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ABSTRACT: Brinkman number effects on the thermal-driven convective spherical dynamos are 

studied analytically. The high temperature of the Earth’s inner core boundary is usually conducted by 

the viscous, electrically conducting fluid of the outer core to the core mantle boundary as the Earth 

cools. The problem considers conducting fluid motion in a rapidly rotating spherical shell. The 

consequence of this exponential dependence of viscosity on temperature is considered to be a thermal-

driven convective phenomenon. A set of constitutive non-linear equations were then formulated in 

which the solutions for the flow variables were obtained by perturbation technique. The results 

illustrate enhancement of dynamo actions, demonstrating that magnetic field generation with time is 

possible. Moreover, the increased magnetic Prandtl number Pm with high Brinkman number shows 

dynamo actions for fixed Rayleigh and Taylor number values. The overall analyses succour our 

understanding of Earth’s magnetic field generation mechanism often envisaged in the Earth’s planetary 

interior.© JASEM 

. NOMENCLATURE

�� , �� , ��  = dimensional velocity components.  

L = Characteristic Length 

T = Dimensional temperature 

t = dimensional time 

P = dimensional Pressure 

�� = 	
� +  − �� (���)� (Modified pressure) 

B = Magnetic field vector � =  Angular velocity � = Potential vector ��∗ = dimensional SIC temperature ��∗ = dimensional CMB temperature �� = Dimensionless radius of the solid inner core �� = Dimensionless radius of the fluid outer core � =  Fluid density 

�� = �� (Prandtl number) 

�� = � (Magnetic Prandtl number) 

! = Non-dimensional heat source 

Ra = 
"#�$�%&

�& (Rayleigh number)     

Ta = '�|)|%&
� *�

(Taylor number) 

+,(-�)   = 
%&
� ./0�& 1 2345�(Brinkman number) 

6 = /0�.  (�erturbation scale)  

7 = ./0�& (� − ��)(Non-dimensional temperature) 

� = �′/& (Normalized distance) 

Superscript 

′  Non-Dimensional quantities. 

The search for an explanation to the origin of Earth’s 

magnetic field gave birth to dynamo theory as 

suggested by Larmor in 1919. Different mechanisms 

by which the Earth’s liquid core is stirred have been 

propounded to elucidate the Earth’s main magnetic 

field regeneration (Ishihara and Kida,2002; Fearn and 

Rahman,2004). The authors employed the thermally 

driven magneto-hydrodynamic (MHD) dynamo 

systems with fundamental equations and governing 

parameters such as the magnetic Ekman number, 

modified Rayleigh number (�89 ), Taylor number, 

magnetic Prandtl number and Roberts number.  
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In order to explain the presence of the magnetic field 

several bewildering varieties of processes were 

propounded. Each of these generating processes must 

satisfy an important fundamental requirement, which 

is, that the energy lost by the electric currents must be 

replenished. Usually a dynamic dynamo theory 

basically starts with a velocity field which must 

satisfy the Navier Equation (Melchior,1986). 

Majority of these studies had resorted to numerical 

techniques in order to maintain a magnetic field when 

it is increasing with increase in time. Sometimes, 

how the Kinetic energy and magnetic energy grow 

can be used to assess the generation of magnetic 

field. Nimmo, et al (2004), examined the influence of 

Potassium on the core and geodynamo evolution. 

Their investigation reveals that rapid core cooling can 

form operation for a geodynamo but might create an 

inner core that is too large. However, an addition of 

Potassium into the core would perhaps retard inner 

core growth and would provide an additional source 

of entropy. The thermal driven mechanism involving 

heat sources alone is considered to be adequate to 

power the geodynamo. The compositional and 

thermal convection mechanisms can also be more 

efficient power sources for the geodynamo (Gubbins, 

et al ,2003). Sometimes, standard theory has the 

concept that fluid circulation within the Earth’s fluid 

outer core may also be the source of the Earth’s 

internal magnetic field. This stands as the magneto-

hydrodynamic (MHD) theory in which a flowing 

charge – neutral but electrically conductive fluid will 

generate magnetic fields (Roberts and Glatzmaier 

,2000). Moreover, it is believed that it is this 

circulation of the liquid iron within the core that lead 

to geomagnetic field which is sustained by the 

electric currents due to the continuous convection of 

the electrical conducting fluid. Planets like Uranus, 

Neptune, Saturn, Jupiter, the Earth, possibly Mercury 

and the Sun all have main magnetic fields. These 

fields could have created by convective motion inside 

the Planetary electrically conducting fluid cores or 

shells (Ivers ,2003). The presence of a magnetic field 

therefore signifies that such planets possess large-

liquid cores; a core possibly rich in liquid metals, 

which are sources of free electrons and basically due 

to core rotation rate. 

