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Abstract
Background: This study aims to make use of  a longitudinal data modelling approach to analyze data on the number of  
CD4+cell counts measured repeatedly in HIV-1 Subtype C infected women enrolled in the Acute Infection Study of  the 
Centre for the AIDS Programme of  Research in South Africa.
Methodology: This study uses data from the CAPRISA 002 Acute Infection Study, which was conducted in South Africa. 
This cohort study observed N=235 incident HIV-1 positive women whose disease biomarkers were measured repeatedly at 
least four times on each participant.
Results: From the findings of  this study, post-HAART initiation, baseline viral load, and the prevalence of  obese nutrition 
status were found to be major significant factors on the prognosis CD4+ count of  HIV-infected patients.
Conclusion: Effective HAART initiation immediately after HIV exposure is necessary to suppress the increase of  viral 
loads to induce potential ART benefits that accrue over time. The data showed evidence of  strong individual-specific effects 
on the evolution of  CD4+ counts. Effective monitoring and modelling of  disease biomarkers are essential to help inform 
methods that can be put in place to suppress viral loads for maximum ART benefits that can be accrued over time at an 
individual level. 
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Background
Multilevel data modelling allows to account for the cor-
relation of  measurements, and include variables meas-
ured at different levels as well as model the variation at 
different levels. Longitudinal data, or repeated measure-
ments data is a specific form of  multilevel data. In lon-
gitudinal studies, repeated observations are made on an 
individual on one or more outcomes, including covar-
iate information at a baseline and over time. Measure-
ments made on the same individual are likely to be more 
similar than measurements made on different individu-
als. Thus, observations on the same individual will not 

be independent. That is, repeated measurements on the 
same subjects are bound to be correlated 1-3. 
Longitudinal data analysis is widely used for at least 
three reasons: to increase the sensitivity by making with-
in-subject comparisons, to study changes over time, and 
to use subjects efficiently once they are enrolled in a 
study4-6.  Repeated measurements can compensate for 
small sample sizes because an individual is observed 
more than once compared to a cross-sectional study. 
The need for the covariance structure of  the observed 
data makes longitudinal data analysis more complex 
than standard linear regression. For the inference to be 
substantial, the covariance among repeated measures 
must be appropriately modeled. Although the covari-
ance structure is not the prime interest of  the study, 
it is essential for valid inference 7,8. Therefore, a lot of  
efforts are needed at the beginning of  the statistical 
analysis to assess the covariance structure of  the data. 
Traditional methods for longitudinal data such as Anal-
ysis of  Variance (ANOVA) and Multivariate Analysis 
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of  Variance (MANOVA) are of  limited use because of  
the restrictive assumptions concerning the variance-co-
variance structure of  the repeated measures 9. For this 
reason, mixed-effects models have become popular for 
modelling longitudinal data. This statistical procedure 
also permits the estimation of  variability in hierarchical-
ly structured data and examines the impacts of  factors 
at distinctive levels 10,11. Since longitudinal studies are 
often faced with the incompleteness of  the data due to 
partially observed subjects, the mixed-effects model is 
by its very nature able to deal with unbalanced data of  
this nature.
Thus, this study was conducted to review the general 
Linear Mixed Model approach that can be extended for 
multivariate longitudinal data by assuming appropriate 
random effects. This method has the benefit of  having 
extra correlation evolving from the longitudinal data 
structure that can be modeled within the same frame-
work. Therefore, the focus of  this study is to adopt the 
mixed-effects model with appropriate random effects 
incorporated, including a flexible variance-covariance 
structure that gives the best fit as well as identifying 
whether specific clinical and sociodemographic factors 
present in the data (and their respective possible inter-
actions) influenced CD4 count in a cohort of  HIV-In-
fected Patients. The information and understanding of  
such factors are of  epidemiological importance. The 
results will be beneficial in developing tools to sup-
port clinicians in the identification of  factors related to 
HIV-Infected Patients. The results can be further used 
to shape communication and counseling strategies at 
the individual level before treatment initiation. 

Materials and methods
Data source: This study uses data from the Centre 
for the AIDS Programme of  Research in South Africa 
(CAPRISA) 002 Acute Infection Study. The study was 
conducted on HIV-infected women at the Doris Duke 
Medical Research Institute (DDMRI) at the Nelson 
R Mandela School of  Medicine of  the University of  
KwaZulu-Natal in Durban, South Africa. Between Au-
gust 2004 and May 2005, CAPRISA initiated a cohort 
study enrolling high-risk HIV negative women to fol-
low up. Women infected with HIV were recruited into 
the Acute Infection Study and then followed up closely 
to study disease progression and CD4/viral load evolu-
tion 12-14. Once HIV-Infected women enrolled in the AI 
study, their CD4 cell count and viral load were meas-
ured and assessed regularly. When their CD4 cell count 
is less than or equal to 350 cells/mm3 for more than two 

consecutive visits between 6 months or if  they were 
with AIDS-defining illness (WHO clinical stage 3-5), 
they would be referred to a public government clinic 
for ARV treatment. However, these patients would only 
start HAART once their CD4 cell count was less than 
200 cells/mm3, according to the National Department 
of  Health South Africa until 2015. With effect from 
the 1st January 2015, according to the National Depart-
ment of  Health, the criterion to start HIV patients on 
early initiation of  ART was a CD4 cell count less than 
or equal to 500 cells/mm3 32,33.

