

Full-text Available Online at https://www.ajol.info/index.php/jasem http://ww.bioline.org.br/ja

Gross Calorific Value of Combustible Solid Waste in a Mass Burn Incineration Plant, Benin City, Nigeria

*OLISA, Y P; AJOKO, T J

Department of Mechanical/Marine Engineering, Faculty of Engineering, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria *Email: yemi.olisa@yahoo.com, johntolumoye@yahoo.co.uk, Tel: +234(0)8038990747, +234(0)8139625173

ABSTRACT: Some solid waste incinerators burn waste that does not possess enough calorific value that justifies the installation of an energy recovery facility, this implies that a substantial amount of energy would be provided by an auxiliary burner. Hence, the presentation of this paper was to evaluate the feasibility of setting up a mass burn incinerator with energy recovery facility using the gross calorific value (GCV) of waste generated in Benin City of Nigeria which is considered as case study. Solid waste samples (wood, leather rubber, plastic, paper, textile material etc.) were collected from Benin metropolis and their GCV were determined in a laboratory using an XRY-1A digital oxygen bomb calorimeter. The average calorific value of the waste samples calculated from the experiment was 20,198.89*kJ/kg*, this value is higher than the 7,000*kJ/kg* minimum average calorific value of solid waste required for setting up an incineration plant with energy recovery.

DOI: https://dx.doi.org/10.4314/jasem.v22i9.02

Copyright: *Copyright* © 2018 Olisa and Ajoko. This is an open access article distributed under the Creative Commons Attribution License (CCL), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dates: Received: 07 July 2018; Revised: 25August: 2018; Accepted: 23September 2018

Keywords: Incineration, Solid waste, Gross calorific value, Energy recovery

The design and operation of the plant (incinerator) meant for the processing of solid waste are highly related to the gross calorific value (GCV) of the solid waste materials (Ebru et al, 2009). Thus, determining the heating value of municipal solid waste is a key work to be performed in the efficient design and operation of a waste to energy conversion based technology. Benin Metropolis encompasses Benin City the capital City of the ancient Bini kingdom and it is made up of three local Government areas - Oredo, Egor and Ikpoba-Okha local government areas. The total Population in Benin metropolis is made up of about 1,085,676 persons (National Population Commission, 2006). As unveiled in a scholarly research finding, waste generation survey carried out in Benin metropolis shows 0.425kg of solid waste generated per person per day (ppd). It also shows that over 20% of recyclable solid waste is generated from domestic source of solid waste. Thus, the average percentage (%) component of household solid waste generated in the studied environs reveals 9% plastic/rubber, 4% paper, 1% unclassified combustible materials, 4% metal, 3% glass, 78% food waste and 1% ash (Igbinomwanhia et al., 2014). The first step in the processing of a waste is to determine its calorific content or heating value. The parameter that is necessary for the definition of the energetic content of the materials is the gross calorific value (GCV) or higher heating value (HHV) defined as the quantity of

heat generated by the complete combustion of a unit mass of sample at constant volume in an oxygen atmosphere assuming that both the water contained in the sample and that generated by the combined hydrogen, remain in liquid form (Carlos et al, 1991). The calorific value of a fuel can be determined either from their chemical analysis or in the laboratory experimentally by a bomb calorimeter. According to Obernberger (2006), the whole process of thermal utilization (fuel supply, combustion system, solid and gaseous emissions) of solid biofuels is influenced by kind of solid biofuel used, its physical the characteristics (e.g. particle size, bulk density, moisture content, calorific value) and its chemical composition. The GCV of different agroforestry species and bio-based industry residues was experimentally determined by Loannis (2016), the fuel samples used were from agricultural residues and wastes (rice husks, apricot kernels, olive pits, sunflower husks, cotton stems, etc.), energy crops and wetland herbs (cardoon, switchgrass, common reed, narrow-leaf cattail). The GCV of the different agroforestry species and residues ranges from 14.3 -25.4 MJ/kg. The highest GCV was obtained by seeds and kernels due to higher unit mass and higher lipid content. Pinus sylvestris with moisture content 24.59% obtained the lowest GCV (13.973 MJ/kg). In a similar research work carried out by Gabriel (1983) is an experimental determination of the calorific

