Mean platelet volume in brucellosis: correlation between brucella standard serum agglutination test results, platelet count, and C-reactive protein.

Dogan Halef Okan1, Zararsiz Gökmen2, Bayik Seyit3, Koca Yuksel1, Zungun Cevdet1, Akbulut Deniz1

1. Clinical Biochemistry, Ankara Numune Training and Research Hospital, 06100, Ankara, Turkey
2. Department of Biostatistics and Medical Informatics, Erciyes University, Faculty of Medicine, 38039, Kayseri - Turkey
3. Clinical Microbiology, Ankara Numune Training and Research Hospital 06100, Ankara, Turkey

Abstract

Background: Brucellosis, a zoonotic infection, was most widely diagnosed by the Brucella standard serum agglutination test (SAT). No previous publication has demonstrated a correlation between the degree of Brucella SAT agglutination positivity and the severity of brucellosis infection.

Objective: To contribute to the clarification of the relationship between platelets and brucellosis. It is also aimed at evaluating the usefulness of the SAT titer as a measure of brucellosis severity.

Material and Methods: We compared the control (n=60) and patients (n=96) groups in terms of mean platelet volume (MPV), C-reactive protein (CRP) and platelet values. Patients were grouped according to their degree of agglutination positivity titers and compared by means of CRP, MPV and platelet values. We also investigated the relationship among logarithmic values of MPV, platelet and CRP parameters for each group.

Results: Although statistically meaningful difference was observed between control and patients group in terms of MPV and platelet value, there were no statistically significant differences observed among patients groups. The physiological negative correlation between MPV and platelet count was not encountered in group 2 and 3. Logarithmic values of CRP were not correlated with logarithmic values of MPV and platelet counts.

Conclusion: The MPV could be a new parameter to evaluate hematologic abnormalities in patients with brucellosis. The SAT titer was not a useful measure for evaluation of the severity of brucellosis.

Keywords: Brucella, CRP, platelet count, mean platelet volume, agglutination

DOI: http://dx.doi.org/10.4314/ahs.v14i4.4

Introduction

Brucellosis is a zoonotic infection caused by Gram-negative coccobacilli1. The Brucella standard serum agglutination test (SAT) is the most widely used serologic test for the diagnosis of brucellosis as mentioned in the quoted reference2. The titer of agglutinating antibodies indicating active Brucella infection varies from country to country and depends on the endemicity of brucellosis3. The widely accepted SAT cut-off point was ≥ 1/160 as many textbooks advised and different studies performed in Turkey4–7.

Mean platelet volume (MPV) generated by clinical hematology analyzer reflects platelet activation. Previous studies have reported that there is a correlation between MPV and inflammatory disease8–12. Aydemir et al. indicated that different type of microorganisms might be cause specific MPV and platelet response10. Several mediators such as interleukin (IL)–1, tumor necrosis factor (TNF)-alpha and IL-6 influence the maturation of thrombopoietic cells13,14. Brucella-infected cells are activated to express IL-1 beta and IL-6 at both the mRNA and protein levels15.

Several markers of inflammation have been used in diagnosis of bacterial infections. One of these markers is C-reactive protein (CRP)16. It has been reported in different studies that the elevated CRP might be associated with Brucellosis and might be used to determine the activity of acute Brucellosis17–19.

Several studies have investigated the change of MPV value in Brucellosis20,21 and no previous publication has demonstrated a correlation between the degree of Brucella SAT agglutination positivity and the severity of brucellosis infection. The importance of platelets in brucellosis has not been proven yet and our study aimed to contribute to the clarification of...
this relationship. The study also aimed to assess the usefulness of the SAT titer as a measure of brucellosis severity.

