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ABSTRACT: In this paper, we formulated a compartmental model to investigate the dynamics 

of dengue fever in a population with some measure of disease control. We qualitatively and 

quantitatively analyzed the model and found that the model has a disease free equilibrium 

(DFE), an endemic equilibrium point and undergoes the phenomenon of backward bifurcation. 

It was also discovered that Dengue can be eliminated irrespective of the initial size of the 

infected population whenever the effective reproduction number is less than one. Numerical 

simulations were carried out on the model and effective control measures were proposed that 

will result in reducing the burden of the disease in the population. © JASEM 

https://dx.doi.org/10.4314/jasem.v21i4.2 
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Dengue, a mosquito-transmitted disease caused by 

any of four closely-related virus serotypes (DEN-1-4) 

of the genus Flavivirus, is endemic in at least 100 

countries in Africa, the Americas, the Eastern 

Mediterranean and subtropical regions of the world, 

inhibited by over 2.5 billion people (Garba, et al., 

2008) . In developing countries population growth is 

an important factor that contributes to the increase in 

the incidence of communicable diseases which 

affects mainly the urban poor, with infants and 

children among the groups particularly at risk 

(Nuraini et al, 2009). Urbanization and population 

growth increase the demand on the basic essential 

services such as housing, water supply, etc., and at 

the same time induce conditions that increase the 

transmission of some vector-borne diseases (Nuraini 

et al., 2009). Dengue is a viral, vector borne disease, 

spread by the Aedes Aegypti mosquito. It was 

estimated that about 50 million infections occur 

annually in over 100 countries. There is no specific 

treatment for curing dengue patients (Nuraini et al., 

2009). Hospital treatment, in general, is given as 

supportive care which includes bed rest and 

analgesics (Nuraini et al., 2009).  

 

Dengue virus is one of the most difficult arboviruses 

to isolate (Nuraini et al., 2009). There are four 

serotypes of the dengue virus; Den-1, Den-2, Den-3, 

Den-4, and each of the serotypes has numerous virus 

strains (Nuraini et al., 2009). Infection with one 

dengue serotypes may provide long life immunity to 

that serotype, but there is no complete cross-

protective immunity to other serotype (Gubler, 1998). 

Identification of the primary target cells of dengue 

viruses’ replication in the infected human body has 

proven to be extremely difficult (Nuraini et al., 

2009).  

 

The incubation period of the disease in an infected 

host is 3-14 days (average 4-7 days) (Nuraini et al., 

2009). At the end of the incubation period, the patient 

may experience a sudden onset of fever (Nuraini et 

al, 2009). Viraemia is the presence of the virus in the 

blood stream (Nuraini et al., 2009). It is detected 

using the mosquito inoculation technique. Viraemia 

is assumed to become detectable on the second or the 

third day before the onset of symptoms and ends on 

the last days of illness (Nuraini et al., 2009). It 

usually peaks at the time of or shortly after the onset 

of illness (Gubler et al., 1981). Susceptible 

mosquitoes can be infected when they bite dengue 

infected hosts during the febrile viremic stage 

(Nuraini et al., 2009). It is usually believed that 

dengue viruses quickly clear in human body within 

approximately 7 days after the day of sudden onset of 

fever (Vaughn et al., 1994). Naturally this clearing 

process is done by the immune system which is as a 

result of complex dynamics reactions (Nuraini et al., 

2009).  Over the last decade mathematical models 

have been formulated to evaluate the dynamics of 

Dengue Fever. In this paper, a mathematical model is 

formulated and analysed to investigate the dynamics 

of Dengue Fever in a population in order to reduce 

the public health burden of the disease.  

 

MATERIALS AND METHODS 
Let NH (t) and NV (t) denote the total number of 

humans and vectors at time t, respectively. The 

model sub-divides these populations into a number of 

mutually-exclusive compartments, as given below. 
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The total population of human and vectors is divided 

into the following mutually exclusive 

epidemiological classes, namely, susceptible humans 

(SH(t)), humans with dengue in latent stage (E1(t)), 

humans with dengue (II(t)), humans treated of dengue 

(R1(t)), susceptible vectors (SV(t)), vectors with latent 

dengue (EV(t)), vectors with dengue (IV(t)), Hence, 

we have that, 

 

( ) ( ) ( ) ( ) ( )tRtItEtStN HH 111 +++=  

and 

( ) ( ) ( ) ( )tItEtStN VVVV ++=
 

Susceptible humans are recruited at a rate ΛH while the susceptible vectors are recruited at a rate ΛV. 