Method
Mixed-effects modelling is an advanced and vital meth-
od in statistics. It is a well-known method; therefore, 
we summarize the key aspects of  the model relevant 
to the current study. The literature on mixed models is 
ubiquitous, and some of  it can be found in 2,3,5,6,9,11,15-18.
The use of  the mixed-effects model for longitudinal 
data helps to correctly account for the correlation of  
observations within a subject and also to quantify the 
heterogeneity between subjects due to unobserved 
factors. It is important that before its implementation, 
adequate sample size is determined based on prior in-
formation on the magnitude of  the correlation and the 
planned number of  observations per individual. By 
correctly estimating the sample size, we end up with 
correctly estimated standard errors (SEs), which will 
give reliable confidence intervals (CI) and p-values. We 
can use the mixed-effects model to account for varia-
tion at lower and higher levels of  the design structure. 
Accounting for variation at a lower level gives us more 
power for estimation at a higher level 3. A mixed model 
is made up of  fixed and random effects where the lat-
ter helps in accounting for correlation at a lower level 
within higher-level units. That is why mixed models are 
called “mixed” because the coefficients are a mix of  
fixed and random effects.
In more general terms, fixed effects or fixed factors are 
covariates that we anticipate will influence the outcome 
variable. They are what we call explanatory variables in 
a standard linear regression. For instance, in our case, 
we are interested in making conclusions about how 
the socio-economic, demographic, and treatment type 
(place of  residence, baseline BMI, baseline viral load, 
age, education level, marital status, HAART initiation, 
etc.) impacts the CD4+ count of  a patient. Therefore, 
these socio-economic, demographic, and treatment 
types are fixed effects, and CD4+ count of  a patient is 
the response variable. Thus, a fixed-effect is the param-
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eter of  interest. The overall intercept is not the variable 
of  interest, but of  course, it is a fixed effect. In addi-
tion to the fixed effects, we also incorporate random 
effects in the mixed-effect model. Random effects are 
grouping factors for which we are attempting to con-
trol. A random intercept allows a different intercept for 
each subject. A random effect for a variable enables the 
effect of  a variable on the outcome to differ between 
subjects. For example, a random effect could also be a 
random slope for a categorical variable. In general, in a 
mixed model, all of  the variables of  interest are added 
as fixed effects, but at least one and sometimes several 
of  the fixed effects variables may also be added as ran-
dom effects variables 19. Therefore, the idea is that the 
values of  a given random effect in the sample are a ran-
dom sample of  all possible values in the broader pop-
ulation (e.g., people in the sample are a random sample 
of  people in the population). Moreover, in longitudinal 
studies, time or a time-varying covariate X is often an 
explanatory variable of  interest, and the associations 
between explanatory variables and responses may vary 
between subjects. A model that allows heterogeneity 
in the intercept and heterogeneity in the magnitude of  
the slope between subjects is referred to as the random 
intercept and slope model. The random intercept and 
slope model is given by

 
where  is the time variable used as a predictor in the 
model.
A more general form of  the mixed model is expressed 
as

 
where  is an outcome variable that indicates the   
measurement on the  subject,  are 
the predictor variables,  are fixed effects, 

  are random effects, and  ’s are residuals.
In the current model, the square root of  CD4 count is 
used as the outcome because this transformation satis-
fies the normality assumption better than the untrans-
formed CD4+ cell counts. Hence the model of  interest 
is

 ,
where  

The general matrix specification of  the mixed model is

 
with  individuals and j  observa-
tions for individual i. Thus, Y is a N  vector of  the 

response variable,  is N   known 
design matrix that includes covariates for the fixed 
effects, β is p   vector of  fixed effects parameters, 

 is N   known design matrix for 
random effects,   is  vector of  random effects 
from a normal distribution with variance-covariance 
matrix G, and  is N   error vector from a normal 
distributionwith variance-covariance matrix R19.
Assumption: U and  are independent and each is nor-
mally distributed.

    or     

The distribution of  Y is a multivariate normal                    

distribution i.e. the vector of  outcomes 
is a multivariate normal distribution with mean vector   

and variance-covariance non-singular matrix V and 
its probability density function (pdf) is

 
The log-likelihood of  Y under this model is

 