It is possible that in the absence of this fluid motion 

that any field generated, will decay in about 20,000 

years; a process known as free decay modes 

(Moffatt,1978; Backus, et al ,1996). This convective 

motion can be driven by both the thermal and 

compositional buoyancy sources at the inner core 

boundary (Busse,2000; Roberts and 

Glatzmaier,2000). 

 

Another most important process early in the 

formation of any planet that is deemed to influence 

its interior structure is gravity. It causes heavier 

constituents to sink to the core of the planet; and the 

process is known as chemical fractionation; which is 

grouped or classified as the gravitationally powered 

dynamo mechanism (Gubbins, et al ,2003; 

Loper,1978; Gubbins and Master,1979). In this 

article we shall examine the consequence of 

dimensionless parameters being complimentary to 

each other in terms of magnetic field being sustained 

in the system. 

 

Problem Formulation And Governing Equations: The 

Earth is considered a concentric sphere (see figure 1) 

with fluid outer core with lower mantle at the outer 

boundary and solid inner core at the inner boundary 

(Jacobs,1953 and Jacobs,1986). The solid inner core 

is purely iron constituted. The vigorous convection 

current and swift cooling at the surface due to an 

adiabatic temperature gradient will lead to the 

solidification of the liquid iron at the center of the 

Earth (Melchior,1986). On further cooling the mantle 

solidifies from bottom upwards, and the fluid outer 

core maintains its original temperature insulated 

above by a rapidly thickening shell of silicates. Our 

system is composed of viscous incompressible 

conducting fluid that exhibits thermal conduction as 

heat flux flows through the core mantle boundary 

(CMB). The fluid is in between the rotating 

concentric spheres which form the basis of choosing 

spherical geometry configuration. It’s characterized 

by magnetic diffusivity, thermal diffusivity, constant 

kinematic viscosity, magnetic permeability and 

density. 

 

Consider ρ as the density of the fluid in between the 

concentric spheres, and u, T, P and B are the fluid 

velocity, temperature, pressure and magnetic field 

vector respectively, with Ω the angular velocity due 

to the Earth rotation and  the potential, hence the 

mathematical statements that govern the flow of the 

fluid within this system of concentric spheres of radii �� 8:; �� are given below:-  



Effects of Brinkman number 141 

 

 

M. I. NGWUEKE; T. M. ABBEY 
 

<
<= ′ + ;>?(��′) = 0        (1a) 

∇. �′ = 0                   (1b) 

�� ' <<= ′ + �′. ∇* �′ + 2��Ω × �′ = −∇�′ − ��∇ + E&
�∇(Ω×�)&FG�∇&H′F∆ρJFJ×L′      (2) 

( <<= ′ + �′. ∇)� ′ = M∇�� ′ + ! + NO1 2345′           (3) 

( <<= ′ − P∇�)-′ = ∇ × (�′ × -′)                 (4a) 

∇. -′ = 0                                              (4b) 

Inertia, Coriolis, viscous, buoyancy and centrifugal 

forces exist within the Earth’s planetary interior and 

they act on the fluid elements. On the hand, Lorentz 

force acts as an opposing force exerted by magnetic 

field on the moving conducting fluid. Several factors 

contribute to the total energy of the system as seen in 

Eq.(3). These include the heat source, rate of heat 

gain by the material element and viscosity effect with 

an exponential dependence on the inverse absolute 

temperature. Equation 4(a) is the magnetic transport 

equation which is a consequence of the motion of the 

conducting fluid particles and in the absence of 

velocity the diffusion term remains (Hughes and 

Brighton,1967; Moffatt,1978; Melchior,1986).  