Susceptible humans contract dengue at a rate
 

( )VH v v v

DV

H

E I

N

β η
λ

+
=

, 
 

where  �� < 1, this accounts for the relative infectiousness of vectors with latent dengue EV  compared to vectors 

in the IV class. 

Susceptible vectors acquire dengue infection from infected humans at a rate ��� = 	
�(
����
���)�
 , 

Where �� < ��, this accounts for the relative infectiousness of humans with latent dengue E1 compared to 

humans in the I1 class. 

 

Derivation of Model Equations: Singly infected individuals with latent dengue progress to active dengue at a rate 

1γ . Natural human death occurs at a rate H
µ  in the classes �� ,, , ��, ��, ��, respectively and those in ��  class 

undergo an additional dengue induced death, at rate ���. Natural vector death occurs, at a rate � , in the classes � , �  "#$ � , while the vectors in the �  class undergoes additional dengue induced death, at a rate �� , 

although this is negligible as infected vectors are not deemed to be suffering dengue. Exposed vectors progress to 

the infectious stage at the rate % . 
 

The above assumptions result in the following system of nonlinear ordinary differential equations: 

 

 �'� = Λ� − ���� − �� �� , 
 �'� = �� �� − (%� + ��)��, 
 �'� = %��� − (+� + �� + ���)��, 
 �'� = +��� − ����,    
 �' = Λ − ���� − � � ,                                  (1)         

 �' = ���� − (% + � )� , �' = % � − (� + �� )� , 
 

 

Table 1: Description of the state variables of the model 1 
Variable Description 

SH Susceptible human population  

E1 Human population with dengue in latent stage 

I1 Human population with dengue (Dengue only) 

R1 Human population treated of dengue (Dengue only) 

SV Susceptible vectors population  

EV Exposed vectors  

IV Infectious vectors  
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Table 2: Description of Parameters of the Model (1) 
Parameter Description Values Unit Reference 

 ,-,,. 

Recruitment rate into the population of 

susceptible humans,vectors 

respectively. 

500,10000000 Year-1 

 

  

 Garba et al, 2008. 

µµµµH,µµµµv Natural death for humans, vectors 

respectively. 

0.02041,36.5 Year-1 

 

Year-1 

Okuonghae and Omosigho (2011). 

ββββVH Effective contact rate for dengue from 

vectors to humans  

5 Year-1 Garba et al, 2008. 

ββββHV Effective contact rate for dengue from 

humans  to vectors  

4 Year-1 Garba et al, 2008. 

ττττ1,ττττ2 Dengue treatment rate for I1,E1. 2.5,1.5 Ind-1 Year-1 Garba  et al, 2008. /0 Progression rate to active dengue 0.3254 Year-1 Garba  et al, 2008. /. Progression rate to active dengue 

(vectors) 

0.03 Year-1  Garba et al, 2008. 

 120 

Disease induced death Dengue   0.365 

 

Year-1 

 

 Okuonghae and Omosigho, (2011). 

1-. Disease induced death dengue (vectors) 0 Year-1 Garba  et al, 2008. 3. Progression rate to active dengue 

(vectors) 

0.05 Year-1 Garba et al, 2008. 

, 4., 45, 46 

 

Modification parameters for Ev, E1, I1 0.4,1.2,0.5,0.6,1,0.6,1

.1,1, 

Year-1 Okuonghae and  Omosigho, (2011) 

 

PD1 Fraction of newly infected humans with 

latent dengue 

0.6 Year-1 Garba et al, 2008. 

Analysis of the Model 

 Boundedness and Positivity of Solutions 

 

Consider the region 78 = 9:�� , ��, ��, ��,� , � , � ;<ℝ�> : @� ≤ B
C
 , @ ≤ B�C�D. It can be shown that the set D2 is 

positively invariant and an attractor of all positive solution of the system (1). 