=  
Therefore, the maximum likelihood estimate (MLE) 
of  is the one that maximizes the right-side of  the 
above expression 19.
Covariance or correlation structures that are most com-
monly used for longitudinal data analysis are compound 
symmetry (CS), unstructured (UN), First-order Autore-
gressive (AR (1)), and Toeplitz (Toep). These four com-
mon covariance structures are summarized in 5,7,8,16,19-22.
To decide which mixed-effects model fits the data best, 
we can use likelihood-based methods, i.e., either the 
likelihood ratio test (LRT) or Information Criteria (IC) 
such as Akaike Information Criteria (AIC) or Bayesian 
Information Criteria (BIC) method. The LRT, which 
is based on -distribution can be used to test nested 
models. The model with the lowest AIC and BIC is the 
best fitting model. That is, the AIC and BIC can be 
used to compare models such that the smaller of  any of  
these, the better between two or more competing mod-
els. The IC method is more general to compare two 
or more competing non-nested models. However, the 
LRT is the best method to compare nested models 23.
In mixed-models, we use maximum likelihood (ML) 
to estimate the fixed effects, the standard errors of  
the fixed effects, and the variance of  the random ef-
fects. The likelihood of  mixed effect models can be 
time-consuming computationally, but with advances in 
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statistical software, this has become an easily managea-
ble problem. Often the likelihood is solved by iteration 
until convergence. However, under ML estimation the 
residual variance and variance of  random effects are 
underestimated thus instead the restricted maximum 
likelihood (REML) estimation gives unbiased estimates 
of  variance parameters by taking into account the de-
grees of  freedom used to estimate the fixed effects 
hence variance parameter estimates are generally larger 
than those from ML estimation. However, REML uses 
the covariate mean structure (the number of  fixed ef-
fects) in the model estimation steps. That means we use 
REML when we are comparing two models that differ 
only in random effects (see page 352 in Der and Everitt, 
2012) 4,24. 
In general, when testing mixed-effects models that dif-
fer in variance components, we could either use REML 
or ML since they both give interpretable LRT and IC 
for such a comparison. However, testing and compar-
ing models that differ in fixed effects, then only ML, 
will provide us with interpretable LRT and IC. Howev-
er, ML does not take into account the degrees of  free-
dom for the loss of  fit in the estimation of  parameters, 
but REML does 19,20.

Results
Data for this study were obtained from the CAPRISA 
002: Acute infection Study, which was initiated between 
August 2004 and May 200513. The baseline character-
istics of  the datasets are given in Table 1. From a to-

tal of  235 women, 105 (44.7%) were residing around 
Vulindlela (rural site), and 130 (55.3%) were residing 
around eThekwini (Durban, urban site), KwaZulu-Na-
tal, South Africa. The average age at enrollment and 
baseline CD4+ cell counts was 27.15 years (range 18-
59) with a standard deviation of  6.56 and  570 (range  
182- 1575) with a standard deviation of   229.6, respec-
tively. The average follow-up time was 2.69 years, and 
the majority of  the women 182 (77.4%) had a stable 
partnership. Furthermore, from the total women in-
cluded in the study, the majority of  the 224 (95.3%) 
completed secondary/high education, and most of  
the women (78.8%) were self-reported sex workers13,34. 
There were a total of  7129 observations from the 235 
women, which consists of  a minimum of  four and a 
maximum of  sixty-one measurements of  CD4+ cell 
counts, among the subjects which were measured at 
different time points indicating that the number of  
measurements over all subjects was not equal. Further 
apart from an unequal number of  measurements across 
individuals, measurements were not taken at fixed time 
points, which implies the CAPRISA 002: Acute Infec-
tion Study is a highly unbalanced longitudinal data set 
that requires carefully designed modelling approaches.
Figure 1 (left panel) shows that CD4+ cell count distri-
bution is right-skewed, indicating non-normality; thus, 
a square root transformation to CD4+ cell count was 
performed to normalize the data, Figure 1 (right panel) 
shows that the square root transformed data conforms 
quite well to the normal distribution.

Table 1: Baseline characteristics of the motivated data set (CAPRISA 002), 2004-2018. 
 

Variable Total Variable Total 
Number of women 235 Marital Status 
Place of residence No partner 43 (18.3%) 
Rural 105 (44.7%) Stable partner 182 (77.4%) 
Urban 130 (55.3%) Many partners 10 (4.3%) 
Age at Seroconversion (Years)     
Mean (Std. Deviation) 27.15 (6.56) Educational Attainment 
<20 21 (8.9%) Primary schools (grade 0-7) 11 (4.7%) 
20-29 150 (63.8%) Secondary schools (grade 8-12) 224 (95.3%) 
30-39 50 (21.3%) Baseline CD4+ cell counts (cells/µL) 
40-49 12 (5.1%)          Mean (Std. Deviation)  570 ( 229.6) 
≥ 50 2 (0.9%) Baseline HIV viral load (cells/µL) 
Baseline Body Mass Index Undetectable VL (< 50)  1 (0.4%) 
Underweight 14 (6%) Low VL (50<VL<10000)  74 (31.5%) 
Normal weight 173 (73.6%) Medium VL (10000<VL<100000) 94 (40%) 
Overweight 41 (17.4%) High VL (≥100000) 66 (28.1%) 
Obese 7 (3%)     
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The spaghetti plots in Figure 2 illustrate the actual 
CD4+ cell count measurements for randomly chosen 
participants over time across pre and post ART initia-
tion groups. Since plots with all individual curves can be 
hard to distinguish for large sample size, we randomly 
chose 15 participants to construct such individual plots. 
From Figure 2, it can be seen that there is a decreasing 
trend of  CD4+ cell count overtime on patients before 

