EDITORIAL BOARD

EDITOR
Dr. SAVITRI SHARMA
L V Prasad Eye Institute
Bhubaneswar - 751 024, India

ASSOCIATE EDITOR
Dr. Shobha Broor
Professor, Department of Microbiology
All India Institute of Medical Sciences
New Delhi - 110 029, India

ASSISTANT EDITOR
Dr. V Lakshmi
Professor and Head, Dept. of Microbiology
Nizam’s Institute of Medical Sciences
Punjagutta, Hyderabad - 500 082, India

ASSISTANT EDITOR
Dr. Reba Kanungo
Professor and Head
Department of Microbiology, Perunthalaivar Kamaraj Medical College and Research Institute, Kadhirkamam,
Puducherry - 605 009, India

ASSISTANT EDITOR
Dr. Shobha Broor
Professor, Department of Microbiology
All India Institute of Medical Sciences
New Delhi - 110 029, India

Dr. V Lakshmi
Professor and Head, Dept. of Microbiology
Nizam’s Institute of Medical Sciences
Punjagutta, Hyderabad - 500 082, India

Members

National

Dr. Arora DR (Rohtak)
Dr. Arunaloke Chakrabartti (Chandigarh)
Dr. Camilla Rodrigues (Mumbai)
Dr. Chaturvedi UC (Lucknow)
Dr. Hemashettar BM (Belgaum)
Dr. Katoch VM (Agra)
Dr. Madhavan HN (Chennai)
Dr. Mahajan RC (Chandigarh)
Dr. Mary Jesudasan (Thirissur)
Dr. Meenakshi Mathur (Mumbai)
Dr. Nancy Malla (Chandigarh)
Dr. Philip A Thomas (Tiruchirapally)
Dr. Ragini Macaden (Bangalore)
Dr. Ramesh K Aggarwal (Hyderabad)
Dr. Renu Bhardwaj (Pune)
Dr. Sarman Singh (New Delhi)
Dr. Seyed E Hasnain (Hyderabad)
Dr. Sitaram Kumar M (Hyderabad)
Dr. Sridharan G (Vellore)
Dr. Sritharan V (Hyderabad)
Dr. Subhas C Parija (Pondicherry)

International

Dr. Arseculeratne SN (Srilanka)
Dr. Arvind A Padhye (USA)
Dr. Chinnaswamy Jagannath (USA)
Dr. Christian L Coles (USA)
Dr. David WG Brown (UK)
Dr. Diane G Schwartz (USA)
Dr. Govinda S Visveswara (USA)
Dr. Kailash C Chadha (USA)
Dr. Madhavan Nair P (USA)
Dr. Madhukar Pai (Canada)
Dr. Mohan Sopori (USA)
Dr. Paul R Klatser (Netherlands)
Dr. Vishwanath P Kurup (USA)

Published by MEDKNOW PUBLICATIONS
A-109, Kanara Business Center, Off Link Rd, Ghatkopar (E), Mumbai - 400075, INDIA
Phone: 91-22-6649 1818/1816, Fax: 91-22-6649 1817 • E-mail: publishing@medknow.com, Web: www.medknow.com

The journal is printed on acid free paper.
Guest Editorial

The Need for Control of Viral Illnesses in India: A Call for Action
C Lahariya, UK Baveja

Review Article

Immunobiology of Human Immunodeficiency Virus Infection
P Tripathi, S Agrawal

Special Articles

Serum Levels of Bcl-2 and Cellular Oxidative Stress in Patients with Viral Hepatitis
HG Osman, OM Gabr, S Lotfy, S Gabr

Rapid Identification of Non-sporing Anaerobes using Nuclear Magnetic Resonance Spectroscopy and an Identification Strategy
S Menon, R Bharadwaj, AS Chowdhary, DV Kaundinya, DA Palande

Original Articles

Species Distribution and Physiological Characterization of Acinetobacter Genospecies from Healthy Human Skin of Tribal Population in India
SP Yavankar, KR Pardesi, BA Chopade

Extended-spectrum Beta-lactamases in Ceftazidime-resistant Escherichia coli and Klebsiella pneumoniae Isolates in Turkish Hospitals
S Hosoğlu, S Gündeş, F Kolaylı, A Karadenizli, K Demirdağ, M Günaydın, M Altindis, R Çaylan, H Ucmak

Typhoid Myopathy or Typhoid Hepatitis: A Matter of Debate
M Mirsadraee, A Shirdel, F Roknee

Correlation Between in Vitro Susceptibility and Treatment Outcome with Azithromycin in Gonorrhoea: A Prospective Study
P Khaki, P Bhalla, A Sharma, V Kumar