Equations 1-4 are solved subject to the ensuing 

boundary conditions Eq. (4c, d) 

 �′ = 0, � ′ = �� 8:;   -′ = RS    at   r =  ��  

and        (4c,d)   

  �′ = 0, � ′ = �� 8:;   -′ = 0     at   r =  �� 

 

 

 

 

  

 

  

 

 

 

Fig: 1: Geometry of problem and symbols. The inner and outer boundaries are held at constant temperatures T0 

and Ti = T0 + ∆� respectively.  

Adopting the following non-dimensional 

quantities(�� , ��) = �% (��∗ , ��∗ ), T = %&
� T∗, - =  (G�
)E&%  -∗ , �� = 
� %& �∗UUU  , (� , V, W) =  ( �∗, V∗, W∗)X ,

 = YX∗, Z ′ = (0E∗[0�∗)\′∗%  , which are substituted into 
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eqns. (1-4), the non-dimensional governing equations 

for the system are derived, where these quantities and 

variables are as defined in the nomenclature above. 

For the buoyancy term which produces a free 

convection, the associated dimensionless temperature 

is established as:  Θ∗ = .]/0�& (�∗ − ��∗), where �∗ − ��∗ is the characteristic temperature difference 

between the inner core and outer core boundaries. 

∇. � = 0      (5)      

   �� ' <<= + �. ∇ − ∇�* � + ���8E&|1^ _�� = −∇�� +�8��V� + �̀a (∇�-)�-    (6) 

 (
<<= + �. ∇ − �̀� ∇�)Θ = Γ,e ΘEcϵΘ + ε        (7)   

∇. - = 0     (8) 

(
<<= − �̀a ∇�)- = ∇�(��-)   (9) 

The Equations (5-9) are solved subject to the 

following boundary conditions as stated below: 

 � = 0,    Θ = Θ�,     - = RS         at   r =  ��  

and         (10a,b) 

 � = 0,    Θ = Θ�,     - = 0        at   r =  ��  
 

 

 

METHOD OF SOLUTION. 
Equations (5)-(9) show that the flow variables are 

highly coupled and non-linear. In this case some 

simplified assumptions are made. We observed that 

the magnetic Prandtl Pm is of the order of  6 , which 

lies between 0 and 1, that is 0 < 6 < 1. Taking a 

perturbation series expansion solution of the form:-  

 g(�, V, T) = g�(�, V, T) + 6g�(�, V, T) + 6�g�(�, V, T) +⋯ (11) 

for all the dependent flow variables, Equations (5)-

(9), therefore in non-dimensional form can be given 

by the following orders of approximations in 6.  Thus 

��. ∇Θ� = ��[�∇�Θ� + ! + Γ,(1 + Θ�)       (12a) 

��.∇�� + �8E&î × �� = ��[�∇�� + ∇��� + �8Θ�       

(12b) 

(∇� − �aj�)-� = 0       (12c) 

 subject to the following boundary conditions 

        �� = 0,           Θ� = Θkl,            -� =                    8T  � = 0.35 

and        (13)   

       �� = 0,            Θ� = ΘoH= ,         -� = 0                     8T  � = 1 

for the order-zero approximations, which represent 

the steady state situations of the fluid within the 

system and: <ΘE<= + ��. ∇Θ� + ��. ∇Θ� = ��[�∇�Θ� + ! +
Γ,pΘ� − Θ��q      (14a) 

<HE<= + ��. ∇�� + �� . ∇�� + �8E&i^ × �� = ∇��� +�8Θ�       (14b) 

(∇� − ��j�)R� = ��(��. ∇-� − -�. ∇��)          (14c) 

with the boundary conditions:   

      �� = 0, Θkl = 0 8:;  R� = 0                 at   r =  

0.35 

and            (14d) 