 

  

Figure 1: Distributional properties plot for original  
and square root transformed CD4 trajectories 
  

Highly Active Antiretroviral Therapy (HAART) initia-
tion, but an increasing trend of  CD4+ cell count over-
time for the same 15 randomly chosen patients initiated 
on HAART. Figure 2 also shows that there is evidence 
of  variability between individuals as well as variability 
within individuals. Besides, the individual profiles are 
not all of  the same lengths, an indication of  incom-
pleteness and missing data due to dropout or attrition.

 
Figure 2: Individual profiles plot of CD4+ count for the same 15 randomly selected 
individuals before and after HAART. 
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Figure 3 shows an array of  individual series from the 
CAPRISA 002: AI study. In each panel, the observed 
CD4 count for a single subject is plotted against the 
times that measurements were obtained. Such plots 
permit assessment of  the person response patterns and 
whether there is substantial heterogeneity within the tra-
jectories. Figure 3 shows that there can be variation in 
the “level” of  CD4 count for subjects. Subject PID=5 

in the first row second from left has CD4 counts great-
er than 500 for almost all times while PID= 110 in the 
third row lower-left corner has all measurements below 
500. Moreover, PID=30 in the first row third from left 
has all measurements almost constant around 500. Fur-
ther, individuals profile plots can be evaluated for the 
change over time 6. Figure 3 shows that most subjects 
are either relatively stable in their measurements over 
time, or tend to be increasing.

 
Figure 3: A sample of 15 individual CD4 trajectories versus time from the CAPRISA 002 AI Study 
  

Figure 4 shows the mean CD4 trajectories overtime for 
the pre and post ART initiation groups in the CARI-
SA 002: AI study. Overall the mean plots suggest that 
patients initiated on HAART have significant quadrat-
ic growth in the evolution of  CD4 count over time as 
what we would expect. Furthermore, the plots exhibit 
non-linearity implying factors that control the nonlinear 
effect that may need to be incorporated in the model. 
The inferential focus of  this study is on the mean re-

sponse of  a square root transformation to CD4+ cell 
count measure. First, an appropriate selection of  the 
random effects was also performed. That is the apprais-
al as to which of  the nonlinear components (the inter-
cept, time, or square root of  time) ought to have a ran-
dom component was made. To have a valid inference 
about the mean structure, the covariance structure must 
be incorporated into the statistical model 25. Hence, fol-
lowing the selection of  random components, a com-
parison of  covariance structure was made in the study. 
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 Figure 4: Mean CD4 trajectories over time by ART Initiation group, CAPRISA 002 AI study 

The following random effect models, which have the 
same fixed effects, were fitted for testing:
Model 1: Intercept, Time, Square root of  time   ( Ran-
dom intercept and slope model )
Model 2: Time, Square root of  time     ( Random slope 
model )
Model 3: Time only   ( Random slope model without quadratic 
effect )

Model 4: Intercept only ( Random intercept model )
All models were fitted using the REML estimation pro-
cedure, and model comparison is made using different 
Information Criteria. The AIC statistics show  that the 
random intercept and slope model is the preferable 
model among models listed above (Table 2).

Table 2: Model comparison using IC for random effects using REML estimation 
 
Random effect 

models 
Information Criteria 

Params -2log AIC AICC HQIC BIC CAIC 
Model 1 4 34392.7 34400.7 34400.7 34406.3 34414.6 34418.6 
Model 2 3 36567.8 36573.8 36573.8 36577.9 36584.1 36587.1 
Model 3 2 39832.4 39836.4 39836.4 39839.2 39843.3 39845.3 
Model 4 2 36363.7 36367.7 36367.7 36370.5 36374.6 36376.6 

  
To validate the random intercept and slope model 
(Model 1), a panel of  conditional studentized residu-
als for the square root CD4+ count was used. The re-
sult is presented in Figure 5. The panel consists of  a 
scatterplot of  the residuals, a histogram with normal 
density, a Q-Q plot, and summary statistics for the re-
siduals and the model fit. The residuals were randomly 
dispersed around zero, suggesting that their mean was 
approximately zero. The histogram follows a normal 
distribution indicating a constant variance. Hence, the 
fulfillment of  the assumption that the error term   
was normally distributed with mean 0 and variance  .

Table 3 shows the comparisons between the four dif-
ferent covariance structures that were considered in the 
model using REML under the same fixed effects model. 
The Information Criteria was used to compare models 
for the structure that gives a better fit.
 
