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ABSTRACT: A mathematical model of the co-infection dynamics of malaria and dengue fever condition is 
formulated. In this work, the Basic reduction number is computed using the next generation method. The disease-
free equilibrium (DFE) point of the model is obtained. The local and global stability of the disease-free 
equilibrium point of the model is established. The result show that the DFE is locally asymptotically stable if the 
basic reproduction number is less than one but may not be globally asymptotically stable. 
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Malaria is a mosquito-borne disease caused by the 
Plasmodium parasite, which is transmitted through the 
bites of an infected anopheles mosquito. Malaria is 
caused by five different species of Plasmodium: 
Plasmodium falciparum, Plasmodium malariae, 
Plasmodium ovale, Plasmodium vivax, and 
Plasmodium knowlesi. However, Plasmodium 
falciparum is the most prevalent in Africa and it causes 
the highest mortality rate induced by the disease 
(Olumese P., 2005). The World Health Organization 
(WHO) world malaria report, an estimated 219 million 
cases of malaria occurred worldwide in 2017 with 
Plasmodium falciparum and Plasmodium vivax 
parasite species posing the extreme public health 
challenge. In the WHO African Region which has the 
world’s greatest proportions of the population at high 
menace of malaria, P. falciparum is found to be most 
prevalent and accounts for 99.7% of estimated malaria 
cases while P. vivax is responsible for 74.1% of 
malaria cases in the WHO Region of Americas (WHO, 
2018). Dengue is an infectious disease caused by any 
of the four dengue virus serotypes: DENVs 1–4. It is a 
mosquito-borne disease and is primarily transmitted to 
humans by the female Aedes mosquito. Dengue is 
highly prevalent in tropical and subtropical regions, 
reflecting the distribution of the vector, Aedes aegypti 
mosquitoes. Nearly one-third of the global population 
is at risk for infection (Messina et al., 2014). Infection 

with DENV results in varying degrees of pathological 
conditions, ranging from mild asymptomatic dengue 
fever (DF) to severe dengue hemorrhagic fever (DHF) 
and dengue shock syndrome (DSS) which may turn 
fatal (Murphy and Whitehead, 2011). Infected humans 
are the main carriers and multipliers of the virus, 
serving as a source of the virus for uninfected 
mosquitoes. Patients who are already infected with the 
dengue virus can transmit the infection (for 4-12 days) 
via Aedes mosquitoes after their first symptoms 
appear. When a person recovers from dengue infection 
they develop long-term immunity to that specific 
virus, but not the other three dengue viruses. If the 
person becomes infected again with a different dengue 
virus, there is an increased chance that they may 
develop into dengue hemorrhagic fever (Nyerere et al., 
2017). Dengue cannot be spread from human to 
human. Dengue and malaria are the most prevalence 
arthropod-borne diseases with an estimated global 
incidence of 390 million and 214 million cases a year, 
respectively (Chong et al., 2017). Dengue viral and 
malaria parasitic co-infection in an individual is 
regarded as a ‘severe malaria’ case (Rao et al., 2016). 
Mutua et al. (2015) developed a mathematical model 
to describe the co-infection dynamics of malaria and 
typhoid. Elmojtaba (2016) formulated a mathematical 
model to study the co-infection dynamics of malaria 
and visceral leishmaniasis. Bakare and Nwozo (2016) 
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developed and analyzed a mathematical model to 
explore malaria and schistosomiasis confection. 
Mensah et al. (2018) in their work proposed a 
mathematical model to study the transmission 
dynamics of Zika and Malaria in the malaria-endemic 
area. Aldia and Agustin (2018) formulated a 
mathematical model to understand the spread of 
dengue and chikungunya confection in a closed 
population. In this work, we proposed a mathematical 
model for the Co-infection dynamics of malaria and 
dengue fever. 
 

MATERIALS AND METHODS 
Model Formulation: In this model, the total human 

population at any given time t denoted by hN is 

divided into eight sub-classes which are susceptible 

humans  hS , individuals exposed to malaria only

 hmE , individuals infected with malaria only  hmI

, individuals exposed to dengue fever only  hdE , 

individuals infected with only dengue fever  hdI , 

individuals exposed to malaria and dengue fever co-

infection  mdE , individuals infected with malaria 

and dengue fever co-infection  mdI , individuals that 

recovered from malaria and dengue fever  hR . The 

vector population includes the Malaria Parasite non-

carrier vectors  mS , Malaria parasite carrier vectors

 mI , Dengue virus non-carrier vectors  dS , and 

Dengue fever carrier vectors  dI . Susceptible 

individuals are recruited through constant h . 