       �� → 0, ΘoH= → 0 8:;   R� → ∞               as   r →  1 

for the order- one approximations in 6, >. 1 s(1), 

stand for the transient state situations. Equations (12) 

and (14), demonstrate dependences of the following 

physical non-dimensional parameters: Prandtl 

number (Pr), Rayleigh number (Ra), Taylor number 

(Ta), magnetic Prandtl number (Pm) and Brinkman 

number (Γ,). To seek solutions for the variables 

described by s(0) of Equations (12) we start with the 

temperature equation. Assuming onset of convection 

and neglecting the nonlinear term due to Arrhenius 

energy contribution (Kono and Roberts,2001;  Busse 

and Simitev,2004), the temperature and magnetic 

field equations as shown in Equations (12a) and (12c) 

have solutions of the form, based on the following 

standard method of mathematical expression in 

Abramowitz and Stegun,1972: 

 

Θ�(�) = 8�t�p�u��Γ,q + 8�v�p�u��Γ,q  − j�     
(15) 
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-�(�) = Y�>l '�u��j�* + Y�κl '�u��j�*         (16)  

Equations (15) and (16) are for the steady state 

temperature and magnetic field distributions 

respectively within the concentric spheres.  tl(w)8:; vl(w) are the known spherical Bessel 

functions of the first and second kind of order n 

respectively, while >l(w) and κl(w) are the modified 

spherical Bessel function of the first and second kind 

of order n respectively (Abramowitz and Stegun, 

1972; Arfken, 1985).  Using the boundary conditions 

at the inner core (that is, when r =��) and at the outer 

core (when r =��) as mentioned earlier in Equation 

(13), the values of  8�8:; 8� and Y�8:; Y�  are 

provided in Appendix shown below.  

These solutions are the steady state temperature and 

magnetic field distributions inside the concentric 

spheres, when the onset of convection is zero, that is 

assuming ��=0. Applying these results or solutions 

into the transient flow variables (Θ�, u� and R�(�)) 

due to the onset of convection which are expressed in 

the Ο(6). Combing the transient equations (14a) and 

(14b) to have order-one flow field  

(∇� − y� − y�)(∇� + z − y{)�� + �8(��∇Θ�)�� =−z�8Θ��             (17) 

Convection has begun as a result of temperature 

differential and when Ra is considered to be small, 

that is, Ra< 1 |� �8 → 0, the velociity �� is 

expressed as 

 �� = ��� + �8��� + ⋯                     (18) 

and emerging solutions to the different orders in this 

approximation approach, after a little algebraic 

manipulation become 

 ���(�) = R�tlp�u��Γ,q + R�vl(�u��Γ,)        

(18b)     

and  ���(�) =  R}tlp�u��Γ,q + R~vlp�u��Γ,q + ��(�)    

(18c)    

 

substituting these back into equation (18) gives  

 ��(�) = [R�tlp�u��Γ,q + R�vl(�u��Γ,)] +�8[R}tlp�u��Γ,q + R~vlp�u��Γ,q + ��(�)] 
that is 

 ��(�) = ��tlp�u��Γ,q + ��vlp�u��Γ,q +�8��(�)        (18d)  

where all the associated constants were determined 

using the appropriate boundary conditions mentioned 

above, and ��(�), y�, ��, ��, R�, R�, R{, R�, R}, R~ are 

shown in the Appendix.   

Pr, Γ,, and γ  as show in Eqn. (12) control the flow 

which will contribute to the nature of the solution to 

the velocity component. The temperature profiles will 

therefore depend on these quantities and they are 

causes of onset of convection that exists in the fluid 

outer core.  

The solution to the velocity component of the flow 

model,  Equation (18d) shows that the flow is 

controlled by the actions of Pr, Γ,, and γ. These 

parameters are temperature dependent and are 

responsible for the initiation of convection observed 

in the fluid outer core layers. Applying these 

solutions of the temperature and velocity due to the 

initiation of convection we then derived the effect of 

the convective motion on the B-field within the 

Earth’s core. And assuming a solution to the 

magnetic transport equation of the form:- 

-(�, V, T) = -(�, V)1��=  (19) 

and consequently following the method of solutions 

adopted for the temperature and the velocity, the 

solution to B-field equation becomes: 
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 R�(�) = Y{>l '�u��j�* + Y�κl '�u��j�* + N(�)       
(20) 

 where Y{, Y� 8:; N��� are given in the Appendix 

below 

 with,  � �  p��j�q� ��  ,  y �  p√�8q� ��  ,  z �  ���Γ]�� �� ,  

�� � ��>���u��j�����;�  

and  �� � ��M���u��j�����;�.  

