0
6,

27
6

6,
71

5
6,

92
6

6,
73

6
6,

30
8

5,
99

7
5,

89
0

>1
5-

20
M

al
es

6,
29

2
8,

39
1

8,
75

9
8,

14
5

6,
59

3
6,

61
7

7,
05

7
7,

30
4

7,
07

2
6,

62
2

6,
29

6
Fe

m
al

es
5,

67
2

7,
40

4
7,

89
7

7,
49

8
6,

21
0

6,
26

7
6,

70
5

6,
91

6
6,

72
7

6,
29

9
5,

98
9

>2
0-

25
M

al
es

4,
85

9
6,

26
5

8,
36

8
8,

73
7

8,
12

7
6,

57
8

6,
60

2
7,

04
1

7,
28

7
7,

05
6

6,
60

8
Fe

m
al

es
6,

05
7

5,
64

4
7,

38
4

7,
88

0
7,

48
2

6,
19

9
6,

25
6

6,
69

3
6,

90
5

6,
71

5
6,

28
8

>2
5-

30
M

al
es

4,
89

5
4,

83
4

6,
24

3
8,

34
0

8,
71

1
8,

10
3

6,
55

9
6,

58
3

7,
02

0
7,

26
6

7,
03

5
Fe

m
al

es
5,

86
5

6,
02

3
5,

62
6

7,
36

6
7,

86
1

7,
46

6
6,

18
5

6,
24

2
6,

67
9

6,
88

8
6,

70
0

>3
0-

35
M

al
es

4,
31

3
4,

86
3

4,
81

2
6,

21
8

8,
31

0
8,

67
9

8,
07

4
6,

53
5

6,
55

9
6,

99
5

7,
23

9
Fe

m
al

es
4,

43
6

5,
82

5
5,

99
9

5,
60

9
7,

34
3

7,
83

9
7,

44
5

6,
16

8
6,

22
4

6,
66

0
6,

86
9

>3
5-

40
M

al
es

4,
20

4
4,

27
6

4,
83

5
4,

78
6

6,
18

8
8,

26
9

8,
63

7
8,

03
4

6,
50

3
6,

52
7

6,
96

1
Fe

m
al

es
3,

79
5

4,
39

7
5,

79
4

5,
97

3
5,

58
5

7,
31

5
7,

80
9

7,
41

6
6,

14
5

6,
20

1
6,

63
4

>4
0-

45
M

al
es

3,
42

6
4,

14
9

4,
23

5
4,

79
3

4,
74

9
6,

14
0

8,
20

6
8,

57
0

7,
97

3
6,

45
3

6,
47

7
Fe

m
al

es
2,

77
4

3,
74

9
4,

36
2

5,
75

6
5,

93
5

5,
55

2
7,

27
3

7,
76

4
7,

37
3

6,
10

9
6,

16
5

>4
5-

50
M

al
es

2,
61

0
3,

35
6

4,
08

5
4,

17
5

4,
73

1
4,

68
8

6,
06

0
8,

09
9

8,
45

9
7,

86
9

6,
36

9
Fe

m
al

es
1,

99
1

2,
72

7
3,

70
5

4,
31

8
5,

69
8

5,
88

0
5,

50
2

7,
20

6
7,

69
2

7,
30

6
6,

05
3

>5
0-

55
M

al
es

2,
17

5
2,

52
1

3,
26

6
3,

98
4

4,
07

9
4,

62
2

4,
58

0
5,

92
1

7,
91

3
8,

26
5

7,
68

8
Fe

m
al

es
1,

82
6

1,
93

7
2,

67
3

3,
64

2
4,

24
4

5,
60

8
5,

78
7

5,
41

5
7,

09
3

7,
57

1
7,

19
1

>5
5-

60
M

al
es

1,
30

9
2,

05
5

2,
40

8
3,

12
8

3,
82

5
3,

91
6

4,
43

7
4,

39
7

5,
68

5
7,

59
7

7,
93

5
Fe

m
al

es
1,

04
7

1,
74

6
1,

87
2

2,
59

5
3,

53
4

4,
12

8
5,

45
5

5,
62

9
5,

26
7

6,
89

8
7,

36
4

>6
0-

65
M

al
es

1,
52

9
1,

19
4

1,
90

2
2,

23
8

2,
91

7
3,

56
7

3,
65

2
4,

13
8

4,
10

0
5,

30
1

7,
08

4
Fe

m
al

es
1,

29
9

97
1

1,
64

6
1,

77
7

2,
46

4
3,

36
6

3,
93

1
5,

19
5

5,
36

0
5,

01
5

6,
56

9
>6

5-
70

M
al

es
81

4
1,

32
0

1,
05

2
1,

68
7

1,
99

5
2,

60
1

3,
18

0
3,

25
7

3,
69

0
3,

65
6

4,
72

7
Fe

m
al

es
62

9
1,

14
8

88
0

1,
50

5
1,

62
5

2,
26

3
3,

09
3

3,
61

2
4,

77
3

4,
92

6
4,

60
9

>7
0-

75
M

al
es

92
6

65
0

1,
08

6
87

2
1,

40
9

1,
66

6
2,

17
3

2,
65

7
2,

72
0

3,
08

2
3,

05
4

Fe
m

al
es

69
9

51
5

97
4

75
7

1,
29

6
1,

40
9

1,
96

3
2,

68
2

3,
13

3
4,

14
0

4,
27

2
>7

5-
80

M
al

es
35

8
66

3
48

4
81

6
66

2
1,

07
0

1,
26

6
1,

65
0

2,
01

8
2,

06
6

2,
34

1
Fe

m
al

es
25

8
51

1
39

6
76

4
59

3
1,

02
8

1,
11

8
1,

55
7

2,
12

8
2,

48
6

3,
28

5
>8

0
M

al
es

58
0

48
3

65
7

62
9

84
6

84
8

1,
11

9
1,

38
0

1,
76

1
2,

18
9

2,
42

6
 

Fe
m

al
es

49
6

36
7

50
2

50
0

75
0

76
0

1,
06

4
1,

26
9

1,
66

7
2,

24
7

2,
76

5