The estimated unstructured covariance parameter de-
termines the matrix ( ) along with the estimated vari-
ance of  the random error term (, respectively, are given 
below for Model 1:

  and  
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Figure 5: Panel of conditional studentized residuals for the square root of CD4 count 

Table 4 shows the REML estimates for the fixed effects 
of  the random intercept and slope model (Model 1).
Fitted conditional model or the subject-specific profile 
of  the CD4+ count measure overtime ‘t’ for the two 

ART initiation groups can be summarized as follows:
For post ART initiation group

For pre ART initiation group
 

Table 3: Comparisons of covariance structure 
 
Covariance 
Structure 

Information Criteria 
Params -2log AIC AICC HQIC BIC CAIC 

AR(1) 3 35675.6 35681.6 35681.7 35685.8 35692.0 35695.0 
CS 3 35671.5 35677.5 35677.5 35681.7 35687.9 35690.9 

Toep 4 35671.4 35679.4 35679.4 35685.0 35693.2 35697.2 
UN 7 34087.1 34101.1 34101.1 34110.8 34125.3 34132.3 

  

Table 4: Fixed effect estimates of Model 1 for unstructured covariance structure 
 

Effect DF Estimate SE Pr > 
|t| 

95% C.I for 
Estimate 

Intercept 234 24.3062 0.3055 <.0001 (23.7043, 24.9081) 
Time in month 6781 0.09015 0.01072 <.0001 0.06913, 0.1112) 

Sqrt_Time 6781 -0.9554 0.1036 <.0001 (-1.1586,  -0.7523) 
ART Initiation 

(Post) 
195 2.4473 0.1348 <.0001 (2.1815, 2.7131) 

  

Table 4: Fixed effect estimates of Model 1 for unstructured covariance structure 
 

Effect DF Estimate SE Pr > 
|t| 

95% C.I for 
Estimate 

Intercept 234 24.3062 0.3055 <.0001 (23.7043, 24.9081) 
Time in month 6781 0.09015 0.01072 <.0001 0.06913, 0.1112) 

Sqrt_Time 6781 -0.9554 0.1036 <.0001 (-1.1586,  -0.7523) 
ART Initiation 

(Post) 
195 2.4473 0.1348 <.0001 (2.1815, 2.7131) 

  The above fitted conditional models are extended to 
incorporate the impact of  patient’s age, educational 
status, number of  sex partners, baseline BMI, baseline 
viral load, and ART initiation group with the square 

root of  CD4 count as the response. In addition to this, 
two-way interaction effects were evaluated within the 
modelling process. But, none of  the interaction effects 
was significant. The results of  the effects of  age, educa-
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tional status, and the number of  sex partners were not 
found to be significant. However, we incorporate them 
within the modelling process since factors with subject 
matter importance ought to be kept within the model to 
eliminate any confounding effects.
The results of  the fixed effect estimates are presented 
in Table 5. As seen from Table 5, the model intercept   

is equal to 25.2439, which is an estimate of  the 
mean square root CD4 count at baseline (i.e., month=0) 
subject to other effects with covariate values set to zero 
in the model. The Month effect is the 
slope or rate of  change in the mean square root CD4 
count per unit increase in the month among HIV in-
fected patients with other covariate values set to zero. 
In other words, the time (month) effect shows a signifi-
cant positive effect on the mean CD4 count with a rate 
of  0.06377 (p-value <0.0001) units per month. Hence 
square root CD4 count increases by 0.06377 for every 
month among patients, showing low progress of  CD4 
count over time. The effect of  the square root of  time 
(p-value < 0.0001) is also significant but appears to have 
an opposite effect on the square root CD4 count in a 
cohort of  HIV infected patients enrolled in the CAPRI-
SA 002 Acute Infection Study. The estimate for post-

HAART initiation shows a highly significant positive 
effect with a mean square root CD4 count of  2.1104 
units higher than the pre-HAART state. This implies, 
among patients in the post-HAART initiation group, 
their mean square root CD4 count increased by 2.1104, 
but this is not a slope. Relative to patients with normal 
weight status, patients with higher BMI (Obese) show a 
highly significant positive effect (p-value<0.0001) with 
8.0201 square root CD4 count higher than the refer-
ence group (Table 5). However, underweight patients 
(patients with low BMI) show no significant effect 
compared to the reference grop. After the patients had 
been initiated on HAART, the average square root CD4 
count among patients with a high value of  the viral load 
at baseline is -3.2552 (p-value<0.0001) units lower com-
pared to patients with low viral load at baseline. Moreo-
ver, after the patient had been initiated on HAART, the 
average square root CD4 count among patients with a 
medium viral load category at baseline is decreased by 
1.5696 (p-value=0.0029) units compared to the average 
square root of  CD4 count among patients with low vi-
ral load at baseline. Implying that patients with high and 
medium viral load at baseline have significantly lower 
mean CD4 count compared to patients with low viral 
load at baseline.