Comparison of Radiorespirometric Buddemeyer Assay with ATP Assay and Mouse Foot Pad Test in Detecting Viable Mycobacterium leprae from Clinical Samples
VP Agrawal, VP Shetty

Detection of Mycoplasma Species in Cell Culture by PCR And RFLP Based Method: Effect of BM-cyclin to Cure Infections
V Gopalkrishna, H Verma, NS Kumbhar, RS Tomar, PR Patil
Virulence Factors and Drug Resistance in *Escherichia coli* Isolated from Extraintestinal Infections

S Sharma, GK Bhat, S Shenoy

Antimicrobial Susceptibility Testing of *Helicobacter pylori* to Selected Agents by Agar Dilution Method in Shiraz-iran

J Kohanteb, A Bazargani, M Saberi-Firoozi, A Mobasser

Outbreak of Acute Viral Hepatitis due to Hepatitis E virus in Hyderabad

P Sarguna, A Rao, KN Sudha Ramana

A Comparative Study for the Detection of Mycobacteria by BACTEC MGIT 960, Lowenstein Jensen Media and Direct AFB Smear Examination

S Rishi, P Sinha, B Malhotra, N Pal

Cytokine Levels in Patients with Brucellosis and their Relations with the Treatment

H Akbulut, I Celik, A Akbulut

Brief Communications

Rapid Detection of Non-enterobacteriaceae Directly from Positive Blood Culture using Fluorescent In Situ Hybridization

EH Wong, G Subramaniam, P Navaratnam, SD Sekaran

Latex Particle Agglutination Test as an Adjunct to the Diagnosis of Bacterial Meningitis

K Surinder, K Bineeta, M Megha

Helminthic Infestation in Children of Kupwara District: A Prospective Study

SA Wani, F Ahmad, SA Zargar, BA Fomda, Z Ahmad, P Ahmad

Clinical and Mycological Profile of Cryptococcosis in a Tertiary Care Hospital

MR Capoor, D Nair, M Deb, B Gupta, P Aggarwal

Candida spp. other than *Candida albicans*: A Major Cause of Fungaemia in a Tertiary Care Centre

S Shivaprakasha, K Radhakrishnan, PMS Karim

Case Reports

Enterobacter sakazakii in Infants: Novel Phenomenon in India

P Ray, A Das, V Gautam, N Jain, A Narang, M Sharma

Ocular Toxocariasis in a Child: A Case Report from Kashmir, North India

BA Fomda, Z Ahmad, NN Khan, S Tanveer, SA Wani

Cutaneous Actinomycosis: A Rare Case

SC Metgud, H Sumati, P Sheetal

Fatal Haemophagocytic Syndrome and Hepatitis Associated with Visceral Leishmaniasis

P Mathur, JC Samantaray, P Samanta

A Rare Case of Mucormycosis of Median Sternotomy Wound Caused by *Rhizopus arrhizus*

R Chawla, S Sehgal, S Ravindra Kumar, B Mishra

Mycobacterium fortuitum Keratitis

C Sanghvi

Correspondence

Prevention of Parent-to-Child Transmission of HIV: An Experience in Rural Population