 

Lemma 1 The region D2 is positively invariant for the system (1) 

Proof: The rate of change of the total human population is given as  

 @'� = �'� + �'� + �'� + �'� = Λ� − ��@� 11IDδ−
    (2)

 

By standard comparison theorem,  HHHH NN µ−Λ≤&
   (3) 

 

So we have HHHH NN Λ≤+ µ& .      (4) 

 

Using the integrating factor method @'� tHe
µ + HH Nµ tHe

µ ≤  HΛ tHe
µ

     (5) 

 EEF G@'� tHe
µ H ≤  HΛ tHe

µ
       (6) 

 I $(@'� tHe
µ ) ≤  I HΛ tHe

µ $J      
(7) 

 @� tHe
µ ≤  B
C
 KC
F + 7       

(8) 

 "J J = 0, 7 = @�(0) − B
C
       
(9) 

 @� tHe
µ ≤  B
C
 KC
F + @�(0) − B
C
      

(10)
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@� = @�(0)KMC
F + B
C
 N1 − KMC
FO      
(11) 

 

and the rate of change of the total vector population @' = Λ − � @  VHV Iδ−
      (12) 

 

By standard comparison theorem,  

VVVV NN µ−Λ≤&
       (13) 

 

Similarly, using the integrating factor method, we have 

 @ = @ (0)KMC�F + B�C� N1 − KMC�FO      
(14) 

 

In particular  @�(J) ≤ B
C
  if  @�(0) ≤ B
C
   and @ (J) ≤ B�C�   if @ (0) ≤ B�C�, respectively.

   

So, 78 is a positively invariant set under the flow described in (1). Hence, no solution path leaves through the 

boundary of 78. Also, since solution paths cannot leave 78, solutions remain non-negative for non-negative 

initial conditions. Solutions exist for all time t. In this region, the model (1) is said to be well posed 

mathematically and epidemiologically. 

 

Positivity of Solutions 

Lemma 2.Let the initial data for the model (1) be ��(J) > 0, ��(J) > 0, ��(J) > 0, ��(J) > 0, � (J) >0, � (J) and � (J) > 0 then the solution ��(J), ��(J), ��(J), ��(J),  � (J), � (J), and � (J) with positive initial 

data will remain positive for all time t > 0. 

 

Proof: Let J� = QRSTJ > 0: ��(J) > 0, ��(J) > 0, ��(J) > 0, ��(J) > 0, � (J) > 0, � (J) > 0, � (J) > 0U > 0 �'� = Λ� − �� �� − ���� = Λ� − (�� + ��)��     
(15) 

 

To solve the ODE using the integrating factor method �. V = KWS X��J + 9I �� (+)$(+)FY DZ     
(16) 

 EEF X��(J)KWS 9��J + I �� (+)$(+)FY DZ = Λ� XKWS 9��J + I �� (+)$(+)FY DZ 
(17) 

 ��(J�)KWS 9��J� + I �� (+)$(+)F�Y D = ��(0) + I Λ�[KWS\��] + I �� (+)$(+)Ŷ _`$]F�Y  
(18) 

 ��(J�) = ��(0)KWS a−��J� − b �� (+)$(+)F�
Y c

+ dKWS a−��J� − b �� (+)$(+)F�
Y ce b Λ� dKWS a��] + b �� (+)$(+)^

Y ce $] > 0F�
Y  

 

for �'� = ( ) 11 ES HHDV µγλ +−  we have that  �'f ≥ − h%� + Hµ i ��, 

 

for �'� = ( ) 11111 IE DH δµτγ ++−     we have that   �'� ≥ − ( )
11 DH δµτ ++ ��,  

 

for �'� = 111 RI Hµτ −  we have that    �'� ≥ − Hµ ��, 

 

for �' = VVVDHV SS µλ −−Λ  we have that  �' ≥ −( VDH µλ + ) VS , 
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for �' = ( ) VVVVDH ES µγλ +− we have that �' ≥ ( ) VVV Eµγ +− , 

 

for �' = ( ) VVHVVV IE δµγ +−  we have that  �' ≥ ( ) VVHV Iδµ +− . 
 

Similarly, we can show that ��(J) > 0, ��(J) > 0, ��(J) > 0, ��(J) > 0, � (J) > 0, � (J) > 0,  and � (J) > 0. 