values of some Nigerian solid fuel materials such as rice husk, corn cob, corn grain, corn Stover, saw dust, wood shavings, palm kernel husk and coal. The results showed that GCV ranges from 19,642 KJ/kg to 13,643 KJ/kg for palm kernel husk and rice husk respectively which compared favourably with Nigeria's subbituminous coal with a GCV of 28,466 KJ/kg. Munoz (2004) determined the calorific values of coals using differential thermal analysis (DTA) technique in which eight Spanish coal samples of different origin and rank were studied. The calorific values obtained by DTA revealed a high level of correspondence to those obtained by ASTM (American Society of Testing and Materials) method and those calculated from a semi-empirical equation.

Ayhan (2004) carried out an experiment on pyrolysis of beech trunk bark to obtain bio-char and pyro-oil for the purpose of determining their calorific values. The experiments were designed to investigate the effects of both the heating rate and temperature of pyrolysis on pyro-oil and bio-char yields and their characteristics. Therefore, the purpose of this research work was to determine the GCV of combustible solid waste in Benin metropolis in order to assess the feasibility of establishing an incineration plant with energy recovery facility.

MATERIALS AND METHODS

Combustible solid waste samples were collected from Benin metropolis in Edo state, the South-South geopolitical region of Nigeria. The samples were dried and 1g of each was weighed and prepared for test.

Calorimetric Test Procedure: The determination of the GCV of a material involves carrying out an experiment using a XRY-1A digital oxygen bomb calorimeter. The calorimetric test was performed at the National Centre for Energy and Environment, Benin City. The sample for the experimental determination was weighed and placed in a combustion bomb and lowers inside a water bucket. The stirrer of the calorimeter was activated to make temperature of the water uniform at every part of the bucket. Readings were taken at an interval of 30 seconds over 5 minutes and recorded. Thereafter the firing button was activated to ignite the sample, upon combustion of the sample, heat is released and transferred through the wall of the combustion bomb and used to raise the temperature of the water inside the bucket. The temperature rise of the water was recorded after 30 seconds interval of time over 15 minutes and recorded.

Calculation of GCV: The gross calorific values (GCV) of the solid waste samples were calculated using the

formula in equation 1 and the results are presented in Table 3.

$$GCV = \frac{C\Delta T - (e_1 + e_2 + e_3)}{m}$$
(1)

GCV = Gross calorific value of sample; C = Specific heat capacity of calorimeter; m = Mass of sample; ΔT = Net corrected temperature rise; ΔT is calculated using equation 2

$$\Delta T = (T_c - T_a) - r_d \tag{2}$$

 T_a = Temperature at time of firing; T_c = Maximum temperature; $-r_d$ = Correction of heat loss (or gain) by radiation, $-r_d$ is calculated for heat loss or gain by radiation using equation 3 and 4 respectively;

 $-r_d = +r_1(b-a) + r_2(c-b)$ (for heat loss by water inside bucket) (3)

 $-r_d = -r_1(b-a) - r_2(c-b)$ (for heat gain by water inside bucket) (4)

Where: a = Time of firing; b = Time when temperaturereaches 60% of the total rise, = Time corresponding to $T_a + 60\%$ rise in temperature; c = Time at whichtemperature is maximum; $r_1 = \text{Rate at which}$ temperature was falling (of rising) during stirring, calculated using eqn. 5

= $T_1 - T_{11}$ (i.e. temperature change within 5*min*) (5)

 r_2 = Rate at which temperature was falling after time c, calculated using eqn.6

= $T_{25} - T_{31}$ i.e. temperature change within 3*min*) (6)

 e_1 = Correction of heat of formation of nitric acid

However, flushing the bomb with oxygen prior to firing, displaces all nitrogen, thereby eliminates nitric acid formation. Hence, $e_1 = 0$

 e_2 = Correction of heat of formation of sulphuric acid, calculated from eqn.7

= % of sulfur in the sample \times 57.54 J \times mass of sample (7)

 e_3 = Correction of heat of formation of fuse wire, calculated from eqn. 8

= Length of fuse wire consumed \times 9.66 J (8)

