

Use of Sedimentological and Geochemical Parameters to Evaluate the Lithologies and Geochemical (Na/Zn and K/Mn) Ratios of OGE-1 Well, Niger Delta Basin

*¹IGHODARO, EJ; ²OKIOTOR, ME; ³UMOH, EE; ⁴ITIOWE, K

*1Department of Geology and Petroleum Studies, Western Delta University, Oghara, Delta State, Nigeria.
²Department of Marine Geology, Nigeria Maritime University, Okerenkoko, P.M.B, 1005 Warri, Delta State, Nigeria
³Department of Earth Sciences, Ajayi Crowther University, P.M.B 1066, Oyo, Oyo State, Nigeria
⁴Department of Earth Sciences, Authur Jarvis University, Akpabuyo, Alkwa – Ibom State, Nigeria.

*Correspondence Author Email: ehikacross@gmail.com, Tel: +2348038598495 Other Authors Email: michael.okiotor@nmu.edu.ng; ee.umoh@acu.edu.ng; kiamukeitiowe@yahoo.com

ABSTRACT: This work focuses on subjecting ninety (90) sidewall core well samples to sedimentological and geochemical parameters to determine the lithologies and the geochemical ratios of the OGE-1 Well in the Niger Delta Basin. The sedimentological analysis with sample description yielded lithologies that are sand, shaly sand, sandy shale and shale. The sand lithologies ranged from fine to coarse grained, well sorted to poor sorted at different depths, while the shale lithologies ranged from light to dark coloured shales which is controlled by the organic matter content in the shale. This finally produced a lithologie frame work of the well. The result of the geochemical analysis led to the creation of the geochemical ratio of Na/Zn (0.739 – 5.610) and K/Mn (21.170 – 69.37) for 90 side wall core samples. Na and K had variations in their graphs showing intermittent alternating abundance downhole. Na and K being components of the weathering of feldspars are indicative of abundance of clay minerals. The variation of the Na/Zn and K/Mn profile indicates the alternate deposition of clay and sand size deposits giving the environment of deposition to be paralic.

DOI: https://dx.doi.org/10.4314/jasem.v24i6.27

Copyright: Copyright © 2020 Ighodaro *et al.* This is an open access article distributed under the Creative Commons Attribution License (CCL), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dates: Received: 19 April 2020; Revised: 22 May 2020; Accepted: 21 June 2020

Keywords: Chemo-stratigraphy, Paleo-environment, Sedimentological, Stratigraphy, Geochemistry

Geochemical or chemical stratigraphy involves the characterization and correlation of strata using major and trace element geochemistry (Ratcliffe et al., 2006). Chemostratigraphy is a technique used to correlate sedimentary successions based on subtle changes in concentration of key major, minor and trace elements (Lucas et al., 2016). Chemostratigraphy, which is termed "chemical/elemental stratigraphy", is the characterization or "fingerprinting" and stratigraphic zonation (and correlation) of strata from the changes of the bulk inorganic geochemical or elemental composition and signatures of sedimentary rocks (Ighodaro et al., 2018). Sediments that appear homogenous in most physical respects often have significant geochemical variability. Jarvis (1998, 2001); Pearce and Jarvis (1995); De Lange (1987); Mabrouk (2005, 2006); and Totland (1992) have all used chemostratigraphy for different stratigraphic studies. Therefore the objective of this paper is to present data for subjecting ninety (90) sidewall core well samples to sedimentological and geochemical parameters to determine the lithologies and the

geochemical ratios of the OGE-1 Well in the Niger Delta Basin.

MATERIALS AND METHODS

Geological Setting of the Niger Delta Basin: The Niger Delta Basin is located in the Gulf of Guinea in the southern part of Nigeria. It lies between longitudes 40°E and 8.80°E and latitudes 30°N and 60°N, and occupies the coastal ocean ward part of the Benue-Abakaliki Trough; hence its evolution has been linked with that of this larger sedimentary complex (Murat, 1972; Reijers et a.l, 1997). It is a clastic fill of about 12,000metres with sub-aerial portion covering 75,000 sq. km and extending more than 300km from apex to mouth (Doust and Omatsola, 1990). Various authors have identified the Benue-Abakaliki Trough as the failed arm of the three radial rift systems that met at an R-R-R triple junction in the Gulf of Guinea that was active in early Cretaceous due to crustal doming (Burke et al., 1971; Burke, 1972; Burke and Whiteman, 1973). The Niger Delta complex developed at the point where the three arms of a triple junction met. This triple junction was formed during