 

Local Stability of Disease-Free Equilibrium (DFE) of the Model: The model (1) has a disease-free equilibrium, 

obtained by setting the right hand side of the model to zero and also setting the disease classes to zero we obtain  

( )****

1

*

1

*

1

*

2 ,,,,,, vvvH IESRIES=ξ 






 ΛΛ
= 0,0,,0,0,0,

v

v

H

H

µµ
 

(20) 

 

The stability of  j8 is established using the next generation operator method on the system (1). Using the notation 

in van den Driessche and Watmough (2002) the matrices V� and k� for the new infection terms and the remaining 

transfer terms, are respectively given as 

V� =
l
mn

0              00              0 o �� o �0 0	
�
�p��
 	
�
�p��
    0    0       0        00        0 q
rs    

(21)
 

And, 

k� = t uv 0−%� uw 0      00      0   0   00    0 ux 0−% uy
z     

(22)
 

Where, 
HVVVVDHH gggg δµµγδµτγµ +=+=++=+= 6511413 ,,,

 

The spectral radius given by {(V�k�M�) = |B�	
�	�
C
(}~
����
�)(���}�
�)B
}�}~}�}�C� = ��  
(23)

 

The value RD is the effective reproduction number. 

 

Lemma 3 The DFE of the system (1) is locally asymptotically stable if RD< 1 and unstable if RD> 1. 

 

The threshold quantity RD is the effective or control reproduction number for the Dengue model. By Lemma 3, 

biologically speaking, Dengue is eliminated from the population when RD< 1 if the initial sizes of the 

subpopulations of the model are in the region of attraction of j8. 

 

However, the disease free equilibrium may not be globally asymptotically stable even if RD< 1 in the case when 

a backward bifurcation occurs. That is, there is the presence of a stable EEP co-existing with the DFE. 

 

Existence of Endemic Equilibrium Point (EEP) of the model 

Let the EEP of model (1) be denoted by j(�,�) = (��∗∗, ��∗∗, ��∗∗, ��∗∗, � ∗∗, � ∗∗, � ∗∗). The equations in (1) are 

solved in terms of the force of infection at steady state and they are given as  

,
**

**

DVH

H
HS

λµ +

Λ
=         

(24) 

 

( )( )
,

1

**

**
**

1

HDVH

DVHE
µγλµ

λ

++

Λ
=

     
(25) 

( )( )( )
,

111

**

**

1**

1

DHHDVH

HDVI
δµτµγλµ

λγ

++++

Λ
=

   
(26) 
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( )( )( )
,

111

**

**

11**

1

HDHHDVH

HDVR
µδµτµγλµ

λγτ

++++

Λ
=

  
(27) 

 

( ),
**

**

DHV

V

VS
λµ +

Λ
=         

(28) 

 

  

( )( )
,

**

**
**

VVDHV

VDH
VE

µγλµ

λ

++

Λ
=

     
(29) 

 

( )( )( )
,

**

**

**

HVVVVDHV

VDHV

VI
δµµγλµ

λγ

+++

Λ
=

    
(30) 

 

( )( ) ( )

( )( )( )111

**

**

11

**

1

11

**

111

**

DHHDVHH

HDVHHDV

HDHHDVDHHHH

HN
δγµτµγλµµ

λγτµλγ

µδµτλδµτµγµ

+++++

Λ+Λ

+++Λ++++Λ

= ,  
(31) 

 

now, 

 

( ) ( )
**

****
**

**

**

1

**

1**  and
H

VVVVH
DV

H

BAHV
DH

N

IE

N

IE +
=

+
=

ηβ
λ

ηηβ
λ

 

Substituting the values of 
**

1E , 
**

1I , 
**

HN  to 
**

DHλ  and ,**

VE  
**

VI , 
**

HN  to 
**

DVλ  we have 

 

( )
( ) **

111443

**

14**

DVHHH

DVBAHHV
DH

ggg

g

λγτµγµµ

ληγηµβ
λ

+++

+
=

   
(32) 

 

and  

( ) ( )
( )( )

( )( )( ) ****

651116546543

**

651116546543

****

436**

DHDVHHHHHHH

DVVHHHHHHVHH

DHDVHVVHVVH

DV

ggggggggg

ggggggggg

ggg

λλγτµγµµ

λµγτµγµµµµ

λλµγηµβ
λ

Λ+Λ+Λ+Λ+

Λ+Λ+Λ+Λ

++Λ
=

(33)