-��, V, T� � -���, V� � R�1	�= 
�
�Y� � Y{1	�=�>lp�u�"��q �
�Y� � Y�1	�=��lp�u�"��q � N���1	�=  (21a)  

-��, V, T� � Y}>lp�u�"��q � Y~�lp�u�"��q �
N���1	�=           (21b) 

where, Y} � Y� � Y{1	�=     and       Y~ � Y� �
Y�1	�=  
The above mentioned solutions of the formulated 

problems are within the limits of our approximation. 

The steady state flow variables define the absence of 

convective motion, which typically shows that the 

magnetic field decays as one move away from the 

source. That is, the initiation of convection brings 

about the transient effects observed in the flow 

variables as well as introducing the dynamo effects 

through the Lorentz force term. We then displayed 

the obtained results graphically with the aid of 

Wolfram Mathematica software as shown in 

figures(2) to (7). 

 

 

 

Fig: 2: Magnetic Fields decay in the core of the Earth at various values of magnetic Prandtl numbers(for δ=10). 
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Fig: 3: Magnetic field regeneration due to the effect of convection heat tranfer motion (δ=10, σ=0.65, Pm=3.09, Ra=3.2x104, Ta=1.6x105, 

Pr=1.5). 

 

 

Fig:4: Magnetic field regeneration due to the effect of convection heat tranfer motion (δ=20, σ=0.65, Pm=8.7x10-2.5, Ra=3.2x104, 

Ta=1.6x105, Pr=2.0). 
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Fig: 5: Magnetic field regeneration due to the effect of convection heat tranfer motion (δ=10,σ=0.65,Pm=3.09,Ra=3.2x104,Ta=1.6x105, 

Pr=3.5). 

 

 

Fig: 6: Magnetic field regeneration due to the effect of convection heat tranfer motion 

(δ=10,σ=0.65,Pm=3.09,Ra=3.2x104,Ta=1.6x105,Pr=1.0). 
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Fig: 7:Magnetic field regeneration due to the effect of convection heat tranfer motion(δ=10,σ=0.65,Pm=8.7x10-

2,Ra=3.2x104,Ta=1.6x105, Pr=1.0). 

RESULTS AND DISCUSSION  
To understand the significance of the results obtained 

in Eqs.21(a & b) we present graphical representations 

which will demonstrate the influences of the 

dimensionless parameters.  Eqs. (15) and (18d) are 

coupled in the above solution of the magnetic field. 

In the absence of the flow field, eq. (16)  suffices 

which is the magnetic diffusion mode as shown in 

figure 2 above. No matter the magnitude of the active 

dimensionless parameter the magnetic field always 

shrinks or aproaches to zero as it moves far from the 

source. Here the magnetic Prandtl number (Pm) is the 

active quantity since the others including the energy 

consequence are not coupled to it. An increased 

magnetic Prandtl number becomes asymptotically 

curved more than when it is very very small, see 

curve V of figure 2. As long as there is no motion to 

drive the flow diffusion is certain. In this study we 

included the implication of shear stress due to 

frictional heating which is often neglected 

(Glaztmaier, et a, 1999; Ishihara and Kida,2002; 

Gubbins, et al, 2003; Ivers,2003; Fearn and 

Rahman,2004). 

 