*Correspondence Author Email: ehikacross@gmail.com, Tel: +2348038598495

the separation of the African and South American plates in the Albian times (Whiteman, 1982). Two of the arms, which followed the south-western and southeastern coast of Nigeria developed into collapsed continental margins of the South Atlantic, whereas the third failed arm developed into the Benue Trough. The Niger Delta now occupies the center of the triple junction. The Niger Delta Basin represents the third cycle in the evolution of the trough and its associated basins. The first cycle (Aptian-Santonian) brought about the evolution of the trough as the failed arm of a rift triple junction (RRFtype) associated with the separation of South American and African plates (Burke and Whiteman, 1973,). Two platforms (Anambra and Abakaliki) were formed on both sides of the trough during this period. The second cycle (Santonian-Eocene) began after the Campanian-Santonian folding episode. The Abakaliki Trough was uplifted to form Abakaliki Anticlinorium whilst the Anambra platform was downwarped to form the Anambra Basin (Weber and Daukoru, 1975) resulting in the westward displacement of the trough's depositional axis. During the Paleocene- Early Eocene, the upliftment of Benin and Calabar flanks initiated a major regressive phase. By the end of this cycle, rifting has diminished considerably. The third cycle (Eocene-Recent) brought about the development of the modern Niger Delta. However, true delta development commenced only in the Paleocene times when sediments began to accumulate in the troughs between basement horst blocks of the northern flank of the present delta area. The progradation of the Niger Delta first occurred during the Eocene, probably in response to epeiorogenic movements along the Benin and Calabar flanks (Evamy et al., 1978), and this continued to the present time. Strata were deposited along an unstable progradation margin, this was later seen to result from paralic deposition into a series of depobelts which succeeded each other in time and space, leading to a regular step-like southward progression of the delta referred to as "escalator regression".

The development of the proto-delta was terminated in the Paleocene by a major sea transgression (Weber *et al.*, 1978). This was followed by a regressive phase in the Eocene as the sea progressively moved southwards. The regressive phase has continued until the present, but is frequently interrupted by generally minor transgressions, resulting in the formation of the modern Niger Delta, which is Eocene to Recent in age. The Niger Delta basin consists of massive and monotonous marine shale at its base. This grades upward into interbedded shallow marine fluvial sands, silts and clays, which form the typical paralic portion of the delta. The uppermost part of the sequence is a massive, non-marine sand unit. These are referred to as the Akata, Agbada and Benin Formations respectively (Short and Stauble, 1967). These three lithostratigraphic units are strongly diachronous. However, the Cenozoic Niger Delta complex is greatly affected by large scale synsedimentary features in the subsurface, such as growth faults, roll-over anticlines and diapirs (Evamy *et al.*, 1978).

Stratigraphy of Niger Delta Basin: The lithostratigraphy of the Niger Delta Basin consists of three main rock stratigraphic units of Cretaceous to Holocene origin (Short and Stauble, 1967; Franklin and Cordry, 1967; Avbovbo, 1978). These units represent the prograding depositional environments (Corredor, 2004).

Fig 1. Stratigraphic column showing the three Formations of the Niger Delta, the Marine Akata shale, the paralic Agbada formation and the continental Benin sandstone. (Modified from Doust and Omatsola, 1990).

Location of Study: The well of study is located in the Greater Ughelli depobelt, Niger Delta Basin. This study was conducted using Ninety (90) side-wall core samples from OGE#1 Well; and subjected to both sedimentological and geochemical analysis. The samples were subsurface oil well samples got from the industry.

Sedimentological Analysis: The Sedimentological analysis was carried out with the aid of the Stereo zoom microscope, which was used to describe the ninety (90) samples in terms of lithology and textural characteristics, which include grain shape, grain colour, grain size and sorting. Subsequently, a grain size log was generated on the basis of the dominant grain sizes in each lithologic unit.

