

Full-text Available Online at <u>www.ajol.info</u> and <u>www.bioline.org.br/ja</u>

Preliminary Interpretation of the Ground Magnetic Survey around Oguta Lake in Imo State, South Eastern Nigeria

CHINYEM, F I

Department of Geology, Delta State University, Abraka, Delta State, Nigeria

ABSTRACT: Ground magnetic profiling was carried out around Oguta Lake in Imo State, Southeastern Nigeria. Seventy-Six stations in three profiles were established at five hundred meters intervals on major roads in the study area, A total distance of thirty five kilometers was covered. The result indicates that the highest field reading was 32835gamma while the lowest field was 28118gamma. Five anomalies were observed. The anomaly at the lake, was most prominent with magnetic readings of 28118 -29235 gamma and elevations of 17 -37 feet, all treading in the NE –SW direction. These anomalies, suggest that the lake has a tectonic origin. @JASEM

Keywords: Ground magnetic profiling, interpretation, Oguta Lake, Anomaly, Tectonic Origin

Lakes are basins formed by many geological processes such as buckling of stratified rock into large folds, displacement of large masses of rock by fault, and blocking of valleys by landslides. Lakes are also formed by glaciations, which weakens and removes the bedrock thereby forming depression. Huron superior lake in Canada and Finger Lake of New York are formed through this process (Monroe and Wicander, 2005). Lake water is gotten through atmospheric precipitation that reaches the lake directly and by means of springs, brooks, and rivers. Lakes form and disappear over the course of varying lengths of geological time. Lakes may evaporate as the climate become arid, or they may be filled up with sediments, leaving a bog or swamp in the place. In arid regions, where precipitation is slight, lakes sometimes dry up for long period of time. In situations where evaporation prevents the lake water from overflowing the basin rims, substances dissolved in water becomes concentrated. The dissolved matter, brought by tributary streams varies in composition with the nature of the rocks in the local drainage system. The primary mineral constituent of salt lakes is common salt. Bitter lakes contain sulphates, borax lakes contain borates, alkali lakes contain carbonates, and some lakes contain combination of these substances. Lakes form at all attitudes and are distributed throughout the world, almost one half being in Canada. They are abundant in high attitudes, particularly in mountains ranges subjected to glacial action. Many lakes are important commercially as sources of fish and minerals, shipping, holiday resort etc. The Capsian sea, Lakes superior and Victoria are the largest lakes in the world. The Dead sea is the lowest lake, 40 m below sea level. The Capsian sea is the world's largest lake, covering an area of 370,998 sqkm. Lake Baikal is the deepest fresh water lake in the world, with a maximum depth of 1,637m.

Oguta Lake is one of the inland drainage basins of non-marine habitat, located on a low-lying continental plat form in southeastern Nigeria. It is the largest lake in southeastern Nigeria (Lozan, 1976). The objective of this study therefore is to use ground magnetic profiling to map for geologic structures like faults, fractures, ground Oguta Lake, as well as to find out if the lake has a tectonic origin.

The Study Area: The study area lies between latitudes $5^{\circ} 04^{\circ}$ and $5^{\circ} 44^{\circ}$ N of the Equator and longitude 6° 41^1 and 6^0 60^1 East of the Greenwich meridian. The lake is linear in shape and fed by main rivers namely: Njaba River and Awbana River. It has a surface and bottom current with velocities in the range of 20-140cms⁻¹ and 10 - 19cms⁻¹ respectively (Lozan, 1979). It has a total surface area of 2.8km² and maximum depth in the dry/flood season ranges from 7.0m to 9.0m with depth of 5.50m (Nwadiaro and Umeham, 1985). Oguta Lake is located in the northern tip of the lower Niger Delta. There are two major climatic seasons in the area, the wet season from April to October and dry one from November to March. Average annual rainfall is over 19.30mm (Akintola, 1986). The dry season is characterized by high temperature and low humidity while the rainy season has lower temperature and high relative humidity. In average, temperature for the year in the area is 25° C.

The Geology: The geology of the area is well documented (Reyment, 1965, Short and stanble, 1967). Oguta and its adjacent environments fall within the Northern of the Niger Delta. The surface geology in the study area is essentially the coastal plain sands – the Benin Formation (Mid – Eocene and Recent), the Sombreiro- Warri Deltaic plain and the Recent alluvial deposits. Benin Formation consists of thick bodies of yellow (ferruginous) and white sands which are friable, poorly sorted and intercalated with shale, clay tenses and lignite. Formation thickness may be up to 200metres in some areas. Onyeagocha, (1980) reports that the Formation is overlain in many places by reddish lateritic material formed by in – situ weathering and ferruginization of the rock.