N Nagdeo, VR Thambare
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combining Vital Staining with Fast Plaque: TB Assay</td>
<td>426</td>
</tr>
<tr>
<td>D Rawat, MR Capoor, A Hasan, D Nair, M Deb, P Aggarwal</td>
<td></td>
</tr>
<tr>
<td>Disseminated Histoplasmosis</td>
<td>427</td>
</tr>
<tr>
<td>PK Maiti, MS Mathews</td>
<td></td>
</tr>
<tr>
<td>Authors’ Reply</td>
<td>428</td>
</tr>
<tr>
<td>RS Bharadwaj</td>
<td></td>
</tr>
<tr>
<td>Microwave Disinfection of Gauze Contaminated with Bacteria and Fungi</td>
<td>428</td>
</tr>
<tr>
<td>VH Cardoso, DL Gonçalves, E Angioletto, F Dal-Pizzol, EL Streck</td>
<td></td>
</tr>
<tr>
<td>Endoscope Reprocessing: Stand up and Take Notice!</td>
<td>429</td>
</tr>
<tr>
<td>A Das, P Ray, M Sharma</td>
<td></td>
</tr>
<tr>
<td>Prevalence of Toxoplasma gondii Infection amongst Pregnant Women in Assam, India</td>
<td>431</td>
</tr>
<tr>
<td>BJ Borkakoty, AK Borthakur, M Gohain</td>
<td></td>
</tr>
<tr>
<td>MR Capoor, D Rawat, D Nair, M Deb, P Aggarwal</td>
<td></td>
</tr>
<tr>
<td>Resurgence of Diphtheria in the Vaccination Era</td>
<td>434</td>
</tr>
<tr>
<td>N Khan, J Shastri, U Aigal, B Doctor</td>
<td></td>
</tr>
<tr>
<td>A Report of Pseudomonas aeruginosa Antibiotic Resistance from a Multicenter Study in Iran</td>
<td>435</td>
</tr>
<tr>
<td>MA Boroumand, P Esfahanifard, S Saadat, M Sheikhvatan, S Hekmatyazdi, M Saremi, L Nazemi</td>
<td></td>
</tr>
<tr>
<td>KO Akinyemi, AO Coker</td>
<td></td>
</tr>
<tr>
<td>Book Review</td>
<td>438</td>
</tr>
<tr>
<td>Hospital-Acquired Infections: Power Strategies for Clinical Practice</td>
<td></td>
</tr>
<tr>
<td>Reba Kanungo</td>
<td></td>
</tr>
<tr>
<td>Title Index, 2007</td>
<td>440</td>
</tr>
<tr>
<td>Author Index, 2007</td>
<td>442</td>
</tr>
<tr>
<td>Scientific Reviewers, 2007</td>
<td>446</td>
</tr>
</tbody>
</table>

The copies of the journal to members of the association are sent by ordinary post. The editorial board, association or publisher will not be responsible for non-receipt of copies. If any of the members wish to receive the copies by registered post or courier, kindly contact the journal's / publisher's office. If a copy returns due to incomplete, incorrect or changed address of a member on two consecutive occasions, the names of such members will be deleted from the mailing list of the journal. Providing complete, correct and up-to-date address is the responsibility of the members. Copies are sent to subscribers and members directly from the publisher's address; it is illegal to acquire copies from any other source. If a copy is received for personal use as a member of the association/society, one cannot resale or give-away the copy for commercial or library use.
CANDIDA SPP. OTHER THAN CANDIDA ALBICANS: A MAJOR CAUSE OF FUNGAEMIA IN A TERTIARY CARE CENTRE

*S Shivaprakasha, K Radhakrishnan, PMS Karim

Abstract

This study was conducted to determine the frequency of different Candida spp. isolated from different parts of the hospital, associated risk factors and mortality rate. A total of 59 cases were selected for prospective analysis over a period of one and half years. Blood samples collected were processed by BACTEC (9240) method. Candidaemia was diagnosed by isolation of blood culture at least from two blood culture samples or from a clinically significant single blood culture sample. Candida spp. were identified by standard techniques. Most frequent isolates were C. tropicalis (35.6%), C. parapsilosis (28.8%), C. glabrata (11.9%) and C. pelliculosa (11.9%). Candida albicans was isolated only in 3.4% cases. Neutrology department accounted for highest number of isolates (27.1%), followed by gastrointestinal surgery (15.3%) and cardiac surgery (13.6%). Mortality was noted in 16.9%. Probable risk factors determined were intensive care unit stay (74.6%), antibiotic therapy (50.8%), central line (42.4%), ventilator (23.7%), central line (42.4%), central line (42.4%), central line (42.4%).

Materials and Methods

Candidaemia was diagnosed by isolation of Candida spp. from at least two blood culture samples or from a clinically significant single blood culture sample among hospitalized patients. Prospective study was conducted over one and half years, and 59 cases of candidaemia were selected. Patient’s demographic features such as age, sex, location, date of admission, dates on which results of blood culture were positive, underlying illness, associated risk factors such as central line insertion, presence of urinary catheter, respiratory ventilation, duration of antibiotic therapy and antifungal prophylaxis if any, were considered. All the cases were followed up for one month and mortality was noted. Death attributed to candidaemia was defined as death which occurred ≤48 h after a blood culture positive for Candida spp., persistent candidiasis at clinical sites, and indication by clinician that candidiasis significantly contributed to death.

Blood samples collected were processed by BACTEC (9240). Samples that flagged positive for yeast species were cultured on Sabouraud dextrose agar. Speciation was done by germ tube test, sugar assimilation test, morphology on corn base glucose agar by disc diffusion method. Statistical analysis was done using SPSS (Statistical Package for Social Sciences) version 11. Categorical variables were reported by using frequencies. To test the statistical significance of the association of mortality with different factors, Fisher’s exact test was done and the exact P-values were obtained (P < 0.05 was considered significant).

