CONTENTS

Guest Editorial

The Need for Control of Viral Illnesses in India: A Call for Action
C Lahariya, UK Baveja
......309

Review Article

Immunobiology of Human Immunodeficiency Virus Infection
P Tripathi, S Agrawal
......311

Special Articles

Serum Levels of Bel-2 and Cellular Oxidative Stress in Patients with Viral Hepatitis
HG Osman, OM Gabr, S Lotfy, S Gabr
......323

Rapid Identification of Non-sporing Anaerobes using Nuclear Magnetic Resonance Spectroscopy and an Identification Strategy
S Menon, R Bharadwaj, AS Chowdhary, DV Kaundinya, DA Palande
......330

Original Articles

Species Distribution and Physiological Characterization of *Acinetobacter* Genospecies from Healthy Human Skin of Tribal Population in India
SP Yavankar, KR Pardesi, BA Chopade
......336

Extended-spectrum Beta-lactamases in Ceftazidime-resistant *Escherichia coli* and *Klebsiella pneumoniae* Isolates in Turkish Hospitals
S Hosoglu, S Gundes, F Kolayli, A Karadenizli, K Demirdag, M Gunaydn, M Altindis, R Caylan, H Ucmak
......346

Typhoid Myopathy or Typhoid Hepatitis: A Matter of Debate
M Mirsadraee, A Shirdel, F Roknee
......351

Correlation Between *in Vitro* Susceptibility and Treatment Outcome with Azithromycin in Gonorrhoea: A Prospective Study
P Khaki, P Bhalla, A Sharma, V Kumar
......354

Comparison of Radiorespirometric Buddemeyer Assay with ATP Assay and Mouse Foot Pad Test in Detecting Viable *Mycobacterium leprae* from Clinical Samples
VP Agrawal, VP Shetty
......358

Detection of *Mycoplasma* Species in Cell Culture by PCR And RFLP Based Method: Effect of BM-cyclin to Cure Infections
V Gopalkrishna, H Verma, NS Kumbhar, RS Tomar, PR Patil
......364
Virulence Factors and Drug Resistance in *Escherichia coli* Isolated from Extraintestinal Infections369
S Sharma, GK Bhat, S Shenoy

Antimicrobial Susceptibility Testing of *Helicobacter pylori* to Selected Agents by Agar Dilution Method in Shiraz-iran374
J Kohanteb, A Bazargani, M Saberi-Firoozi, A Mobasser

Outbreak of Acute Viral Hepatitis due to Hepatitis E virus in Hyderabad378
P Sarguna, A Rao, KN Sudha Ramana

A Comparative Study for the Detection of Mycobacteria by BACTEC MGIT 960, Lowenstein Jensen Media and Direct AFB Smear Examination383
S Rishi, P Sinha, B Malhotra, N Pal

Cytokine Levels in Patients with Brucellosis and their Relations with the Treatment387
H Akbulut, I Celik, A Akbulut

Brief Communications

Rapid Detection of Non-enterobacteriaceae Directly from Positive Blood Culture using Fluorescent *In Situ* Hybridization391
EH Wong, G Subramaniam, P Navaratnam, SD Sekaran

Latex Particle Agglutination Test as an Adjunct to the Diagnosis of Bacterial Meningitis395
K Surinder, K Bineeta, M Megha

Helminthic Infestation in Children of Kupwara District: A Prospective Study398
SA Wani, F Ahmad, SA Zargar, BA Fomda, Z Ahmad, P Ahmad

Clinical and Mycological Profile of Cryptococcosis in a Tertiary Care Hospital401
MR Capoor, D Nair, M Deb, B Gupta, P Aggarwal

Candida spp. other than *Candida albicans*: A Major Cause of Fungaemia in a Tertiary Care Centre405
S Shivaprakasha, K Radhakrishnan, PMS Karim

Case Reports

Enterobacter sakazakii in Infants: Novel Phenomenon in India408
P Ray, A Das, V Gautam, N Jain, A Narang, M Sharma

Ocular Toxocariasis in a Child: A Case Report from Kashmir, North India411
BA Fomda, Z Ahmad, NN Khan, S Tanveer, SA Wani

Cutaneous Actinomycosis: A Rare Case413
SC Metgud, H Sumati, P Sheetal

Fatal Haemophagocytic Syndrome and Hepatitis Associated with Visceral Leishmaniasis416
P Mathur, JC Samantaray, P Samanta

A Rare Case of Mucormycosis of Median Sternotomy Wound Caused by *Rhizopus arrhizus*419
R Chawla, S Sehgal, S Ravindra Kumar, B Mishra

Mycobacterium fortuitum Keratitis422
C Sanghvi

Correspondence

N Nagdeo, VR Thombare
Combining Vital Staining with Fast Plaque: TB Assay 426
D Rawat, MR Capoor, A Hasan, D Nair, M Deb, P Aggarwal

Disseminated Histoplasmosis ... 427
PK Maiti, MS Mathews

Authors’ Reply .. 428
RS Bharadwaj

Microwave Disinfection of Gauze Contaminated with Bacteria and Fungi 428
VH Cardoso, DL Gonçalves, E Angioletto, F Dal-Pizzol, EL Streck

Endoscope Reprocessing: Stand up and Take Notice! 429
A Das, P Ray, M Sharma

Prevalence of Toxoplasma gondii Infection amongst Pregnant Women in Assam, India 431
BJ Borkakoty, AK Borthakur, M Gohain