Observed and known temperature gradients within 

the Earth’s deep interior (Gubbins and Masters, 1979, 

Kono and Roberts, 2001) establish the existence of 

convective heat motion in the core. To depict this, the 

heated fluid particles from the inner core due to latent 

heat of solidification and very high pressure of 

compaction, rise to the fluid outer core as denser 

fluid particles descend to the inner core. As these 

light fluid elements escape as helical fluid filaments 

convective motions manifest and on interacting with 

the seed magnetic field will result in dynamo 

mechanism (Ayeni, 1994). And since the fluid of the 

outer core is characterised as viscous it is temperature 

dependent (Turcotte and Schubert, 1982. More so, 

figure 2 shows magnetic field diffusion occuring at 

small positive growth rate value. The implication 

implies that without fluid flow which is the definite 

convective motion, the seed magnetic field once 

established will decay soon enough as shown by 

Moffatt,1978, Backus et al, 1996 and Ngwueke and 

Abbey, 2012. The significance then , according to 

Ngwueke and Abbey,2012 is that the convective heat 

transfer motion is responsible to the fluid velocity 

change which subsequently empowers  the seed field 

growth. As seen in figure 3, Brinkman number in the 

range 4≤Гa≤20 support seed field regeneration 

however when the magnetic Prandtl number is 

increased or high and Prandtl number Pr>1.2  

demonstrating  strong parameter dependence 

proclivity for sustenance of the Earth’s magnetic field 

(Simitev and Busse,2005). In contrast to the previous 

published paper, Ngwueke and Abbey(2012) dynamo 

actions manifested when Pm, Pr and δ were increased 

as seen in figure 4. Curve V looses its dynamo action 

when Pr number is raised to 3.5 and δ=10. Others 

were observed to sustain magnetic field (figure 5), 
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that is when Гa≥20 the ability to support dynamo 

action fails. Moreover, at this point the thermal 

diffusivity is approaching zero, meaning that the 

thermal diffusivity, ĸ is by far less than kinematic 

viscosity, ν. 

  

Still for various values of Brinkman number ranging 

4< Гa<20 when Pm and Pr are increased in contrast 

to the geophysical realizable values only curve V 

does not support dynamo action (figure 5). But on 

reducing the Prandtl number to 1 we observe a total 

change where all the values of the Гa enhance 

dynamo mechanism as shown in figure 6. Each of 

these parameter groups usually demonstrates 

different temperature and velocity profiles. These 

profiles, however not presented in this paper are 

based on the solutions expressed by Equations (15 

and 18d) and were characterized by Prandtl, 

Brinkman, Taylor and Rayleigh numbers. Their 

conditions affect the magnetic field of the conducting 

medium since their equations were coupled to the 

magnetic field equation (21d). As mentioned earlier 

when there is no flow and the Rayleigh number is 

deemed zero, that is, no associated heat the resulting 

situation will give rise to diffusion of the magnetic 

field.   

 

The extent of the motion is determined by the 

interaction between the induced current of the liquid 

metal within the fluid outer core. This has significant 

implication on the convective motion of the 

conductive fluid which was thermal-driven in this our 

spherical system. Earth model values of Pr =1.0 and 

Pm = 3.09 and 8.7 x 10
-2

 produced dynamo actions as 

shown in figures 6 and 7 though the active convective 

parameter Ra is the same. Brinkman number, within 

the range 4 < Γ8 < 20 with the model values as 

shown will support magnetic field recreation. It is 

shown that a combination of Earth real value and 

model values can result in dynamo mechanism.    

 

Conclusions: In this paper we have examined three 

outstanding issues usually encountered in dynamo 

theory, and proffered possible means of achieving 

dynamo mechanism 

 

The non-linearity characteristics usually inherent in 

Earth’s dynamo equations were solved by applying 

Perturbation technique making these equations 

tractable 

. 

Dynamo sustenance depends on non-dimensional 

parameters being complementary to each other in 

other to obtain magnetic field recreation. Our study 

has demonstrated the complementary roles of 

magnetic Prandtl number, and Prandtl number to the 

active dimensionless parameter which is Brinkman 

number in this study. 

 

The seed magnetic field rejuvenates for Br range 

between 4.0 and 20 when the Pr and Pm complement 

each other. This is shown to involve the convective 

term when it interacts with the magnetic field.  

 

APPENDIX 

�� �
���Γ,�8E& {�;�>� ����8E& � − ;��� ����8E& �� +
Pr �u�a���  �p�[�&q�[�� t�p�u��Γ, qtlp�u��Γ,  q −
82�2���−11−�3v0���Γ; t:���Γ; 
−j�2�1t:���Γ; +�81�2��−11−�3v0���Γ; t:���Γ; +�82�2��−11−�3v0���Γ; v:���Γ; 
−j��2v:���Γ; +...  