IGHODARO, EJ; OKIOTOR, ME; UMOH, EE; ITIOWE, K

Fig 2: Showing Location of Study in Map of Niger Delta Depobelts (Nwozor et al., 2013)

						Lľ	ſH	08	T	RA	TI	GRAPHIC MODEL OF OGE-#1	WELL	_	_		
SIN	Constant and a second	Isanunvihuano	01.00T	MUD WACE		MINISTRATE INVESTIGATION		and as		TEXTURE	LITHOFACIES	SHALE/SAND	LITHOZONES				
			CHUMBO	CHUMBO	CHUMBO	CHUMBO	LTTHK.	CLAY N	SELT OD	AVA.	SAI	۹D د	V/C	GRA	founder 11	Grain Siza and other natar[rtructurar,fazilr,colour2]	
1	2276	693.9									L	Dark groy fizzilozhalo	Shalo	Shale 100%	20NE 88		
2	2473	753.9										Light groy fizzilozhalo	Shalo		ZONE #7		
3	2815	\$58.2										Milky, fine grain, an gular, moderately sarted zend Man calcareaw	Sendetano	Sandrtano 190%	ZONE %6		
456	3167 3186 3406	935 971.3 1038							_	+		Dark groy fizzilo zhalo. Non calcaro ouz	Shalo	Shale 100%	ZONE #5		
1	3649	1112.5										Dark groy fizzilo zhalo uithz and and coalNon calcareauz	Sendy Shele	5and30%-Shalo705	ZONE 84		
\$	3705	1129.5					Dark groy fizzilozhalo.Nan calcaroaur	Shale	Shale 100%	20NE 83							
,	3124	1165.8										Milky, fine to coarse grain, sub angular to subrounde- zend, poorly sarted. Man colcare our	Shaly Sendrton	5and70%-Shalo30%	ZONE %2		
10	3955	1205.7										Dark grey fizzilezhele uithzand .Nan calcereauz	Sendy Shele	5end30%-Shelo70%	20NE \$1		
11 12	4139 4186	1231.4 1276.2			-	_				+		Dark groy fizzilazhala.Nan calcaranur			ZONE 80		
13 14	4284 4360	1306 1329.2			_					+	F	Light groy füzillozhale.Nen celceroeur			ZONE 79		
15 16	4412 4473	1345.1 1363.7			_		-		-	+	F	Dark groy fizzilozhalo. Nan calcaro aur			20NE 78		
17 18 19	4640 4726 4817	1414.6 1440.3 1468.5										Light groy fizzilozhalo. Nan celcoroauz	Shalo	Shale 108%	ZONE 77		
20 21 22	4192 5160 5161	1491.4 1542.6 1573.4										Dark gray füzilazhala.Nun calcaranuz			20NE 76		
23	5253	1601.5										Dark gray Fizzilazhela uith ezal.Non calcorazur			20NE 75		
24	5314	1620.1										Dark grey Fizzilezhele uithzand.Nan calcarezuz	Sendy Shelo	5and30%-Shalo70%	20NE 74		
25 26 27	5581 5688 5751	1701.5 1734.1 1753.3										Derk groy füzillezhale.Nen celcareeuz	Shale	Shale 100%	20NE 73		
28	5772	1759.7								Ť	T	Milky, fine-medium grained, rounded, well zorted. No	Sendrteno				
29	5 777	1761.2										calcarvaur	Sendrtano	3 andrtono 100%	ZONE 72		
30	5129	1777.1	_									Dark groy füzzilezhale.Non celcaroour	Shele	Shale 100%	20NE 71		
	_	_		1	-	-	-		-		+-						

Geochemical Analysis: The geochemical analysis was carried out for some elements, which include Na, Al, U, Zr, K and Th using the Atomic Absorption Spectroscopy (AAS). Spectroscopic analytical procedure is used for quantitative and qualitative determination of chemical elements using the absorption of optical radiation (light) by atoms in gaseous state. It determines concentration of elements in a particular sample to be analysed. Apparatus and Reagents Materials used for the analysis include: - AA spectrometer - Vibrator - Sample scale - Conical flask - Whatman filter paper No:42 - Polythene funnels -Unicam 929 spectrometer (AA PG 550 Spectrometer) - Extracting solution (9ml of Conc. HCl, 3ml of HNO3 and 2ml of perchloric acid and make up to a final volume of 1litres with deionized water. - 1000mg/l Stock Standard solution of (Na, Al, U, Zr, K/Th, etc) were used in concentration 0, 0.2, 0.4, 0.6, 0.8, and 1mg/l for each analyte analysed.