Susceptible individuals are infected with dengue fever 
at through contact with the infectious mosquito at a 

rate d , infected with malaria at a rate m , 

individuals who recover from malaria returns to the 

susceptible class at a rate of h , a susceptible 

individual have a natural death rate of h . The class 

of individuals exposed to malaria only are generated 
by susceptible individuals infected with malaria only 
and reduced by the rate of contacting dengue fever at 

a rate d ,the rate of progression to malaria only 

infected class 1  and natural death rate h . The 

class of individuals infected with malaria  hmI  is 

increased by 1 the rate of progression from malaria 

exposed class, reduced by the rate of contacting 

dengue fever at a rate d , disease-induced death rate 

1 , malaria only recovery rate 1 , and natural death 

rate h . Individuals that are exposed to dengue fever 

only are generated by susceptible individuals infected 

with dengue fever at a rate d , reduced by the natural 

death rate h , rate of progression to infected class for 

dengue fever only at the rate, 2 and the rate at which 

susceptible individuals contact malaria only. The 
population of individuals with dengue fever only 

 hdI  is generated by individuals that progressed 

from the exposed class  hdE  at the rate 2 . It is also 

reduced by disease-induced death rate 2 , recovery 

rate from dengue fever only 2 and the rate of 

contacting malaria only. The population of individuals 
exposed to malaria and dengue fever co-infection 

 mdE is increased by the rate of acquiring malaria 

through contact with the parasite carrier vectors and 
dengue fever through contact with dengue virus carrier 
vectors but reduced by natural death rate and rate of 
progression to infected malaria and dengue fever co-

infection class 3 . Infected malaria and dengue fever 

co-infection class  mdI are increased by 3 and 

reduced by the natural death rate, co-infection 

recovery rate 3 , and disease-induced death rate 3 . 

The recovery class  hR  is generated by the 

individuals who recovery from malaria only at the rate

1 , individuals who recover from dengue fever only 

at the rate 2  , individuals who recover from both 

diseases at the rate 3 , and reduced by natural death 

rate and individuals who return to susceptible class 

after recovery at the rate h . The Malaria parasite 

non-carrier vector population  mS  is generated by a 

constant m , reduced by the vector natural death rate

m   and the  rate at which the non-carrier vector 

acquires malaria parasite through contact with 
exposed and infected individuals with malaria only 
and co-infection of malaria and dengue fever given as

vm The Malaria parasite carrier vector population is 

generated by the  rate at which the non-carrier vector 
acquires malaria through contact with exposed and 
infected individuals with malaria only and co-
infection of malaria and dengue fever and the natural 

death rate m . The Dengue virus non-carrier vector 
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population  dS  is generated by a constant d , 

reduced by the vector natural death rate d , and the  

rate at which the Dengue virus non-carrier vector 
acquires dengue virus through contact with exposed 
and infected individuals with dengue fever only and 

co-infection of malaria and dengue fever given as vd  

 

The Dengue virus carrier vector class  dI  is 

increased by the rate at which the Dengue virus non-
carrier vector acquires dengue virus through contact 
with exposed and infected individuals with dengue 
fever only and co-infection of malaria and dengue 
fever and reduced by the vectors natural death rate 

d . 

 
Assumptions of the Model: The following 
Assumptions are made in formulating the model: (i) 
Recruitment into the susceptible population is constant 
(ii) The recovery population include those jointly 
infected with Malaria and Dengue fever only (iii) 
Recovery from Dengue fever is permanent. 

 
Fig 1: Schematic Representation of the Model 

 
With the assumptions, the co-infection model equations is given below as: 

hhhmmddhmhh
h SSIIR

dt

dS
  )(  `           (1) 

hmhddhmm
hm EISI

dt

dE
)( 1                 (2) 

hmhddhm
hm IIE

dt

dI
)( 111                 (3) 

hdhmmhdd
hd EISI

dt

dE
)( 2                (4) 

hdhmmhd
hd IIE

dt

dI
)( 222               (5) 

mdhhdmmhdmmhmddhmdd
md EIIEIIIEI

dt

dE
)( 3             (6) 

mdhmd
md IE

dt

dI
)( 333  

               
(7) 

hmhhmdhdhm
hm RIII

dt

dR
)(321  

              
(8) 

mmmmdmdhmhmvmm
m SSIEIE

dt

dS
  )(  (9) 

mmmmdmdhdhdvm
m ISIEIE

dt

dI
  )(   (10) 

dddmdmdhdhdvdd
d SSIEIE

dt

dS
  )(   (11) 

dddmdmdhdhdvd
d ISIEIE

dt

dI
  )(   (12) 
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Table 1: Variables of the Model 
Symbols Description 