MATERIALS AND METHODS

A proton – precession magnetometer (G 816/ 826A model) was used for the data acquisition in which a leap frog method was used. Seventy six stations were established in three profiles. The spacing interval between stations was 500metres and the total distance covered was 35kilometres. For the first profile (P_1), twenty five stations were established and a total distance of 11.7km was covered. Twenty six stations

Table 1: Field data from Profile 1(P₁): Izombe Sec.

STATION	READING IN	MEAN
SIMION	GAMMA	
	Gradina	
P_1A_0	31549	31552
- 10	31553	
	31554	
P ₁ A ₁	30691	29654
	29253	
	29019	
P_1A_2	28042	28842
	29090	
	29393	
P_1A_3	31653	31654
	31655	
	31653	
P_1A_4	31659	31656
	31654	
	31654	
P_1A_5	31135	31445
	31601	
	31600	
P_1A_6	30667	31445
	30663	
	30661	
P_1A_7	30683	30682
	30684	
	30680	
P_1A_8	30683	30682
	30683	
	30683	
P_1A_9	30697	31697
	30697	
	30697	
P_1A_{10}	31175	31180
	31187	
	31177	
P_1A_{11}	31685	31671
	31669	
	31657	
P_1A_{12}	31675	31673
	31675	
2.1	31679	24.56.5
P_1A_{13}	31551	31586
	31603	
5.1	31605	2155-
P_1A_{14}	31527	31527
	31527	
D 4	31527	21221
P_1A_{15}	31343	31331
	31327	
D 4	31323	21450
P_1A_{16}	31454	31459
	31461	
D 4	31463	212.00
P_1A_0	31345	31349
Loop	31345	
	31357	

were established for the second profile (P_2) and the total distance of 11.8km was covered. For the third profile (P_3) , twenty five stations were established and a total distance of 11.5km was covered. The times as well as the elevation (height above sea level) readings were taken along side with the magnetometer readings at each station as showed in tables 1, 2 and 3. At an hour interval looping was carried out in order to check for drift.

Table 2: Field data from Profile 2 (P2): (Oguta Lake – Awo-

STATION	READING IN	MEAN
	GAMMA	
P_1B_0	31697	31693
(BASE)	31697	
	31685	
P_1B_1	31479	31517
	31495	
	31577	
P_1B_2	31445	31522
	31467	
DD	31655	21020
P_1B_3	31947 31946	31929
	31940	
P_1B_4	32185	32532
$\mathbf{r}_1\mathbf{D}_4$	32947	32332
	32465	
P ₁ B ₅	30447	30458
1 125	30443	50150
	30485	
P_1B_6	31487	31480
1 120	31487	01100
	31467	
P_1B_7	28113	28118
(200m)	28121	
	28119	
P_1B_0	31177	31162
(LOOP	31119	
-	31189	
P_1A_9	30697	31697
	30697	
	30697	
P_1A_{10}	31175	31180
	31187	
	31177	
P_1A_{11}	31685	31671
	31669	
	31657	
P_1A_{12}	31675	31673
	31675	
D A	31679	21596
P_1A_{13}	31551	31586
	31603	
DA	31605 31527	31527
P_1A_{14}	31527 31527	51527
	31527	
P ₁ A ₁₅	31343	31331
• 1/ • 15	31343	51551
	31327	
P1A16	31454	31459
* 11 #10	31454	51757
	31461	
P_1A_0	31345	31349
Loop	31345	01017
· · I	31357	
	01001	

STATION	READING IN GAMMA	MEAN
	-	
P_2A_0	30535	30604
	30635	
	30643	
P_2A_1	32191	32129
	32194	
	32002	
P_2A_2	31377	31375
	31374	
	31374	
P_2A_3	31673	31667
	31674	
	31654	
P_2A_4	31011	31011
	31017	
	31005	
P_2A_5	30294	30253
	30221	
-	30244	
P_2A_6	31144	31145
	31143	
	31147	
P_2A_7	31464	31465
	31467	
D 4	31464	22060
P_2A_8	32084	32069
	32059	
D.A.	32065	21.422
P_2A_9	31431 31434	31432
	31434	
DA	31597	31635
P_2A_{10}	31679	51055
	31629	
P ₂ A ₁₁	31587	31586
• 2 ~ •11	31575	51500
	31597	
P ₂ A ₁₂	31185	31178
• 2* •12	31175	51170
	31174	
P_2A_0	31003	31052
(Loop)	31075	01002
(=00P)	31077	