Results

A total of 59 cases of candidaemia were selected for analysis. Apart from Candida spp., other yeast species isolated during this period were three Trichosporon spp. and Cryptococcus neoformans from an HIV positive patient.
Male predominance was noted in (n = 42/59) 71.2%. Candidaemia was associated more frequently with infants (n = 26/59) 44% and ≥40-year age group (n = 14/59) 23.7%. Neonatology department (27.1%) accounted for highest number of isolates followed by gastrointestinal surgery (15.3%) and cardiac surgery 13.6% (Table 1). Most frequent isolates were C. tropicalis 35.6%, C. parapsilosis 28.8%, C. glabrata 11.9% and C. pelliculosa 11.9% (Table 2).

Common isolates from neonatal intensive care unit were C. pelliculosa (n = 5/16, 31.3%) and C. glabrata (n = 5/16, 31.3%). From gastrointestinal surgery, C. parapsilosis (n = 4/9, 44.4%) and C. tropicalis (n = 4/9 44.4%) were common. From cardiac surgery, C. tropicalis (n = 4/8, 50%) were common. Maximum number of isolates were from intensive care unit (n = 44/59, 74.6%). All isolates of C. glabrata (100%), C. tropicalis (76.1%) and C. pelliculosa (85.7%) were from intensive care units. There was not much difference in isolation rate, between ward and intensive care unit for C. parapsilosis.

Probable risk factors determined were intensive care unit stay (n = 44/59, 74.6%), antibiotic therapy (n = 30/59, 50.8%), central line (n = 25/59, 42.4%), urinary catheter (n = 19/59, 32.2%), ventilator (n = 14/59, 23.7%), malignancy (n = 12/59, 20.3%) and abdominal surgery (n = 9/59, 15.3%). Overall mortality was noted in (n = 10/59, 16.9%). Three patients died before instituting antifungal therapy and seven patients (11.8%) died after institution of antifungal therapy (P = 0.004). Eight patients were in the age group of ≥40 years (P = 0.013).

Discussion

Our study shows that there is emergence of *Candida* spp. other than *C. albicans* as a major cause of candidaemia. Other Indian studies also have documented shift to these species, *C. tropicalis* being the most commonly isolated. Emergence of *Candida* spp. other than *C. albicans* is due to selection of less susceptible species by the pressure of antifungal agent such as fluconazole apart from associated risk factors and underlying disorders.

In our study, we observed that intensive care unit stay, antibiotics and central line played a major role in development of candidaemia. Univariate analysis of these probable risk factors against the species was statistically not significant. This is probably due to smaller number of cases studied.

Candida tropicalis was the most frequent isolate in our study. Recent data have shown that *C. tropicalis* is the second or third leading cause of candidaemia in adults, especially in patients with lymphoma, leukaemia and diabetes mellitus. *Candida parapsilosis* has been isolated from HCW's hands, particularly of those working in neonatal ICUs. *Candida parapsilosis* has been associated with endemic and epidemic nosocomial infections traced to total parenteral nutrition or intravascular devices.

Candida glabrata and *C. pelliculosa* are the common species responsible for neonatal septicemia in our study. Common underlying illness among neonates was septicaemia and respiratory distress syndrome. Low birth weight was noted in n = 4/16 (25%) and preterm in n = 5/16 (31.25%). *Candida glabrata* shows increased innate resistance to antifungal agents, specifically the azoles. According to several investigators, the increase in the frequency of *C. glabrata* infections has paralleled the increased use of fluconazole in some hospitals. In a more recent study, however, investigators described the association between *C. glabrata* infection and amphotericin B use rather than fluconazole. In our study, only four patients who developed candidaemia were on fluconazole prophylaxis and none of these infections were due to *C. glabrata*.

Candida pelliculosa, a rare clinical isolate, has been implicated in an outbreak of nosocomial fungaemia in paediatric patients and from neonatal intensive care units. Further studies are required on these aspects at our centre.

Mortality attributable to candidaemia reported from other studies is 12-38%. In our study, we noted 16.9% mortality. Age group ≥ 40 years (32% vs. 5.9%) was significantly associated with mortality compared to age group < 40 years.
years. It is well-established fact that \textit{C. albicans} is more virulent than other \textit{Candida} spp.18 In our study, there was no significant association of mortality with different species. This could be due to smaller number of cases studied.

From our study we are of the opinion that, of the fungal pathogens, \textit{Candida} spp. other than \textit{C. albicans} are a major cause of morbidity in hospitalized patients. Early antifungal therapy improves the outcome.

References