hS  
Susceptible Humans 

hmE  Exposed Humans with Malaria 

hmI  Humans infected with Malaria only 

hdE  Exposed Humans with Dengue Fever 

hdI  Humans infected with Dengue Fever only 

mdE  Exposed Humans jointly infected with Malaria and Dengue Fever 

mdI  Humans jointly infected with Malaria and Dengue Fever 

hR
 

Humans Recovered from Malaria and Dengue Fever 

mS
 

Malaria Parasite carrier vectors 

mI
 

Malaria Parasite non-carrier vectors 

dS
 

Dengue virus non-carrier vectors 

dI
 

Dengue virus carrier vectors 

 
Table 2: Parameters of Model 

Symbols Description 

h  Recruitment rate of Human Population 

m  Recruitment rate of Malaria Parasite Vectors 

d  Recruitment rate of Dengue Virus Vectors 

1  Recovery rate for Humans infected with Malaria only 

2  Recovery rate for Human infected with Dengue only 

3  Recovery rate for Human jointly infected with Malaria and Dengue 

h  Rate at which recovered becomes susceptible 

1  
Rate at which hmE becomes hmI  

2  
Rate at which hdE becomes hdI  

3  
Rate at which mdE becomes mdI  

m  
Transmission rate of Malaria Parasite Vectors per human per unit time 

d  
Transmission rate of Dengue Virus Carrier Vectors per human per unit time 

vm
 

Probability for Malaria Parasite Vectors to be infected 

vd  
Probability for Dengue Virus Vectors to be infected 

1  
Disease induced death for hmI  

2  
Disease induced death for hdI  

3  
Disease induced death for mdI  

h  
Natural death rate for Humans 

m  
Natural death rate of Malaria Parasite Vectors 

d  
Natural death rate of Dengue Virus Vectors 

 
Disease Free Equilibrium (DFE) Point: This is the 
state solution where is no infection in the population. 

The DFE of the model is obtained when the right-
hand side of the model equation (1) – (12) is set to 
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zero. Thus, the DFE point of Malaria-Dengue Fever 
co-infection is given as in equation 13. 
 
Basic Reproduction Number: The basic reproduction 
number is defined as the expected number of 
secondary infections produced by an index case in a 
completely susceptible population. For this research, 
the basic reproduction number is defined as the 

number of secondary malaria (or dengue) infections 
due to single malaria (or a single dengue-infective) 
individual. Applying the next generation method, the 
basic reproduction number is the spectral radius of the 

matrix 
1FV where F  and V are transmission and 

transition matrices respectively defined as in equation 
14. 
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The basic reproduction number 0R is given as 











 


2

2
2

1

0 ,max
dh

dhvdd

mh

mhvmmR






                  (16) 

 

RESULT AND DISCUSSION 
Local Stability of the Disease-Free Equilibrium: 
Theorem: The Disease-Free Equilibrium of the 
Model Equations (1) – (12) is locally asymptotically 

stable if 10 R and unstable if otherwise. 

Proof: The system (1) – (12) at DFE is given as 
 

   BAJ 0            (17) 

 
Components in are given as  
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Where  hhz  4             (20) 

 
Applying Gauss Jordan elimination method we have the following from the characteristics equation: 
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From 10 we have 

 

  01 2
010  mR           (22) 

 

It, therefore, implies that 010  if 10 mR  

Also from 12 we have 

  01 2
012  dR            (23) 
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It shows that 012  if 10 dR  

Therefore, the model system is locally asymptotically stable at DFE if and only if 10 R  i.e. 10 mR  and 

10 dR .  

 
Global Stability of the Disease-Free Equilibrium: The global asymptotic stability (GAS) of the disease-free 
equilibrium is investigated using theorem in [2]. We re-write the model as  

 ZXH
dt

dX
,            (24) 

 ,, ZXG
dt

dZ
     00, XG             (25) 

Where  dmhmh SSRSX ,,,             (26) 

 

and  dmmdmdhdhdhmhm IIIEIEIEZ ,,,,,,,        (27) 

 
With the components denoting the uninfected population and components denoting the infected 
population. 
 
The disease-free equilibrium is now denoted as  
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The following conditions must be satisfied to guarantee global asymptotical stability: 

i.  0,XH
dt

dX
 ; 

*X  is globally asymptotically stable 

ii.    ZXGPZZXG ,ˆ,  ,   0,ˆ ZXG  for   ZX , ,          (29) 

 

Where  0,*XGDP z   is a M-matrix (the off-diagonal elements of P are non-negative) and    is the 

region where the model makes biological sense. 
 
If the system satisfies the condition above, then the theorem below holds. 

Theorem: The fixed point   0,*0 XE   is globally asymptotically stable equilibrium of the system provided 

10 R  that and the conditions in (29) are satisfied. 

Proof: From the model system, we have 
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   ZXGPZZXG ,ˆ,                           (31)
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From (35), it shows   0,ˆ
5 ZXG so the conditions are not met. Therefore, may not be globally 

asymptotically stable when 10 R . 

 
Conclusion: In this work, a co-infection model is 
formulated to study the transmission dynamics of 
Malaria and Dengue fever virus. The basic 
reproduction number of the model is derived using the 
next generation method, local and global stability of 
the Disease-free equilibrium (DFE) is carried out. It 
was observed that the DFE is locally asymptotically 

stable if 10 R  but may not be globally 

asymptotically stable. 
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