_			1.1.1.1.1.1.1.1		1	1	
2	5837	1795		Derk groy fizzile shalo with sen UMan celear ow	Sendy Shelo	5and30%-Shelo707	20NE 70
33	5866	1788.4		Miky, molium grainod y ob raun do it a roundod, well y anted y and. Nan calcaryour	Shah Sandrton	o5and70%-Shelo307	ZONE69
34	5886	1794.5		Groy fizzilozhalo uithzand. Han cel caroau	Sendy Shele	5and30%•Shele70;	ZONE 68
35	5904	1810		Groyfuriloshalo.Nan calcaroaur	rhalo	Shele 101%	ZONE67
36	5913	1802.7		Milky, motium reparatol grained grain angular, moder stely sorted sont Man colours our	Shaly Sandrton	of and 15%-Shele 25%	ZONE66
37	5949 5996	1813.7 1828		Gray fuzilazhala. Mon calcaraouz	Shab	Shele 101%	20NE 65
3	6013	1833.2		Miky, medium caare grain, angular tazubrangular materatul yzarted uithzhale. Nan calcareau	Shaly Sandrton	05and70%-Shelo307	ZONE 64
4) 41	6022 6037	\$35.9 \$\$40.5		light gray furila rhala. Man calcara au	Shab	Shele 101%	ZONE 63
ø	6230	1899.3		Miky, fina-coarzo grainod, rub-an gular ta zub- raundod, pauriyzartad Man calcaroau:	Sendrtano	Sandrtano 101%	ZONE62
43	6261	1963.‡		Black coal Non celearvour	Cael	Coel 100%	20NE 61
44	6360	1939		Derk groy fürile shale. Man calcare aus		6. J. Miles	20NE 60
45	6418	1956.7		light gray fizzilazhala. Non calcaraouz	2040	344610172	ZONE 59
45 47	6489 6603	1975.6 2014.6		Miky, fine modern gränd, reundol, will zerted. Ne colorisae	Sandrtano	Sandriano 1011%	ZONE 58
43	6615	2016.7		Gray fizzilazhala. Non calcarapuz	Shalu	Shale 101%	20NE57
49	6626	2020.1		Milky, no diun-cease o proine d, angular sub angular mačorstaly serted Nan calcareau			ZONE 56
5)	6637	2023.4		Milkymadium grain, enguler tazub-enguler grain gazetyzerta d.Nen colcoroau	Sendrtano	Sandrtano 101%	20NE 55
51	668	2025.3		Miky fine-me diun greined, rub rounded to rounded. poptly zerted Man colcore w			ZONE 54
52	6725	2050.3		Gray fuzilazhala.Non celearaour	Shalo	Shele 1017/	20NE53
53	6795	2071.6		Milky motium - caearo grainod, paarlyzertod, anguler tazub-anguler. Han culcaroau			20NE 52
54	630)	2073.1	· · · · · · · · · · · · · · · · · · ·	Milky, finantu dium grained, sub angular sub raunded.Nen calconour			ZONE 51
55	6805	2074.6			Sendrtano	Sandreano 101%	
56	631)	2076.2		Milky, mo fium grained, zob raundod, wellzantod, Neu color zawz			ZONE 50
57	6817	2078.3					
58	635	2083.#		Gray fuzilazhala .Mun calcaranur	Shalo	Shele 101%	20NE 49

IGHODARO, EJ; OKIOTOR, ME; UMOH, EE; ITIOWE, K

RESULTS AND DISCUSSION

Sedimentological Analysis: The Sedimentological analysis lead to the production of the lithostratigraphical framework of the OGE-1 Well, which is as expressed in Figure 3. The Sedimentological analysis with focus of lithologic type, sediment colour, grain shape, grain size and sorting produced different facie types that ranged from sandstone to shale, very fine to coarse grains, angular to rounded grains, poorly to well sorted sediments. The result of the sedimentological analysis showed parameters ranging from poorly sorted to well sorted sediments, very fine to coarse grained and lithology being either sand, shaly sand, sandy shale or shale. The sandy lithologies represented areas of relatively high energy of deposition, and shaly lithologies depicted zones of very low energy of deposition. The colouration of the shales varied form light to dark shales - depends on the organic content it has. The higher the organic content, the darker the shales.