8� =
Θ����p/�u`�Γ�q[Θ ¡¢��p/Eu`�Γ�qF�'/E��p/�u`�Γ�q[/���p/Eu`�Γ�q*£�p/Eu`�Γ�q��p/�u`�Γ�q[£�p/�u`�Γ�q��p/Eu`�Γ�q    
8� =
Θ ¡¢£�p/Eu`�Γ�q[Θ��£�p/�u`�Γ�qF�(/�£�p/Eu`�Γ�q[/E£�p/�u`�Γ�q)£�p/Eu`�Γ�q��p/�u`�Γ�q[£�p/�u`�Γ�q��p/Eu`�Γ�q             
R� = ΘEE(/E)¤¥p/�uP§Γ¨ q[ΘEE(/�)¤¥p/EuP§Γ¨ q©¥p/EuP§Γ¨ q¤¥p/�uP§Γ¨ q[©¥p/�uP§Γ¨ q¤¥p/EuP§Γ¨ q  

R� = ΘEE(/�)©¥p/EuP§Γ¨ q[ΘEE(/E)©¥p/�uP§Γ¨ q©¥p/EuP§Γ¨ q¤¥p/�uP§Γ¨ q[©¥p/�uP§Γ¨ q¤¥p/EuP§Γ¨ q     

�� = Ω(/E��p/�u`�Γ� q[/���p/Eu`�Γ� q©¥p/EuP§Γ¨ q¤¥p/�uP§Γ¨ q[©¥p/�uP§Γ¨ q¤¥p/EuP§Γ¨ q     
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�� � Ω�/�£�p/Eu`�Γ�  q[/E£�p/�u`�Γ� q©¥p/EuP§Γ¨ q¤¥p/�uP§Γ¨ q[©¥p/�uP§Γ¨ q¤¥p/EuP§Γ¨ q    

;� =
Ω(/Eª��/��0] E& �[/�ª��/E�0] E& �)F«4�ª��/E�0] E& �[«4Eª��/��0] E& �

k��/E�0] E& �ª��/��0] E& �[k��/��0] E& �ª��/E�0] E& �
         

;� =
Ω(/�k��/E�0] E& �[/Ek��/��0] E& �)F«4Ek��/��0] E& �[«4�k��/E�0] E& �

k��/E�0] E& �ª��/��0]E& �[k��/��0] E& �ª��/E�0] E& �
        

¬/E =
√�8{Pr 'a���u�  �p�[�&q�[�� t�p��u��Γ,  qt�p��u��Γ, q −
82�2� �1−�1−�3v0�1��Γ; t0�1��Γ; 
−j�1�t0�1��Γ; +a1�2� ��−11−�3v0�1��Γ; 
t0�1��Γ; −…}                          

¬/� =
√�8{Pr 'a���u�  �p�[�&q�[�� t�p��u��Γ,  qt�p��u��Γ,  q −
82�2� �1−�1−�3v0�0��Γ; t0�0��Γ; 
−j�1�t0�0��Γ; +a1�2� 
��−11−�3v0�0��Γ; t0�0��Γ; −…}  
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ΩpREκ¥(αR�)[R�κ¥(αRE)qFYR�κ¥(αRE)[YREκ¥(αR�)k�(α/E)��(α/�)[k�(α/�)��("/E)                                                                                  
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Pr �u�a���  �p�[�&q�[�� t�p��u��Γ, qtlp��u��Γ, q −
8���u� �(�[�)�[�� v�p��u��Γ,  qtlp��u��Γ,  q −j����tlp��u��Γ, q +u�8��� �(�[�)�[�� v�p��u��Γ,  qtlp��u��Γ, q +
u�8��� �(�[�)�[�� v�p��u��Γ,  qvlp��u��Γ, q −
j���vlp��u��Γ,  q¶ + ⋯  

N(�) =  �� ·��Y� ' ��[γ�* ptl(z�)>l(M�) −Mt1z�>1M�−�1Y111−γMt:z�M:M�+Mt1z�M1M�+�2Y111−γMv:z�>:M�+Mv1z�>1M�−�2Y211−γMMv1z�M:M�−v:z�M:M�+…   
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