Bennett’s fracture: a direct volar surgical approach

L N Gakuu MMed
Senior Lecturer
Department of Orthopaedic Surgery
University of Nairobi

S M Kanyi MMed
Lecturer
Department of Anatomy
Chiromo Campus
University of Nairobi

From cadaver dissections of the recurrent motor branch of the median nerve, we determined the exact relationship of its terminal branches at the base of the thumb. This enabled us to surgically approach the first carpometacarpal joint directly on the volar aspect for management of Bennett’s fractures in 18 consecutive patients.

As compared with the different surgical approaches advocated and commonly used, the direct volar approach affords clear direct exposure of the intra-articular fracture at the base of the thumb so aiding appropriate reduction and fixation of the fracture. The proposed approach is safe and requires minimal dissection or soft tissue resection. The results were excellent and no case of nerve injury was encountered.

Introduction

A variety of fractures and dislocations occur at the base of the first metacarpal. The extra-articular fractures are usually transverse or short oblique across the base of metacarpal and are generally stable and easily treated conservatively by plaster splintage. The fracture described by Edward Hallaran Bennett in 1882, however, is an unstable oblique fracture entering the carpometacarpal joint at about the middle of the articular surface. There is a tendency for the large distal fragment to be displaced backwards and upwards upon the small proximal fragment due to traction of the abductor pollicis longus muscle. The small fragment is thus left along the palmar aspect.

Bennett, in 1886, advocated closed reduction and splintage with plaster for four weeks (Fig 1).

FIG 1 Plaster cast splintage for Bennett’s fracture

Many methods of closed reduction and stabilisation have been suggested but found unsatisfactory due to resultant joint incongruity which leads to post-traumatic osteoarthritis (Fig 2). The aim of treatment should be exact reduction and restoration of the articular surface. There are various recommended methods of achieving proper anatomic reduction. Closed reduction and plaster was advocated by Bennett and Oosterboos and closed reduction and percutaneous pinning by Kahler. Open reduction and K-wiring or open reduction and miniaturised osteosynthesis using A-O instrumentation or external fixation have their advocates. Recently, Herbert Screw fixation has been used by Hruska and Chabon.
The recommended surgical approach was dorsal until 1950 when Wagner\(^2\) modified the dorsal incision by extending it anteriorly at the level of the wrist crease thereby exposing the first carpometacarpal joint by mobilising the thenar muscles. Later, in 1953, Gedda and Moberg described a new skin incision made at the base of the thenar eminence without posterior extension\(^3\), whereby the first carpometacarpal joint is exposed by resecting and reflecting the thenar muscles distally. These incisions do not offer direct access to the anteriorly placed small proximal fragment and the extensive dissection of thenar muscles goes against the principle of preservation of the blood supply of the bone fragments and soft tissues, which is needed for proper healing\(^4\).

The main reason for the incisions described is to avoid injury to the recurrent branch of the median nerve. We, therefore, decided to familiarise ourselves with the nerve supply of the thenar muscles with special reference to the recurrent motor branch of the median nerve.

Materials and methods

We performed 15 cadaver dissections of the forearm, wrist and hand at the Department of Human Anatomy, Chiromo Campus, University of Nairobi. The median nerve was identified and exposed by dividing the superficial flexor muscles and brachioradialis. The median nerve was found entering the forearm from the cubital fossa between the two heads of pronator teres. It crosses anterior to the ulna artery and descends between the superficial and deep flexors. At the wrist the median nerve is remarkably superficial lying medial to the tendon of the flexor carpi radialis and just deep to the palmaris longus tendon. The median nerve then passes through the carpal tunnel into the hand where it divides into the terminal branches. The thenar muscles are supplied by the motor recurrent branch of the median nerve which we found reaching the flexor pollicis brevis at the junction of proximal and middle thirds of the muscle. On entering the flexor pollicis brevis, the nerve divides into three branches: one to the muscle (which spreads along the muscle), a second branch to the opponens pollicis (going deep to the muscle), and a third branch to the abductor pollicis brevis (Fig 3). The findings were consistent in all the dissections.

Based on these findings, 18 consecutive patients with Bennett’s fractures were operated on via a direct volar approach with the incision based on the first carpometacarpal joint (Fig 4).

OPERATIVE TECHNIQUE

A skin incision is made 2cm radial and parallel to the thenar crease over the first carpometacarpal joint (Fig 4). The subcutaneous tissues are dissected to
expose the palmar fascia thereby exposing the muscles of the thenar eminence, mainly the abductor pollicis brevis. The thenar muscles are split longitudinally along the direction of their fibres by blunt dissection thereby exposing the first carpometacarpal joint which is easily identified due to ballooning of the capsule by the underlying haematoma. The capsule is then incised to expose the fracture which is reduced and fixed with a K-wire (Fig 5), or with mini-fragment A-O screws (1.5mm or 2mm) (Fig 6). The incision is then closed in layers and the thumb splinted in an aluminium splint for three weeks before being gently mobilised under supervision of the physiotherapists.

Results
The experience gained from the cadaver dissections enabled us to find the natural course of the median nerve across the forearm with particular reference to its recurrent motor branch to the thenar eminence. We found safe direct volar access to the first carpometacarpal joint and thereby obtained exact reduction of the fractures. Good reduction was obtained in all 18 patients with restoration of the function of the thumb. The results were good in terms of range of joint movements and radiographic appearance and there was no case of nerve injury encountered.

Discussion
The nature of Bennett's fracture makes visualization of the small proximal fragment which is usually anterior, difficult through the commonly used dorsal approach. The volar approach has been thought difficult and dangerous for fear of injury to the recurrent motor branch of the median nerve which supplies the thenar muscles. The experience gained from our cadaver dissections showed that it is safe to approach and expose the Bennett's fracture anteriorly. This approach gives good exposure facilitating direct reduction and stabilisation with K-wires or lag screws from the mini-fragment set.

This is a much easier and more direct approach than that described by Gedda and Moberg which involves resection of the thenar muscles from their insertion. These fractures are commonly seen in young patients, usually under 40 years of age, and the end result, if poor, has major social repercussions leading to a poor grip which may grossly affect the performance of manual work. This
direct volar approach is recommended because it allows easy exposure and minimal trauma to the soft tissues.

References