every case of STD, be it ulcerative or non-ulcerative must be thoroughly evaluated by laboratory testing for primary subclinical genital HSV coinfection as this has profound implications on their judicious management and averision of complications.5

References

3. Frenkal LM, Garrathy EM, Sheri JP, Wheeler N, Clark O, Table: Results of various tests in ulcerative and nonulcerative STDs

<table>
<thead>
<tr>
<th>Type of STD</th>
<th>Clinical diagnosis</th>
<th>No. of cases</th>
<th>IgM-HS positive</th>
<th>RPR positive</th>
<th>HIV positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulcerative</td>
<td>Primary chancre</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Chancroid</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Herpes genitalis</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Granuloma inguinale</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Secondary syphilis</td>
<td>9</td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Gonorrhoea</td>
<td>11</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Non-Ulcerative</td>
<td>Genital wart</td>
<td>10</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Candidal balanoposthitis</td>
<td>5</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Genital Molluscum contagiousum</td>
<td>8</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Undiagnosed</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>66</td>
<td>27</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>% positive</td>
<td></td>
<td></td>
<td>40.9%</td>
<td>22.7%</td>
<td>10.6%</td>
</tr>
</tbody>
</table>

BP Peters, *VL Rastogi, Monica, PS Nirwan
Department of Microbiology, Jawaharlal Nehru Medical College and Hospital, Ajmer, Rajasthan - 305 001, India

*Corresponding author (email: <drvjlata@datainfosys.net>)
Received: 15-10-2004
Accepted: 17-12-2004

Prevalence of Non-Keratinophilic Fungi in the Soil

Dear Editor,

Majority of the fungi producing diseases in man and animals exist freely in nature as soil saprophytes or plant pathogens and gain entrance into the body through abrasion, implantation or inhalation. Adametz isolated fungi for the first time from the soil in the year 1886, since then there has been very few reports.1-3 Manipal and surrounding places being coastal areas, experience heavy rainfall with high atmospheric humidity which is most suitable for fungal growth. Soil with natural bamboo habitat in nearby Western ghats with rat burrows predisposes the fungal growth in the area.

Soil samples collected in sterile paper envelopes from 40 different areas surrounding Manipal in the month of October (post monsoon) were investigated for the presence of fungi as per the standard protocol described earlier.2 Soil samples were obtained from sites of rat burrows at the bottom of bamboo trees, which is natural habitat around the place and commonly seen surrounding Manipal.

About 10 grams of each sample of soil was transferred to a sterile tube containing 15-20 mL of sterile saline. The suspension was shaken vigorously and allowed to stand for 30 minutes. One mL of the clean supernatant fluid was inoculated into two tubes of Sabouraud broth and for the isolation of Nocardia spp. by paraffin bait technique.2 Another 5 mL of the supernatant fluid was transferred to a sterile tube containing 5 mL of sterile saline with antibiotics (500 units of penicillin and 30 mg of streptomycin/mL), shaken well and allowed to stand for two hours in order to reduce the bacterial flora. A portion of the suspension was inoculated on

BP Peters, *VL Rastogi, Monica, PS Nirwan
Department of Microbiology, Jawaharlal Nehru Medical College and Hospital, Ajmer, Rajasthan - 305 001, India

*Corresponding author (email: <drvjlata@datainfosys.net>)
Received: 15-10-2004
Accepted: 17-12-2004

Prevalence of Non-Keratinophilic Fungi in the Soil

Dear Editor,

Majority of the fungi producing diseases in man and animals exist freely in nature as soil saprophytes or plant pathogens and gain entrance into the body through abrasion, implantation or inhalation. Adametz isolated fungi for the first time from the soil in the year 1886, since then there has been very few reports.1-3 Manipal and surrounding places being coastal areas, experience heavy rainfall with high atmospheric humidity which is most suitable for fungal growth. Soil with natural bamboo habitat in nearby Western ghats with rat burrows predisposes the fungal growth in the area.

Soil samples collected in sterile paper envelopes from 40 different areas surrounding Manipal in the month of October (post monsoon) were investigated for the presence of fungi as per the standard protocol described earlier.2 Soil samples were obtained from sites of rat burrows at the bottom of bamboo trees, which is natural habitat around the place and commonly seen surrounding Manipal.

About 10 grams of each sample of soil was transferred to a sterile tube containing 15-20 mL of sterile saline. The suspension was shaken vigorously and allowed to stand for 30 minutes. One mL of the clean supernatant fluid was inoculated into two tubes of Sabouraud broth and for the isolation of Nocardia spp. by paraffin bait technique.2 Another 5 mL of the supernatant fluid was transferred to a sterile tube containing 5 mL of sterile saline with antibiotics (500 units of penicillin and 30 mg of streptomycin/mL), shaken well and allowed to stand for two hours in order to reduce the bacterial flora. A portion of the suspension was inoculated on
Sabouraud dextrose agar with and without chloramphenicol (0.05 mg/mL) and cycloheximide (0.5 mg/mL) and incubated at 26°C and 37°C respectively. The cultures were examined twice weekly for a period of six weeks. The different types of colonies were subcultured on Sabouraud dextrose agar slants and pure cultures of the isolates were identified on the basis of microscopic morphology and cultural characteristics.

Out of 40 soil samples analysed for the presence of fungi, 46 strains of fungi were isolated. Among the 46 strains of fungi isolated, 18 strains were Cunninghamella followed by Fusarium (13), Aspergillus (7), Rhizopus (4), Penicillium (2) and Paecilomyces (2) spp.

Of the various fungi isolated from the different soil samples the prevalence of Cunninghamella spp. was shown to be more in the present study. The next common genus in our study were Fusarium and Aspergillus spp. Penicillium as the second dominant spp. Other workers have reported Acremonium and Pseudallescheria boydii also in their studies from soil samples from Tamilnadu, Delhi, UP, Nepal, Andaman and Nicobar islands which we have not isolated. The causative agents of Mycetoma and Systemic mycoses, as reported by others workers, were not encountered in our study.

References

Evaluation of Crystal Violet Blood Agar for Primary Isolation and Identification of Group A-β haemolytic streptococci

Dear Editor,

We read the article in your Journal, vol.22 (3); 2004 page 201, entitled “Evaluation of crystal violet blood agar for primary isolation and identification of Group A-b haemolytic Streptococcus” by K. Chawla and P. S. Rao. We wish to bring to your notice, that the concentration of crystal violet they have used 1: 5 x 10^4 units is too high and would inhibit also, many strains of group A - b haemolytic Streptococci. The reference, they have quoted, for this concentration, is the book on District Laboratory Practice in Tropical Countries, Part 2, by Monica Cheesbrough, page 160. However, page 387, of the same book has given the crystal violet concentration as 1: 5x10^5. We have rechecked both these concentrations in our laboratory and found that concentration of 1:5x 10^5 is appropriate i.e. supports the growth of b haemolytic Streptococci, whereas the concentration quoted by the authors is actually inhibitory to the isolates of b haemolytic Streptococci. Hence it is probable, that the concentration of 1:5x10^4 crystal violet quoted on page 160 in Monica Cheesbrough’s book is probably a printing error, since the same book has mentioned the concentration as 1:5x10^5 on page 387. Recommended concentrations of crystal violet in crystal violet blood agar are actually even lower (1: 10,00,000 and 1: 5,00,000) in standard publications.

References