Material and methods

Study Population
In the current study, we retrospectively reviewed the records of 1336 brucellosis suspected patients from December 2010 to December 2011. The study population comprised of 96 patients and 60 controls. We evaluated MPV, CRP and platelet values of patients at first admission to our hospital. The control group included 60 healthy individuals (mean age: 45 ± 14, male / female ratio: 22/38) without known inflammatory disease and the use of drugs. Additionally, the control groups had no anemia, no bleeding diathesis and had normal platelet counts. We obtained the records of all patients and controls from Ankara Numene Education and Training Hospital’s laboratory information system. Samples were sent by physicians from various medical inpatient and outpatient clinics. We sought information regarding Brucella SAT results, CRP, MPV, platelet count, gender and age. The protocol was approved by local ethical committee.

Methods

The Brucella SAT test was performed in the microbiology laboratory of our hospital using Standard commercial Brucella abortus antigen (Refik Saydam Laboratories, Ankara, Turkey). It was performed according to the manufacturer’s instructions. CRP levels were determined by the immunoturbidimetric method (Beckman Coulter Unicel DXC 800, USA). The normal CRP values in our laboratory are <5 mg/L. Platelet count was measured using an automatic blood counter (Beckman Coulter LH 780, USA). 4 ml blood samples were collected from each brucellosis suspected patients in ethylenediaminetetraacetic acid (EDTA) tubes. The mean platelet volumes were calculated using the same hemotological analyzer. The expected MPV and platelet values in our laboratory ranged between 7.12 femtolitres (fL) and 150,000-450,000 per microlitre, respectively.

Statistical Analyses

Shapiro-Wilk’s and Levene’s tests were used to check the normality and the equal variances assumptions of the data. A logarithmic transformation was applied to CRP variable because of its highly skew distribution. Values were expressed as mean±SD, standard deviation or geometric mean and 95% confidence intervals. The differences between groups were tested using independent-samples t test or one-way analysis of variance. Brown-Forsythe test was also performed when the assumption of equal variances does not hold. Games-Howell post-hoc test was used for pair wise comparisons. Pearson correlation coefficients were calculated to see the relationships between MPV, PLT and CRP values for each group and a scatter-plot matrix was given for the visual representation. All analyses were performed using R 2.14.0 software considering p<0.05 statistically significant.

Results

Ninety six patients who had a titer of ≥ 1:160 enrolled in this study as a patient group. We grouped all patients according to their degree of agglutination positivity. The distribution of patients, according to their sexes and mean ages are given in Table I.

Table I The distribution of patients, according to their sexes and mean ages

<table>
<thead>
<tr>
<th>Total # of patients</th>
<th>Group 1 (n=31)</th>
<th>Group 2 (n=31)</th>
<th>Group 3 (n=19)</th>
<th>Group 4 (n=15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brucella SAT result</td>
<td>1/160</td>
<td>1/320</td>
<td>1/640</td>
<td>≥1/1280</td>
</tr>
<tr>
<td>Male/Female</td>
<td>16/15</td>
<td>20/11</td>
<td>15/4</td>
<td>9/6</td>
</tr>
<tr>
<td>Mean Age, (years, ND)</td>
<td>42±14</td>
<td>45±14</td>
<td>41±16</td>
<td>42±15</td>
</tr>
</tbody>
</table>

The mean values of MPV and platelet in control groups were 11.01±0.6 and 268.16±58.21, respectively. However those of in patients were 8.66±1.44 and 254.94±82.40, respectively. According to Table II, statistically meaningful difference between patient and control groups was observed in terms of MPV and platelet values (p<0.001 and p<0.05).

Table II Comparison of MPV, platelet and CRP values between patients and controls

<table>
<thead>
<tr>
<th>Variable</th>
<th>(n=60)</th>
<th>(n=96)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPV</td>
<td>11.01±0.6</td>
<td>8.66±1.44</td>
<td><0.001</td>
</tr>
<tr>
<td>PLT</td>
<td>268.16±58.21</td>
<td>254.94±82.40</td>
<td><0.05</td>
</tr>
</tbody>
</table>

MPV: Mean platelet volume, PLT: Platelet count, CRP: C-reactive protein. Values are expressed as mean±SD and %95 confidence intervals.