 

substituting 
**

DHλ  to 
**

DVλ  we have 

 

03

**

2

2**

1 =++ AAA DvDv λλ
     (34)

 

where  

( ) ( )( )

( ) ( ) ( )HHHBAHHvHBAHHv

HHHHHvHHHH

ggggggg

gggggggA

Λ+Λ++Λ++

Λ+Λ+++Λ++=

111651465414

2

111111465654

2

11141

γτµγηγηµβηγηµβ

γτµγγτµγµµµγτµγµ

( )

( ) ( )

( )( ),14643

2

6543

14

2

1116543

65

2

43

3

654311142

BAvvHHvHHv

HBAHvHHHvH

HHvHHH

gggggggg

ggggg

gggggggggA

H

ηγηγηµββ

ηγηµβγτµγµµ

µµγτµγµ

++Λ−

Λ++Λ+Λ

+Λ+Λ++=

(36) 
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( )( )

( )( )

( )[ ]2

65

2

4

2

33

6543

146
65

2

4

2

3

14643

2

65

2

4

2

33

1

1

DvHH

vH

BAvvHvHHvv

vHH

BAvvHvvHHvvHH

RggggA

gggg

gg
gggg

ggggggggA

−Λ=










Λ

++Λ
−Λ=

++Λ−Λ=

µµ

µ

ηγηγηµββ
µµ

ηγηγηµββµµ

 

(37) 

 

where 
HvvvDHH gggg δµµγδµτγµ +=+=++=+= 61511413 ,,

  (38) 

 

Hence, we now claim the following 

 

Theorem 1: The Dengue model (1) has a unique positive equilibrium if RD>1.  

 

Bifurcation Analysis of the model: Theorem 2: The model (1) undergoes backward bifurcation phenomenon at �� = 1 under certain condition. 

Proof: The proof is based on the Centre manifold Theorem. 

 

Let .,,,,,, 7651413121 VVVH IxExSxRxIxExSx ======= Further, let [ ]T
fff 71 ,,ˆ L= denote 

the vector field of the model (1). Thus, the model (1) can be written as: 

 

( )
,

4321

176
1

1

xxxx

xxx
x

dt

dx VVH

HH
+++

+
−−Λ=

ηβ
µ

 

 

( )
,)( 21

4321

1762 x
xxxx

xxx

dt

dx
H

VVH µγ
ηβ

+−
+++

+
=

 

 

( ) ,3121
3 xx

dt

dx
DIH δµτγ ++−=  

,431
4 xx

dt

dx
Hµτ −=                                                                                      

(39) 

 

( )
,5

4321

5325 x
xxxx

xxx

dt

dx
V

BAHV

V µ
ηηβ

−
+++

+
−Λ=

 

 

( )
( ) ,6

4321

5326 x
xxxx

xxx

dt

dx
VV

BAHV µγ
ηηβ

+−
+++

+
=  

( ) ,76
7 xx

dt

dx
HVVV δµγ +−=

    
 

The Jacobian of the transformed system (39), evaluated at the DFE, is given by:  
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( ) ,

00000

0000

000000

00000

00000

0000

0000

6

5

*

5

**

5

*

1

41

**

3

**

2































−

−

−

−

−

−

−−−

=

g

gxx

g

g

J

v

BHvAHv

V

H

HvvHv

HvvHvH

γ

ηβηβ

µ

µτ

γ

βηβ

βηβµ

ξ

 

( 

40)

 

Suppose 
*

VHVH ββ =  is chosen as the bifurcation parameter at  �� = 1, we have that 

( )( )VVBAHHVV

VH

VH
gg

gggg

ηγηγηµβ

µ
β

614

6543*

++Λ

Λ
=  

The right eigenvector of  �(j8) 	�
�	�
∗ is given by 

 

( )7654321 ,,,,,, wwwwwwww =  where, 

 

( )

0

,,0

33

1

3
2

51

13

*

5

*

1

>=

=<
+

−=

ww

w
w

g

wx
w

H

BAvHHv

γµγ

ηγηββ

   
(41)

 

( )

51

13

*

5

65

31

4 ,0,
g

wx
ww

w
w BAHv

H γ

ηγηβ

µ

τ +
===

 
 

( )

651

13

*

5

7
gg

wx
w BAvHv

γ

ηγηγβ +
=

 

 
The above right eigenvector were obtained by solving (42) below. 