59	6843	2086.2		Milky, coarze grainedzand, angular,moder zorted.Hon calcareouz	itoly		ZONE 48
60	6847	2087.5		milky, modium grainodzand, zubrangula modoratolyzartod.calcarouur	n.		ZONE 47
61	6852	2089		Milky, very fine grained, raunded, uell zar .Nan calcareaur	od,		ZONE 46
62	6855	2089.9			Sendrtane	Sandrtano 100%	
63	6863	2092.3					
64	6870	2094.5		Milky, fine-coarre grained,poorlyzarte angulartozub angular.Non calcaroow	8,		ZONE 45
65	6880	2097.5					
66	6912	2107.3	<mark></mark>				
67	6927	2111.8		Grey fizzilezhale uithrand and coal.No calcareouz	Sandy Shale	and30%-Shalo70	ZONE 44
68	6930	2112.8		Milky, medium - caarse grained, angular -, raunded, paar ta maderately sarted. Na	ub Sendrtane	5 J	ZONE 43
69	6935	2114.3		Milky, vory fine grained, rounded, well sorted.Non calcareour	Sandriano	- Sanartano IVV/.	ZONE 42
70	6942	2116.4		rinky, modum grainod, zuerangular, maderately sarted sand with shale. Mai	Shaly Sandrtan	and70%-Shalo30	ZONE 41
71	7115	2169.2		Dark groy fizzilozhalo.Nan calcaroaw	Shalo	Shale 100%	ZONE 40
72	7130	2173.7		Milky, fine grained, rounded, well sorted. calcoropur	an Sendrtano	Sandrtano 100%	ZONE 39
13	7132	2174.3		Milky, fine-medium grained,sub angular ta rounded, poor to moderately sorted and shale. Non calcoreous	rub ith ShalySandrtan	and70%-Shalo30	ZONE 38
74	7137	2175.9		Milky, very fine grained, rounded, well sorted.Man calcareour	Sandritane		ZONE 37
75	7145	2178.3		Milky, fino-modium grainod, rubraundod raundod, madoratolyzartod. Nan calcaro	ta Sandrtane	Sandrtane 100%	ZONE 73%
76	7155	2181.4		Milky, međium - coarzo grain, angular, po zarted. Nan calcareauz	rly Sendrtane		ZONE 35
77	7165	2184.4		Dark grey fizzilezhale.Nan calcareau	Shalo	Shale 100%	ZONE 34
78	7175	2187.5		Milky, fino-coarso grainod, angular tasu roundod, poorlysartod. Han calcaroou	b. Sandrtano	Sandrtune 100%	ZONE 33
79	7184	2190.2		Milky, vory fino grainod, raundod, uoli rartod. Nan calcaroaur			ZONE 32
80 81	7225 7337	2202.7		Dark groy fizzilozhalo. Man calcaroaw	Shalo	Shale 100%	ZONE 31
\$2	7345	2239.3		Milky, fino modium grainod zubanular t zubraundod, maderatolyzarted zand uit	⁰ Shaly Sandrton	and75%-Shalo25	ZONE 30
\$3	7365	2245.4		Milky, medium coarze grained, angular zubraunded, poarly zarted. Non calcarea	u Sandrtano	Sandrtone 100%	ZONE 29
84	7385	2251.5		Milky , fine – coarse, poorly sorted, sub and to sub-rounded sand with shale. Non calcor	ilar Shaly Sandrta	and60%-Shalo40	ZONE 28

The shale lithologies represent probable sources and cap rocks. As petroleum source rocks are argillaceous shale sediments; while the sands represent probable source rocks. The lithologies that are heterolithic have sediment composition ranging fifty (50) percent of sand and fifty (50) percent of shale. Where the sand is 100 percent sand, it is noted to be a probable good reservoir, but where it has fines in it, it loses permeability, and hence a poor reservoir rock

Geochemical Profiles: The plot of Na/Zn shows a variation of Na/Zn with depth peaking at both top and bottom of the well. While the graph of K/Mn didn't show much variation in trend. The Na/Zn profile showed a peak of profile at the beginning of the well, and another peak at the bottom, showing that the concentration of Na reduced with relative to depth, and suddenly increased again toward the end of the graph. These were minor variations within the length of the well. While the value of Zn increased with depth with a sudden reduction at the bottom of well, also with minor variations along the well depth.