RESULTS AND DISCUSSION

The readings recorded from stirring of water inside the bucket is presented in Table 1. This experiment was carried out prior to the ignition of the waste sample in order to create an even temperature distribution in the water jacket. Table 1 reveals that the stirring of water in the bucket over a period of time (5 minutes) resulted in reduction of temperature and it eventually became stable at a point. This is because at the beginning of the stirring process there was temperature difference in various parts of the water inside the bucket, but as stirring continued over the passage of time the temperature of water became uniform in all the parts. The temperature profile in the water jacket after ignition of the waste samples is presented in Table 2. It can be observed from the readings recorded after firing the calorimeter that the temperature rise is rapid during the first 5 minutes and then it becomes slower as the temperature approaches a stable maximum after about 12 minute when the samples must have released all their energy (heat) content. This can be used to predict when to use an auxiliary burner to maintain the temperature inside the combustion chamber. The Calorific values of the individual waste samples were determined separately using equation1 and a complete compilation of the result is presented in Table 3. According to the results obtained from the experimental determination of GCV of the solid waste samples shown in Table 3, the highest calorific value was obtained for plastic (33,712 kJ/kg), this is due to the high percentage of combustible elements (hydrogen and carbon) present in the constituent while that of white paper (14,085 kJ/kg) is the lowest, these values agree with the results reported by Alter (1987) and Gidarakos et al (2006).

Table 1: Readings recorded from the stirring of water inside the bucket

				~						
	Time	Wood	Leather	Rubber	Plastic	W.Paper	B.Paper	Rubber	PKF	PKS
S/N	(min)	T (°C)	T (°C)	T (°C)	T (°C)	T (°C)	T (°C)	T (°C)	T (°C)	T (°C)
1	0.0	29.398	28.793	27.226	27.819	29.216	29.208	28.237	29.144	29.350
2	0.5	29.398	28.776	27.230	27.817	29.213	29.206	28.235	29.142	29.348
3	1.0	29.399	28.766	27.233	27.816	29.208	29.207	28.235	29.135	29.347
4	1.5	29.397	28.759	27.235	27.815	29.199	29.206	28.235	29.128	29.344
5	2.0	29.396	28.753	27.236	27.814	29.197	29.203	28.235	29.123	29.342
6	2.5	29.395	28.747	27.238	27.814	29.194	29.202	28.236	29.119	29.341
7	3.0	29.394	28.742	27.239	27.812	29.192	29.201	28.236	29.115	29.339
8	3.5	29.393	28.741	27.241	27.812	29.189	29.200	28.235	29.111	29.338
9	4.0	29.391	28.741	27.242	27.811	29.187	29.199	28.235	29.109	29.335
10	4.5	29.390	28.740	27.243	27.810	29.186	29.197	28.235	29.106	29.332
11	5.0	29.390	28.740	27.243	27.810	29.186	29.197	28.235	29.105	29.330