STATION	READING IN	MEAN
	GAMMA	
P_2B_0	31073	31069
(BASE)	31067	
	31067	
P_2B_1	31857	31850
2 .	31847	
	31847	
P_2B_2	31689	31686
2 2	31685	
	31683	
P_2B_3	31817	31284
- 2- 5	31017	
	31017	
P_2B_4	31675	31492
- 2 4	31117	
	31685	
P_2B_5	31067	31583
1203	31835	51505
	31847	
P_2B_6	32227	32237
1 200	32227	52257
	32257	
P ₂ B ₇	32117	32050
1207	32017	52050
	32015	
P ₂ B ₈	31544	31452
1208	31405	51152
	31407	
P_2B_9	31403	31405
1 200	31405	51405
	31407	
P_2B_{10}	31115	31120
1 2010	31127	51120
	31119	
P_2B_{11}	31997	31972
· 2011	31997	51712
	31951	
P_2B_{12}	31931	32456
$P_2 D_{12}$ 300m	32867	52450
500111	32059	
DD	31003	31052
P_2B_0	31003	31052
Loop		
	31077	

PROFILE 1: This profile runs in the NNE-SSW direction and cut across the area where the geology is characterized by the Sombreiro- Warri Deltaic plain and Alluvium. Settlements that falls in this profile includes: Nnebuku, Izombe and Ossu-Obodo (Fig. 1). Twenty five stations were covered at a total distance of 11.7km. Anomalies were observed at station 2 (Fig. 2) which is 1km from the base station (Izombe) as well as at stations 6, 7 and 8. There was a high uniform magnetization between stations 10 and 20. This area is mainly alluvium, which is characteristic of clay, shale, silt sand and gravels that have high adsorption capacity of heavy minerals. There was a sharp drop or plunge between stations 22 and 24 which are close to the lake. The last station having the lowest magnetic value of 28118gamma, which is 17ft above sea level can be said to be as a result of depression or tectonic activities.

PROFILE 2: The profile runs in the NNW – SSE direction and cuts across the area where the geology

is characterized by Alluvium and Benin Formation (Fig. 1). A total distance of 11.8km was covered and twenty six stations established. An anomaly was observed at stations 5 (Fig. 2) which is 2.3km from the lake. This corresponds with steep slope/depression in Oguta main town. An uneven magnetic value was observed as one moves away from the lake. This may be as a result of intercalation of sand and shale in the area.

PROFILE 3: The profile runs in NNW-SSE direction and cuts across Mgbidi and Awomamma settlements where the geology is characterized by alluvium. A total distance of 11.5km was covered and twenty five stations were established. This profile is characterized by magnetic values as high as 32838 gamma. Generally, there was variation in magnetization in this profile (Fig. 3). It was observed from the alignment of profiles 1 and 2 that there was a sharp plunge at the last station of profile 1 and the first station of profile 2, which are both on the Oguta lake axis. This is a clearer indication of a fault within that region.

 Table 3: Field data from Profile 3 (P3): (Awo-Omama/Mgbidi Junction - Obumiri) Base Station (A): Awo-Omama/Mgbidi Junction Base Station (B)

		A		В		
STATION	READING IN GAMMA	MEAN	STATION	READING IN GAMMA	MEAN	
P_2A_0	30447	29924	P_3B_0	31137	31383	
(BASE)	29271		(BASE)	31187		
	30054			31824		
P_3A_1	32197	31825	P_3B_1	35491	32000	
	31674			36125		
	31605			36415		
P_3A_2	30625	30328	P_3B_2	31837	31827	
	30509			31827		
	29851			31817		
P ₃ A ₃	31197	31190	P_3B_3	31191	31192	
	31179			31185		
	31193			31199		
P_3A_4	31163	31544	P_3B_4	31825	31832	
	31817			31825		
	31653			31847		
P ₃ A ₅	31183	31160	P_3B_5	32312	32303	
	31119			32315		
	31179			32281		
P_3A_6	32071	31988	P_3B_6	32133	32139	
	31885			32117		
	32007			32167		
P_3A_7	32833	32838	P_3B_7	31887	31863	
	32843			31814		
	32837			31887		
P_3A_8	31193	31164	P_3B_8	31203	31208	
	31154			31197		
	31145			31224		
P_3A_9	31329	31364	P_3B_9	30163	30149	
5 /	31379			30167		
	31385			30117		
P ₃ A ₁₀	32585	32502	$P_{3}B_{10}$	31007	31130	
	32483			31187		
	32437			31195		
P_3A_{11}	30957	30961	P_3B_{11}	31997	31972	
	30973			31967		
	30954			31951		
P ₃ A ₁₂	31123	31128	P_3B_0	31997	31654	
3	31125		Loop	31475		
	31137			31491		
P ₃ A ₁₃	31864	31859				
	31877					
	31837					
P_3A_0	31817	31833				
(Loop)	31874					
	31807					