IGHODARO, EJ; OKIOTOR, ME; UMOH, EE; ITIOWE, K

	Table 1: Geochemical Analysis Concentration (mg/kg)										
S/N	Depth (Ft)	Na	Al	U	Zr	К	Th	Mn	Zn		
1	2276 - 2473	39.72	52.46	0.142	0.2835	175.22	0.057	5.68	7.16		
2	2815 - 3067	30.25	46.34	0.105	0.2500	161.77	0.048	4.93	7.16		
3	3186 - 3406	25.47	38.62	0.103	0.2175	151.55	0.044	4.60	7.16		
4	3649 - 3705	23.03	44.23	0.104	0.075	139.90	0.014	4.21	6.80		
5	3824 - 3955	17.96	40.91	0.069	0.083	117.46	0.017	3.75	5.86		
6	4039 - 4186	16.24	28.34	0.088	0.066	106.65	0.014	3.75	4.40		
7	4284 - 4360	13.04	28.30	0.081	0.054	100.96	< 0.001	3.75	4.40		
8	4412 - 4473	9.32	28.14	0.079	0.036	96.30	< 0.001	3.46	4.40		
9	4640 - 4726	8.00	27.55	0.039	0.017	92.52	< 0.001	3.44	4.36		
10	4817 - 4892	6.87	26.83	0.054	0.014	89.28	< 0.001	3.36	4.09		
11	5060 - 5161	6.64	21.23	0.052	0.015	88.54	< 0.001	2.88	3.87		
12	5253 - 5314	5.66	16.05	0.029	0.014	88.54	< 0.001	2.60	3.50		
13	5581 - 5688	5.51	13.24	0.048	0.014	84.60	< 0.001	2.60	3.46		
14	5751 - 5772	4.44	12.05	0.048	0.014	82.85	< 0.001	2.60	3.46		
15	5777 - 5829	3.36	11.76	0.017	0.014	80.64	< 0.001	2.32	3.46		
16	5837 - 5844	3.20	11.23	0.013	< 0.001	76.20	< 0.001	1.57	3.45		
17	5866 - 5886	2.83	10.81	0.013	< 0.001	69.98	< 0.001	1.01	3.06		
18	5904 - 5913	3.13	10.74	0.013	< 0.001	69.68	< 0.001	1.76	3.09		
19	5949 - 5996	3.05	10.55	0.012	< 0.001	65.24	< 0.001	2.44	3.05		
20	6013 - 6022	2.85	10.55	0.007	< 0.001	59.90	< 0.001	2.37	2.96		
21	6037 - 6230	2.85	10.55	< 0.001	< 0.001	59.00	< 0.001	2.35	2.93		
22	6261 - 6360	2.85	10.1	< 0.001	< 0.001	59.00	< 0.001	2.31	2.89		
23	6418 - 6480	2.85	9.14	< 0.001	< 0.001	57.95	< 0.001	2.31	2.89		
24	6608 - 6615	2.49	8.54	< 0.001	< 0.001	56.89	< 0.001	2.31	2.89		
25	6626 - 6637	2.49	7.94	< 0.001	< 0.001	56.89	< 0.001	2.31	2.89		
26	6643 - 6725	2.32	7.50	< 0.001	< 0.001	53.67	< 0.001	2.21	2.76		
27	6795 - 6800	2.32	7.50	< 0.001	< 0.001	51.47	< 0.001	2.17	2.71		
28	6805 - 6810	2.15	7.50	< 0.001	< 0.001	51.47	< 0.001	2.14	2.68		
29	6817 - 6835	1.98	7.25	< 0.001	< 0.001	51.47	< 0.001	2.11	2.63		
30	6843 - 6847	1.98	6.47	< 0.001	< 0.001	49.92	< 0.001	1.85	2.32		
31	6852 - 6855	1.69	6.00	< 0.001	< 0.001	43.38	< 0.001	1.51	1.89		
32	6863 - 6870	1.39	5.94	< 0.001	< 0.001	41.39	< 0.001	1.34	1.67		
33	6880 - 6912	1.39	5.94	< 0.001	< 0.001	33.51	< 0.001	1.24	1.55		
34	6927 - 6930	1.39	5.47	< 0.001	< 0.001	31.08	< 0.001	1.16	1.45		
35	6935 - 6942	8.10	5.47	< 0.001	< 0.001	29.63	< 0.001	1.16	1.45		
36	7115 - 7130	7.94	5.47	< 0.001	< 0.001	27.91	< 0.001	1.14	1.43		
37	7132 - 7137	7.40	5.47	< 0.001	< 0.001	25.29	< 0.001	1.06	1.32		
38	7145 - 7155	6.30	5.47	< 0.001	< 0.001	21.52	< 0.001	0.90	1.13		
39	7165-7175	5.82	5.47	< 0.001	< 0.001	38.33	< 0.001	0.83	1.04		
40	7184 - 7225	5.70	4.96	< 0.001	< 0.001	18.86	< 0.001	0.81	1.02		
41	7337 - 7345	5.43	4.96	< 0.001	< 0.001	18.86	< 0.001	0.78	0.97		
42	7365 - 7385	5.36	4.96	< 0.001	< 0.001	18.86	< 0.001	0.77	0.96		
43	7419 - 7550	5.12	4.91	< 0.001	< 0.001	17.48	< 0.001	0.73	0.92		
44	7591 - 7732	5.14	4.69	< 0.001	< 0.001	15.71	< 0.001	0.73	0.92		
45	7875 - 7947	2.95	4.58	< 0.001	< 0.001	10.10	< 0.001	0.42	0.53		