,0

,0

6

*

5

*

23

6

*

5

*

1

=++−

=−−−

wwwg

www

vvHvvH

vH VHVH

ηβηβ

βηβµ

 
 

,03421 =− wgwγ
                    (42)

 

,0431 =− ww Hµτ
 

 

,05 =− wvµ  

,0653

*

52

*

5 =−+ wgwxwx BHvAHv ηβηβ
 

 

,0766 =− wgwvγ   

 

Similarly, �(j8) 	�
�	�
∗  has a left eigenvector, 

( )7654321 ,,,,,, vvvvvvvv =  where, 
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( )

( )

63

341

*

7*

5

33
6

5433

3

3
4121

,

0,0,0

,,0

gg

vg
v

x

vg
v

vvvv

g

v
gvv

B

ABvH

BHv

B

AB

η

ηηγβ

ηβ

η
ηηγ

+
==

==>=

+==

 

(43)

 

 

The above eigenvectors were obtained by solving (44) below. 

.0

,0

,0

,0

,0

,0

,0

7621

*

73632

*

1

*

5

4

6

*

54134

6

*

53123

1

=−+−

=+−+−

=−

=−
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Computation of the bifurcation coefficient "  and � for the Model: For the system (39), the associated non-zero 

partial derivatives required for the calculation of the backward bifurcation coefficients are given by 
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we now have that, 
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It follows from (49) that the bifurcation coefficient, ", is positive whenever, 

K1>K2+K3         (55) 

 

Thus, the model (1) undergoes a backward bifurcation at RD=1 whenever the inequality (55) holds.  

 

 
Fig. 3: Backward bifurcation diagram for the model (1) showing the force of infection  ��  as a function of the control reproduction number �� with all the parameters used as stated in Table (2) 

except o � = 2  and o� = 1 so that�� < 1. 
 

 



Analysis of a Mathematical Model to Investigate the Dynamics 

637 

 

ANDRAWUS JAMES; EGUDA, FELIX YAKUBU 

Fig. 4: Backward bifurcation diagram for the model (1) showing the force of infection ��� as a function of the 

control reproduction number �� with all the parameters used as stated in Table (2) except o � = 2  and o� = 1 

so that�� < 1. 
 
 Simulations 

Table 3: Parameter Information Using the parameter values in Table 3, we carried out some simulations of 

model (1). 
Parameter Values Unit References 

,- 500 Year-1 Garba et al, 2008. 

,. 107 Year-1 Garba et al, 2008. �- O.O2041 Year-1 Okuonghae and Omosigho (2011) �. 36.5 Year-1 Okuonghae and Omosigho (2011) �.- 5 Year-1 Garba et al, 2008. �-. 4 Year-1 Gubler,1998 �0 2.5 Ind-1 Year-1 Garba et al, 2008. /0 0.3254 Year-1 Gubler,1998 /. 0.03 Year-1 Garba et al, 2008. 

120 0.365 Year-1 Gubler,1998 1-. 0 Year-1 Gubler,1998 �. 0.02 Year-1 Garba et al, 2008. 4�(� = 5, 6) 0.6,1 Year-1 Garba et al, 2008. 4. 0.5 Year-1 Garba et al, 2008. 

 

RESULTS AND DISCUSSION 
Biologically speaking, Dengue is eliminated from the 

population when RD< 1 if the initial sizes of the 

populations of the model are in the region of 

attraction of j8. However, the disease free 

equilibrium may not be globally asymptotically 

stable even if RD< 1 in the case when a backward 

bifurcation occurs. That is, there is the presence of a 

stable EEP co-existing with the DFE. The model 

undergoes the phenomenon of backward bifurcation 

at RD=1 whenever the inequality (55) holds. 

 

Conclusion: In this paper, a mathematical model is 

proposed and analyzed to study the transmission 

dynamics of Dengue fever in a human population 

with treatment. Analyzing the models revealed that: 

The model undergoes a phenomenon of backward 

bifurcation if a certain condition shown in inequality 

(55) holds.  The model possesses the disease free 

equilibrium and it also has an endemic equilibrium. 
Finally, the results from the numerical simulations 

show that treatment is crucial for an effective public 

health control of dengue fever.  
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