Table 5: Fixed effect estimates of the full Model 
 

Covariates Estimate SE Pr > |t| 95% C.I for Estimate 
Intercept 25.2439 0.6040 <.0001 (24.0536, 26.4342) 

Time in month 0.06377 0.009142 <.0001 (0.04585, 0.08169) 
Sqrt_Time -0.6674 0.09020 <.0001 (-0.8442, -0.4906) 

ART Initiation (Post) 2.1104 0.1647 <.0001 (1.7855, 2.4353) 
Baseline BMI category (ref.=Normal weight) 

Obese 8.0201 1.2896 <.0001 (5.4788, 10.5614) 
Overweight 0.4966 0.5799 0.3927 (-0.6461, 1.6394) 

Underweight 0.2486 0.9131 0.7856 (-1.5508, 2.0481) 
Baseline HIV viral load category (ref.= Low VL ) 

High VL -3.2552 0.5633 <.0001 (-4.3652, -2.1452) 
Medium VL -1.5696 0.5211 0.0029 (-2.5965, -0.5426) 
Undetectable 1.3418 3.3359 0.6879 (-5.2321, 7.9157) 

Number of sex partner (ref.= Stable partner) 
Many partners -1.4706 1.0859 0.1770 (-3.6105, 0.6693) 

No partner -0.6478 0.5791 0.2645 (-1.7889, 0.4933) 
Age group (ref.= < 20) 

20-29 0.06144 0.4231 0.8847 (-0.7742, 0.8971) 
30-39 0.1611 0.4780 0.7366 (-0.7831, 1.1053) 
40-49 0.2491 0.6420 0.6985 (-1.0190, 1.5172) 
50-59 -1.0100 1.0149 0.3212 (-3.0147, 0.9946) 
≥ 60 -0.7631 1.9554 0.6969 (-4.6254, 3.0991) 

Education attainment (ref.= Secondary or high school) 
Primary school 0.08077 1.0585 0.9392 (-2.0052, 2.1668) 

Residence of participant (ref.= Urban) 
Rural -0.2647 0.4539 0.5604 (-1.1593, 0.6298) 

  

Table 5: Fixed effect estimates of the full Model 
 

Covariates Estimate SE Pr > |t| 95% C.I for Estimate 
Intercept 25.2439 0.6040 <.0001 (24.0536, 26.4342) 

Time in month 0.06377 0.009142 <.0001 (0.04585, 0.08169) 
Sqrt_Time -0.6674 0.09020 <.0001 (-0.8442, -0.4906) 

ART Initiation (Post) 2.1104 0.1647 <.0001 (1.7855, 2.4353) 
Baseline BMI category (ref.=Normal weight) 

Obese 8.0201 1.2896 <.0001 (5.4788, 10.5614) 
Overweight 0.4966 0.5799 0.3927 (-0.6461, 1.6394) 

Underweight 0.2486 0.9131 0.7856 (-1.5508, 2.0481) 
Baseline HIV viral load category (ref.= Low VL ) 

High VL -3.2552 0.5633 <.0001 (-4.3652, -2.1452) 
Medium VL -1.5696 0.5211 0.0029 (-2.5965, -0.5426) 
Undetectable 1.3418 3.3359 0.6879 (-5.2321, 7.9157) 

Number of sex partner (ref.= Stable partner) 
Many partners -1.4706 1.0859 0.1770 (-3.6105, 0.6693) 

No partner -0.6478 0.5791 0.2645 (-1.7889, 0.4933) 
Age group (ref.= < 20) 

20-29 0.06144 0.4231 0.8847 (-0.7742, 0.8971) 
30-39 0.1611 0.4780 0.7366 (-0.7831, 1.1053) 
40-49 0.2491 0.6420 0.6985 (-1.0190, 1.5172) 
50-59 -1.0100 1.0149 0.3212 (-3.0147, 0.9946) 
≥ 60 -0.7631 1.9554 0.6969 (-4.6254, 3.0991) 

Education attainment (ref.= Secondary or high school) 
Primary school 0.08077 1.0585 0.9392 (-2.0052, 2.1668) 

Residence of participant (ref.= Urban) 
Rural -0.2647 0.4539 0.5604 (-1.1593, 0.6298) 
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Spatial covariance structure measures the actual dis-
tance or variation among observations in space that are 
identified as unequally spaced longitudinal data 16,26. The 
objective of  including spatial covariance structure in 
mixed-effects models is to account for spatial variability 
(heterogeneity), failure to do so can result in erroneous 
conclusions. The spatial covariance structure model is

Where  ,  , and   indicates the nugget, the sill and 

the range (covariance structure model), respectively 16,26.
Table 6 shows a comparison of  the three commonly 
used spatial covariance structures: spatial exponen-
tial structure (SP(EXP)), spatial spherical structure 
(SP(SPH)), and spatial Gaussian structure SP(GAU). 
Since the exponential model has the smallest informa-
tion criteria statistics and the smallest -2log  suggests 
that the SP(EXP) structure is the best of  the three spa-
tial covariance models (Table 6).