IGHODARO, EJ; OKIOTOR, ME; UMOH, EE; ITIOWE, K

The K/Mn profile only slightly varied with depth around the mean, but a spike of K value broke put down hole, which gives credit to the increase value of K relative to Mn at that depth. Sodium (Na) and Potassium (k) concentrations chiefly reflect the higher proportion of clay minerals which were deposited in a marine environment. Sodium (Na) and Potassium (K) values are largely controlled by the abundance of clay minerals, therefore at the top and bottom of the well, was a high occurrence of clay mineral. Clay minerals are a product of the weathering of either plagioclase or orthoclase feldspar. This also follows that in-between the clay//shale at the top and bottom.With the inequality of the proportion of Na/K and Zn/Mn, it shows that the lithology ranged from sandy to clayey. The variation of the graphs of Na/Zn and K/Mn shows that the environment is one of intercalation of sandy and clayey sediment components. It therefore, tells that the environment of deposition is one of a paralic type with a repeated cycle of the deposition of sand and shale alternatively, which tells that the paleo environment reflected an alternation of marine and continental controls with time. So the environment was a paralic transitional environment, with the interfingered deposition of sand and shale sediments.

Conclusion: This work has shown that geochemical ratio variations alongside sedimentological parameters can give pointers to the prevailing environmental conditions at the time of deposition of sediment based on their chemical constituents.

REFERENCES

- Burke, KCB; Dessauvagie, TFJ; Whiteman, AJ (1971). "The Opening of the Gulf of Guinea and Geological History of the Benue Depression and Niger Delta": *Nature Phys.* 38, 51-55.
- Corredor, F (2004). Structural Styles in the Deepwater Fold and Thrust Belts of the Niger Delta. *Am. Assoc. Petrol. Geol. Bull.* 89 (6). 753 – 780.
- De Lange, G J; Jarvis, I; Kuijpers, A (1987). Geochemical Characteristics and Provenance of Late Quaternary Sediments from the Madeira Abyssal Plain, N Atlantic. *Geological Society, London, Special Publications*; Vol. 31; Pp. 147-165.
- Doust, H; Omatsola, E (1990). Niger Delta. In: Edwards J.D and Santagrossi, P.A (eds), Divergence/passive Basins. Am. Assoc. Petrol. Geol. Bull. Memoir. 45. 201-238.
- Evamy, DD; Haremboure, J; Kamerling, P; Knapp, WA; Molloy, FA; Rowlands, PH (1978).