	Table 2: Readings recorded for the combustion of 1.00g sample of the solid waste										
S/N	Time	Wood	Leather	Rubber Plastic		W.Paper B.Paper		Textile PKF		PKS	
	(min)	T (°C)	T (°C)	T (°C)	T (°C)	T (°C)	T (°C)	T (°C)	T (°C)	T (°C)	
1	0.0	29.389	29.696	27.293	27.812	29.186	29.196	28.235	29.104	29.331	
2	0.5	29.510	29.808	27.548	28.325	29.560	29.270	28.387	29.272	29.491	
3	1.0	29.788	29.842	27.780	28.717	29.660	29.428	28.705	29.758	29.694	
4	1.5	30.000	29.873	27.966	28.907	29.734	29.634	28.918	30.010	29.872	
5	2.0	30.134	29.895	28.126	29.370	29.759	29.712	29.042	30.138	30.004	
6	2.5	30.215	29.915	28.242	29.528	29.790	29.781	29.123	30.235	30.098	
7	3.0	30.314	29.931	28.326	29.636	29.805	29.837	29.220	30.330	30.191	
8	3.5	30.349	29.943	28.409	29.715	29.823	29.881	29.250	30.429	30.266	
9	4.0	30.376	29.954	28.482	29.778	29.838	29.895	29.278	30.492	30.325	
10	4.5	30.396	29.963	28.535	29.828	29.853	29.951	29.299	30.526	30.370	
11	5.0	30.413	29.970	28.582	29.861	29.864	29.977	29.317	30.566	30.406	
12	5.5	30.425	29.976	28.625	29.893	29.872	29.997	29.330	30.599	30.436	
13	6.0	30.436	29.980	28.660	29.922	29.879	30.016	29.342	30.628	30.457	
14	6.5	30.445	29.985	28.679	29.947	29.885	30.031	29.351	30.648	30.479	
15	7.0	30.453	29.987	28.700	29.966	29.892	30.047	29.360	30.666	30.493	
16	7.5	30.457	29.988	28.722	29.982	29.897	30.059	29.366	30.682	30.503	
17	8.0	30.461	29.989	28.735	29.995	29.898	30.066	29.373	30.699	30.515	
18	8.5	30.465	29.991	28.746	30.006	29.901	30.076	29.376	30.709	30.521	
19	9.0	30.469	29.991	28.759	30.015	29.902	30.084	29.381	30.716	30.528	
20	9.5	30.472	29.990	28.767	30.023	29.905	30.089	29.383	30.723	30.536	
21	10.0	30.472	29.990	28.775	30.029	29.905	30.094	29.386	30.729	30.539	
22	10.5	30.474	29.990	28.782	30.034	29.906	30.097	29.387	30.737	30.542	
23	11.0	30.474	29.989	28.786	30.037	29.905	30.101	29.389	30.740	30.544	
24	11.5	30.474	29.988	28.791	30.042	29.905	30.104	29.390	30.743	30.545	
25	12.0	30.475	29.988	28.793	30.043	29.906	30.106	29.392	30.743	30.547	
26	12.5	30.473	29.987	28.798	30.046	29.906	30.107	29.392	30.745	30.547	
27	13.0	30.472	29.696	28.799	30.047	29.907	30.110	29.392	30.746	30.547	
28	13.5	30.472	29.808	28.801	30.050	29.904	30.112	29.393	30.746	30.550	
29	14.0	30.471	29.842	28.803	30.047	29.902	30.113	29.391	30.752	30.549	
30	14.5	30.470	29.873	28.805	30.049	29.902	30.114	29.391	30.748	30.548	
31	15.0	30.469	29.895	28.806	30.050	29.901	30.114	29.390	30.745	30.548	
32	-	-	-	28.806	30.049	29.901	30.111	29.390	30.743	30.546	
33	-	-	-	28.807	30.048	-	30.110	-	-	-	
34	-	-	-	28.807	30.047	-	30.109	-	-	-	

OLISA, Y P; AJOKO, T J

S/N	Component	a	b	с	71	72	?T	61	6:	63	m	С	GCV
		min	min	min	°C/min	°C/min	°C	kJ	kJ .	kJ	kg	kJ /∘C	kJ/kg
1	Wood	0.00	2.50	12.00	0.0018	0.002	1.109	0	0.00288	0.0445	1	15,000	16,580
2	Leather	0.00	1.50	11.00	0.0108	0.001	1.278	0	0.0575	0.0576	1	15,000	19,050
3	Rubber	0.00	2.00	15.00	-0.0036	-0.001	1.493	0	0.1151	0.0802	1	15,000	22,197
4	Plastic	0.00	2.00	13.50	0.0018	0.001	2.253	0	0.0115	0.0821	1	15,000	33,712
5	White paper	0.00	1.00	13.00	0.006	0.0051	0.745	0	0.0050	0.0427	1	15,000	14,085
6	Bev. Box	0.00	2.50	14.50	0.0078	0.002	0.962	0	0.0921	0.0676	1	15,000	14,353
7	Textile	0.00	1.50	13.50	0.0004	0.001	1.171	0	-	0.0889	1	15,000	17,476
8	PKF	0.00	2.00	14.00	0.0078	0.005	1.724	0	0.00633	0.0831	1	15,000	25,771
9	PKS	0.00	2.50	13.50	0.004	0.01	1.240	0	0.00633	0.0280	1	15,000	18,566