No statistically meaningful difference was observed in terms of MPV, platelet and CRP values among patients groups (Table III).

Table III Comparison of MPV, platelet and CRP values among patients groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPV (fL)</td>
<td>8.44(7.98-8.92)</td>
<td>8.75(8.26-9.28)</td>
<td>8.40(7.84-9.00)</td>
<td>8.53(7.62-9.55)</td>
<td>0.503</td>
</tr>
<tr>
<td>PLT (10⁸ μL⁻¹)</td>
<td>265.03(227.92-209.26(181-146.30)</td>
<td>241.33</td>
<td>254.40(222.52-290.85)</td>
<td>271.73</td>
<td>0.112</td>
</tr>
<tr>
<td>CRP (mg/L)</td>
<td>1.41(0.91-2.18)</td>
<td>1.64(1.01-2.68)</td>
<td>1.50(0.96-2.34)</td>
<td>1.30(0.65-2.63)</td>
<td>0.600</td>
</tr>
</tbody>
</table>

MPV: Mean platelet volume, PLT: Platelet count, CRP: C-reactive protein. Values are expressed as geometric means and %95 confidence intervals.

Physiological negative correlation between logarithmic values of MPV and platelet was not observed in group 2 (r= -0.253, p= 0.169) and in group 3 (r= -0.203, p= 0.404). Logarithmic values of CRP were not correlated with logarithmic values of MPV and platelet (Figure 1).

Figure 1 A scatterplot matrix with pearson correlation coefficients to display the relationships between logarithmic values of MPV, platelet and CRP parameters for each group.
Discussion

Hematologic abnormalities are observed in brucellosis. One of these abnormalities is thrombocytopenia. Brucella-induced thrombocytopenia was reported in the range of 2.4–39%. It was encountered to statistical differences in the platelet counts in patient and control groups. Also MPV values were found to be lower in patient group than in the control group (Table II). Over releasing of proinflammatory cytokines and acute-phase reactants can suppress the size of platelets.

Previous studies reported that interferon gamma (IFN-γ), TNF-α, IL-1 and IL-12 secreted in brucellosis. One of these abnormalities is thrombocytopenia. The findings of our study were in line with the results of these previous studies. The physiological inverse relationship between the severity of brucellosis and a higher titer in the SAT test.

In this context, it could be inferred that in addition to platelet counts, the activation of platelets and the release of platelets into the circulation could be affected in patients with brucellosis. Accordingly, the determination of MPV values could be useful in evaluation of the progression of the disease.

MPV, platelet and CRP values changed with brucellosis were used for evaluating whether there was a correlation between the severity of brucellosis and a higher titer in Brucella SAT test. We could not find any significant difference among patients groups in terms of MPV, CRP and platelet value (Table III). It was reported that the role of CRP in the inflammatory processes may involve binding to platelet activating factor.

Therefore, we also investigated the correlation between logarithmic values of MPV, CRP and platelet value of using Scatter plot matrix with Pearson correlation to evaluate the relationship between the severity of the disease and SAT titer. However, there was no correlation between logarithmic values of MPV, CRP and platelet values in patient groups. Yuksel et al., Ulaslı et al., as well reported that no correlation was observed between CRP and MPV in patients with ulcerative colitis and chronic obstructive pulmonary disease, respectively. The findings of our study were in line with the results of these previous studies. The physiological inverse relationship between MPV and platelet count seen by Kim et al. was not observed in group 2 and 3 (Figure 1) and we also found that both MPV and platelet values decreased in patients with brucellosis. It was observed that brucellosis might affect the physiological inverse correlation seen between MPV and platelet count. However, the physiological inverse relationship did not disappear in all groups. All these findings support the suggestion that there is no correlation between the severity of brucellosis and a higher titer in the SAT test.

Conclusion

MPV value was thought to be used in evaluation of platelet function in patients with brucellosis. Additionally, it was thought that the SAT titer was not useful to evaluate the severity of the disease.

References