Hydrocarbon Habitat of Tertiary Niger Delta. Am. Assoc. Petrol. Geol. Bull. 62. 1-39.

- Ighodaro, EJ; Imasuen OI; Lucas, FA; Okiotor, ME; Uchegbulam, O; Ogueh, ED; Chigbufue, IG (2018). Integrated Sedimentological and Chemostratigraphic Characterisation of OGE-#1 Well, Greater Ughelli Depo-Belt, Niger Delta Basin. J. Min. Geol. 54(2) 2018. 149 – 164
- Jarvis, I; Moreton, J; Gérard, M (1998). Chemostratigraphy of Madeira Abyssal Plain. Miocene–Pleistocene Turbidites, Site 950. Proceedings of the Ocean Drilling Program, Scientific Results, 157: 535-558.
- Jarvis, I; Murphy, AM; Gale, AS (2001). Geochemistry of Pelagic and Hemipelagic Carbonates: Criteria for Identifying Systems Tracts And Sea Level Change. J. Geol. Soc. 158: 685-696.
- Lucas, FA; Efiebuke, Esther O; Omodolor, Hope E; Aduomahora, BO (2016). Chemostratigraphy: Major/Minor Elemental Ratio Trends in Goml-1 Well Benin Flank in the Northern Delta Depobelt Nigeria (A Case Study of Na:Zn And K:Mn). *Inter.* J. Sci. Basic. Appl. Res. 28, (3) 204-216.
- Mabrouk, A; Jarvis, I; Belayouni, H; Moody, RTJ; Cabrera, SD (2005). An Integrated Chemostratigraphic Study of the Campanian-EarlyMaastrichtian Deposits of the Offshore Miskar Field in Southeastern Tunisia: SIS, _13C and _18O Isotopes, and Elemental Geochemistry. *Stratigraphy*, 2, 3.
- Mabrouk, A; Belayouni, H; Jarvis, I; Moody, RTJ (2006). Strontium, δ18O and δ13C as Palaeoindicators of Unconformities: Case of the Aleg and Abiod Formations (Upper Cretaceous) in the Miskar Field, Southeastern Tunisia. *Geochem. J.* 40. 405 to 424.
- Murat, RC (1972). Stratigraphy and Paleogeography of the Cretaceous and Lower Tertiary in Southern Nigeria. *In*: Dessauvagie, T. F. J. and Whiteman, A. J. (Eds.), *African Geology. University of Ibadan Press, Nigeria*, Pp. 251-266.
- Nwozor, KR; Omudu, MI; Ozumba, BM; Egbuachor, CJ; Onwuemesi, AG; Anike, OL (2013). Quantitative Evidence of Secondary Mechanisms of Overpressure Generation: Insights from Parts of Onshore Niger Delta, Nigeria, petr. Techn. Dev. Jour., 3(1), 64-83. Petrol. Geol. Bull. 62, 295-306.

IGHODARO, EJ; OKIOTOR, ME; UMOH, EE; ITIOWE, K

- Ratcliff, KT; Martin, J; Pearce, TJ; Hughes, AD; Lawton, DE; Wray, DS; F. Bessa, F (2006). A Regional Chemostratigraphically-defined Correlation Framework for the late Triassic TAG-I Formation in Blocks 402 and 405a, Algeria. *Petrol. Geosc.* 12. 3–12.
- Reijers, TJA; Petters, SW and Nwajide, CS (1997). The Niger Delta Basin, In: Selley RC, editor, African Basins-Sedimentary Basin of the World 3, Amsterdam. *Elsevier Science*, pp. 151-172.
- Short, KC; Stauble, AJ (1967). Outline of Geology of Niger Delta. Am. Assoc. Petrol. Geol. Bull. 51(5), 761-779.
- Whiteman, A. J., (1982). Nigeria: Its Petroleum Geology, Resources and Potential. Graham and Trotman, London. Pp. 1-394.