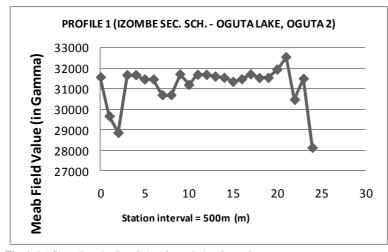


Fig. 1: Profile 1 (Izombe Sec. Sch. - Oguta Lake, Oguta 2

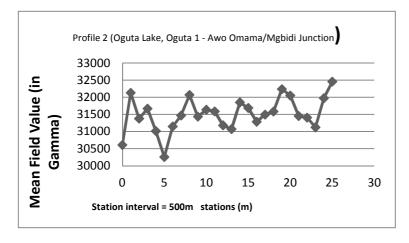


Fig. 2: Profile 2 (Oguta Lake, Oguta 1 – Awo-Omama/Mgbidi Junction)

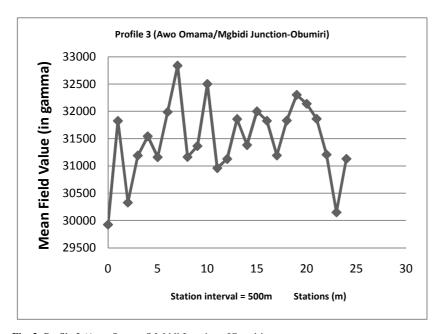


Fig. 3: Profile 3 (Awo-Omama/Mgbidi Junction - Ubomiri

Full-text Available Online at <u>www.ajol.info</u> and <u>www.bioline.org.br/ja</u>

Conclusion: This research work has achieved some level of success in the use of ground magnetic profiling to map for geologic structures like faults, fractures and lineaments around Oguta Lake as well as to find out if the lake has a tectonic origin. The ground magnetic profiling in the study area shows anomalies which are characterized by low amplitudes and low relief. These anomalies are predominantly due to basement lithology rather than topography. The signatures of the observed magnetic lineament trending in the NE - SW direction suggests that Oguta lake considering its co-ordination falls within the charcot fracture zone. It is therefore recommended that more ground magnetic profiling should be done in other directions that were not covered during the course of this work so as to authenticate this proof. It is equally recommended that an aeromagenetic survey of Oguta lake and its environs be done so as to confirm the presence of geologic structures as well as the depression at the lake.

REFERENCES

Akintola , J. O. (1986). Rainfall distribution in Nigeria, 1892-1983. Impact publishers Nig. Ltd; Ibadan, 380p Ananaba, S. E and Okereke, C . N (2006). Deep crustal lineament inferred from acromagnetic anomalies over the Niger Delta. Journal of mining and geology, 42(2): 127-131.

Lozan , C. (1976). Preliminary study of the possibility of using Oguta lake as a port. A report to the Government of East Central State, 86p.

Monroe , J. S. and Wicander, R. (2005). Physical Geology, 5th edition, Thompson Learning Inc. USA.

Nwadiaro, C. S. and Umeham, S.N. (1985). The chemical hydrology of Oguta Lake , Imo State, South Eastern Nigerian, Arch. Hydrobiology, 103 (2): 251-267

Onyeagocha, A. C. (1980). Petrology and depositional environment of the Benin Formation. Journal of Mining and Geology, 17:147-151.

Reyment, R .A. (1965). Aspects of the Geology of Nigeria, Ibadan university press . 145p.

Short , K. C. and Stauble, A. J. (1967). Outline of Geology of Niger Delta, AAPG Bull. 51: 7661-799.