Table 6: Comparison of spatial covariance models 
 

Spatial 
covariance 

Model Fitting Criteria 
Params -2log AIC AICC HQIC BIC CAIC 

SP(EXP) 9 33024.5 33042.5 33042.6 33055.1 33073.6 33082.6 
SP(SPH) 9 33039.1 33057.1 33057.1 33069.6 33088.2 33097.2 
SP(GAU) 9 33162.1 33180.1 33180.1 33192.7 33211.2 33220.2 

  

The estimate of  the sill ( ) is 9.7063, reported as “Var-
iance”, which corresponds to the variance of  observa-
tion (Table 7). The estimated range ( ) is 31.1376, 
which appears as “SP(EXP)”, which is the practical 
range or distance at which the spatial autocorrelation 
in the exponential model is three times this amount, 

. That is, observations separated 

by more than 93.4128 distance units are not spatially 
correlated. In other words, the distance units indicate 
that observations within a participant that are close in 
time to be more correlated than observations farther 
apart in time. The estimated nugget ( ) is 3.4986, which 
appears as “Residual”, that is the value at which   
or defined as Intercept in the spatial covariance structure 
model.

Table 7: Covariance Parameter Estimates of the full model 
 

Cov Parm Estimate SE Z 
Value 

Pr>Z 

UN(1,1) 3.3317 2.6772 1.24 0.1067 
UN(2,1) 0.05870 0.04370 1.34 0.1792 
UN(2,2) 0.004944 0.001733 2.85 0.0022 
UN(3,1) -0.3405 0.4031 -0.84 0.3983 
UN(3,2) -0.05410 0.01654 -3.27 0.0011 
UN(3,3) 0.6223 0.1798 3.46 0.0003 
Variance 9.7063 2.3528 4.13 <.0001 
SP(EXP) 31.1376 9.4724 3.29 0.0005 
Residual 3.4986 0.1008 34.70 <.0001 

  
  Figure 6 indicates the predicted profile plot for the 

average number of  CD4+ cell, based on Table 5 re-
sults obtained by the fitted mixed-effects model. The 

predicted values closely matched the observed CD4+ 
count mean profile, with an R2=0.75, suggested that 
the overall model fit was good (Figure 6).
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The fitted solid line in Figure 6 also indicates the es-
timated regression line between the observed CD4+ 
count and fitted values (Fitted= 148.07+0.7259 ob-
served), and the two dashed lines show both 95% con-
fidence interval and prediction interval.    
The overall influence diagnostic and diagnostics for the 

fixed effects are displayed graphically hereunder in Fig-
ure 7-11. Figure 7 shows the needle plot of  the Restrict-
ed Likelihood Distance (RLD) for the response variable 
(square root of  CD4+ count). The RLD plot suggests 
that the overall influence of  patients 5, 12, 29, 32, 55, 
84, and 188 stands out compared to those of  the rest of  
the patients (Figure 7).

 
 

                       Figure 7: Restricted Likelihood Distance 

PRESS statistics are sums of  squared PRESS residu-
als in the deletion sets (Schabenberger, 2005). Figure 8 
shows the scatter plot of  the PRESS statistics for the 

square root of  the CD4+ count. Large values of  the 
PRESS statistic for patients 5, 60, 84, 127, and 189 are 
noted.

Figure 6: Heat map of fitted average by observed CD4 count overlaid with the fitted line 
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A panel of  influence statistics for fixed effects and co-
variance parameters is presented in Figure 9. Cook’s D 
statistics measure the influence on the vector of  pa-
rameter estimates and the CovRatio statistic measures 
influence on the covariance matrix of  the parameter 
estimates. The patients with the most substantial effect 
on the fixed effect estimates are 5, 32, and 55 (Cook’s 
D Fixed effects). Cook’s D Covariance parameters in-
dicate that the influence of  patient 12, 84, and 188 far 

exceeds those of  other subjects in the study data sets. 
This is expected since their RLD is substantial, while 
their impact on the fixed effects was rather moderate. 
The CovRatio Covariance Parameters also shows that 
in the absence of  those patient’s observations, especial-
ly patient 84 and 188, the covariance parameters may 
be estimated much more precisely. Note that there are 
other sets of  observations, besides those patients listed 
above, that exerts influence on the chosen model (Mod-
el 1).  

    
                          
                   Figure 8: PRESS Statistics 

A panel of  deletion estimates for the response variable 
is displayed in Figures 10 and 11 to examine how the 
individual parameter estimates and covariance parame-
ters, respectively, react to the removal of  the influential 
sets of  observations27. Each cell in the panel (Figure 
10) displays the estimates of  few fixed effects that were 

included in the fitted model and each cell in Figure 11 
displays estimates of  the 3x3 variance-covariance ma-
trix of  the random coefficients and the estimate of  
SP(EXP) parameter following removal of  sets of  in-
fluential observations. Reference lines are drawn at the 
complete-data parameter estimates.