Table 3: Compilation of the GCV of the waste samples

It implies that for a given quantity of waste charged into an incinerator the amount of heat released depends to a large extent on the composition of plastic in the feed stock or the overall percentage of hydrogen and carbon. This can be used to determine if auxiliary fuel is required. For a waste composition consisting mostly of rubber, plastic and leather no auxiliary fuel is required for their combustion. The calorific values of wood (16,580 kJ/kg), leather (19,050 kJ/kg), rubber (22,197 kJ/kg) and textile (17,476 kJ/kg) deviate only slightly from the results obtained by Tchobanoglous *et al* (1993), this is due mainly to the differences in moisture content of the solid waste samples.

Conclusion: The average calorific value of the waste samples calculated from the experiment is 20,198.89 kJ/kg. This is higher than the 7,000kJ/kg (Rand *et al*, 2000) minimum average calorific value of waste required for establishing an incineration plant with energy recovery. Hence, this is a clear affirmation that for any project preparation and execution; an experimental framework for justification should be a prerequisite to balance the required analysis. In addition, the estimation of the energy content of municipal solid waste generated in Benin City can be used to establish a mass burn incineration plant with energy recovery in the city.

REFRENCES

- Alter, H (1987). Materials and Energy from Refuse. Crete Journal of Waste Management. 26: 668-679.
- Ayhan, D (2004). Determination of Calorific Values of Bio-Chars and Pyro-Oils from Pyrolysis of Beech Trunk barks. Journal of Analytical and Applied Pyrolysis. 2: 215-219
- Carlos, FF; Jesus, PL; Joge, A; Rodrigeus, A; Lisardo, NR (1991). Calorific Value of Municipal Solid Waste, Journal of Environmental Technology. 13: 1085 – 1093
- Ebru, A (2009). Energy Content Estimation of Municipal Solid Waste by Multiple Regression Analysis.

Engineering Principles and Management Issues. McGraw-Hill, New York.

- Gabriel, OI (1983). Determination of Calorific Values of Some Nigerian Bio-Mass Solid Materials. Nigerian Journal of Technology. 1: 21 -33.
- Gidarakos, E; Havas, G; Ntzamilis, P (2006). Municipal Solid Waste Composition Determination. Journal of Resources and Conservation. 14: 29
- Igbinomwanhia, DO; Obanor, AI; Olisa, YP (2014). Characterisation of Domestic Solid Waste for the Determination of Waste Management Option in Amassoma, Bayelsa State, Nigeria. Journal of Applied Science and Environmental Management. 18: 211-215.
- Ioannis, G; Panagiotis, X; Dimitrios, K (2016). Experimental Determination of Gross Calorific Value of Different Agroforestry Species and Bio-Based Industry Residues. Journal of Scientific Research. 7: 1-12.
- Muñoz, MJ; Guillena, AL; Martinezde, L (1992). Determination of calorific values of coals by differential Thermal Analysis. Journal of Analytical and Applied Pyrolysis. 71 (5): 579-583.
- National Population Commission (2006). The Nigerian Population Statistics of 2006. www. Population.gov.ng/index.php (Last accessed on 2/11/2017)
- Obernberger, I; Brunner, T; Barnthaler, G (2006). Chemical Properties of Solid Biofuels – Significance and Impact. Journal of Biomass and Bioenergy. 30: 973-982
- Rand, T; Haukohl, J; Marxen, U (2000). Inceneration of Solid Waste: A Decision Makers Guide. World Bank, Washinton DC
- Tchobanoglous, G; Theisen, H; Vigil, S (1993). Integrated Solid Waste Management. McGraw-Hill, NJ.