 
 

                  Figure 9: Influence statistics for the square root of CD4+ count 
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The focus of  Figure 10 is on the behavior of  individu-
al parameter estimates that react to the removal of  in-
fluential cases. Specifically, subjects 5, 44, 60, and 188 
indicate a substantial impact on the model fit of  the 
intercept. However, the removal of  these subjects does 
not at all influence the displayed fixed effects. On the 
other hand, subject 27 is identified as an additional in-
fluential case since it has a strong impact on the Obese 

BMI category (Figure 10). Subjects 5, 29, 73, and 85 are 
also identified as influential cases since their presence 
in the data reduces the estimate of  SP(EXP) parameter 
(Figure 11), substantially reducing the degree of  corre-
lation among data points from any patient. On the oth-
er hand, observation from subject 12 has the opposite 
effect. The temporal correlation drops when the impact 
of  this patient’s data is removed.

 
Figure 10: Fixed effects deletion estimates for square root of CD4+ count 

 
  

  

 
 

Figure 11: Covariance parameter deletion estimates for square root of CD4+ count 

 
Figure 10: Fixed effects deletion estimates for square root of CD4+ count 

 
  

  

 
 

Figure 11: Covariance parameter deletion estimates for square root of CD4+ count 

Discussion and Conclusion
Mixed-models are one of  the special statistical models 
that are useful in understanding longitudinal or repeat-
ed measures data. The models permit the examination 
of  the changes over time within and between subjects. 
In the presence of  fixed effects and random effects, the 
selection of  an appropriate mixed model is more com-
plicated than for a linear regression model. The fixed 
effect and the random effect structure are subordinate 
to each other, and the determination of  one influenc-
es the other28. In this study, a step-up model selection 

procedure was applied to find a reasonable model that 
fits the data, primarily since this procedure begins with 
the simplest possible model and is built up by includ-
ing more covariates within the model and hence does 
not have much numerical issue 1,18,28. In this study, the 
model where the intercepts and slopes were considered 
as random effects consolidated with the UN covariance 
structure was used. The results show that the prognosis 
of  the CD4 count of  a patient is significantly increased 
after the patient had been initiated on HAART as what 
we would anticipate. The impact of  HIV-infected pa-
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tients with the predominance of  obese nutrition sta-
tus (higher BMI) at baseline showed significance after 
patients had been initiated on HAART. Therefore, we 
ought to pay more consideration to the BMI of  HIV-in-
fected patients before and after HAART initiation. This 
may inform future techniques in studying the progres-
sion and the immunologic responses to treatment, but 
that does not infer that patients with higher BMI ought 
to be clinically ignored. Instead, based on this study and 
other findings, it appears that BMI contributes to some 
degree to drug metabolism and consequently influenc-
ing the proficiency of  HAART29,30. Moreover, our re-
sults also showed that the impact of  patients with high-
er viral load before the patient had been initiated on 
HAART significantly reduced their CD4 count. There-
fore, effective HAART initiation after HIV exposure 
is necessary to suppress the increase of  viral loads to 
induce potential ART benefits that accrue over time.

The results of  the influence diagnostics analysis for the 
CAPRISA 002 Acute Infection study using the cho-
sen mixed-effects model was also performed. Several 
cases were identified as influencing the analysis of  the 
fitted model. Influence diagnostics analysis is essential 
for statistical analysis to determine how individual ob-
servations or sets of  observations are influential that 
their presence or absence from the data impacts the 
analysis 31. The goal of  influence analysis is not to de-
termine observations for removal from the analysis, but 
to determine which cases exert undue influence on the 
analysis. Eliminating certain subjects from the data and 
base the final analysis on only the remainder is usually 
not the right action to take. The results of  a diagnostic 
influence analysis can be seen only in light of  the model 
we are working with 16.
Moreover, the data showed evidence of  strong individ-
ual-specific effects on the evolution of  CD4+ counts. 
The diagnostic plots also suggested a significant indi-
vidual heterogeneity between subjects both before and 
after HAART initiation.  Thus this may suggest that 
prescribing a common treatment or intervention over-
all patients may not be the best strategy. More research 
may be required to understand what factors cause pa-
tients to respond differently to treatment intervention, 
and such information may help to design treatment and 
intervention strategies that may be more efficient to a 
specific group of  patients rather than one treatment/
intervention fits all strategy.
The models depicted in this study may empower the 
description of  the effect of  several covariates on the 
square root CD4 count of  HIV-infected patients utiliz-

ing all accessible information. We believe that this sort 
of  analysis can be valuable to address several impor-
tant issues in public health as well as offer assistance in 
observing patients and checking the viability of  their 
medications. In this study, we have concentrated on 
the transformed normalized response data, which is 
the square root of  CD4 count, that is continuous and 
conditional on the explanatory variables, and random 
effects have a normal distribution. Mixed models with 
random effects can also be applied to non-normal re-
sponses.
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