MR Capoor, D Rawat, D Nair, M Deb, P Aggarwal

Resurgence of Diphtheria in the Vaccination Era 434
N Khan, J Shastri, U Aigal, B Doctor

A Report of Pseudomonas aeruginosa Antibiotic Resistance from a Multicenter Study in Iran 435
MA Boroumand, P Esfahanifard, S Saadat, M Sheihkvatan, S Hekmatayzadi, M Saremi, L Nazemi

KO Akinyemi, AO Coker

Book Review .. 438
Hospital-Acquired Infections: Power Strategies for Clinical Practice
Reba Kanungo

Title Index, 2007 .. 440
Author Index, 2007 ... 442
Scientific Reviewers, 2007 ... 446
from Dibrugarh region of Assam, which needs to be reckoned by the practicing physicians from this region when investigating foetal losses or congenital infection typical of toxoplasmosis.

References

*BJ Borkakoty, AK Borthakur, M Gohain
Regional Medical Research Centre (BBJ), Northeast Region (Indian Council of Medical Research); Department of Microbiology (AKB), Assam Medical College and Hospital; and Brahmaputra Diagnostic and Hospital Ltd. (MG), Dibrugarh - 786 001, Assam, India

*Corresponding author (email: <biswaborkakoty@rediffmail.com>)
Received: 18-04-07
Accepted: 23-05-07

Dear Editor,

A rise in invasive fungal infections and their emerging resistance have necessitated the need for antifungal susceptibility testing (AFT) for clinical work-up.1 The standardized broth micro-dilution (BMD) method is expensive, laborious and cumbersome for routine use in clinical microbiology laboratory.2 Recently, a disc-diffusion method has been approved by CLSI using glucose-methylene-blue (GMB) Mueller-Hinton agar (MHA). Despite being easy and practical, this needs to be confirmed by BMD to exclude false resistance.3

Recent reports have documented comparable results between BMD (NCCLS-27-A)4 and agar-based E-test.4,5 The manufacturer-recommended media for E-test is glucose-supplemented RPMI agar (RPMI-G). The end point for azoles is poorly defined on this medium. Therefore, we undertook this study to determine whether GMB-MHA could be used in the E-test method.

A total of 31 blood stream isolates from candidaemia cases were selected. These were speciated using germ tube test, CHROM agar, cornmeal agar and tetrazolium reduction test (Himedia, Mumbai). Antifungal susceptibility of these isolates was performed by E-test and BMD for amphotericin-B and fluconazole. The E-strip (AB-Biodisk, Solna) minimum inhibitory concentration (MIC) was determined on RPMI-G (RPMI + 1.5% agar + 2% glucose) media and GMB-MHA (MHA + 2% glucose + 0.5 µg of methylene blue). For agar diffusion E-test, 0.5 McFarland standard inocula were applied to GMB-MHA and RPMI-G media with a cotton swab. The plates were allowed to dry for at least 15 min before the E-strip was applied to the surface. The MIC for the E-test was measured after 24 h, at transition point where growth abruptly decreased (reduction in colony, size, number and density: approximately 80% growth inhibition standards). BMD-MIC was performed using RPMI and 0.165 M morpholine propanesulphonic acid (Himedia, Mumbai). The interpretation was done spectrophotometrically after 24 and 48 h of incubation, as per NCCLS guidelines.5 The optical density (OD) of the medium control well was subtracted from the ODs of all other wells and MIC concentration was computed mathematically. Briefly, the BMD-MIC of amphotericin B was determined as the lowest concentration with an OD corresponding to a 50% decrease in turbidity compared to that of growth control and the MICs of fluconazole, corresponding to a 50% decrease in turbidity.3 The quality control was performed by testing C. albicans (ATCC 90028), C. krusei (ATCC 6258) and C. parapsilosis (ATCC 22019) with each batch of clinical isolates. All the MIC experiments were repeated twice and mean was taken.

The isolates included in the study comprised of C. tropicalis (12), C. parapsilosis (8), C. albicans (8), C. krusei (2) and C. glabrata (1). Twenty-four (77.4%) of the isolates that were found to be susceptible by BMD were identified as susceptible by RPMI-G agar to amphotericin B and fluconazole. The similar figures for GMB-MHA were 24 (77.4%) and 25 (80.6%) for amphotericin B and fluconazole, respectively. Higher MIC levels (1-2 dilutions) were noted by BMD to exclude false resistance.1

The isolates that were found to be susceptible by BMD were identified as susceptible by RPMI-G agar to amphotericin B and fluconazole. The similar figures for GMB-MHA were 24 (77.4%) and 25 (80.6%) for amphotericin B and fluconazole, respectively. Higher MIC levels (1-2 dilutions) were noted by E-strip method as compared to BMD method. Table shows the comparison of susceptibility by the E-test method on GMB-MHA and RPMI-G media.

www.ijmm.org
This discrepancy was also observed in prior studies.2,6 'trailing growth phenomenon' in an isolate of

techniques are required for routine AFT.

scale studies and continued re

to exclude false resistance. Further, meaningful large-

colonies around zone of inhibition.1,4 Thus GMB-MHA

MHA has enhanced growth, simpli

These

were noted by E-strip method as compared to BMD method. Higher MIC levels (1-2 dilutions)

BMD gave a resistant and GMB-MHA depicted a susceptible

ß

uconazole susceptibility was observed, where RPMI-G and

ß

uconazole on RPMI-G and GMB-MHA

shows that agar-based susceptibility testing (E-test and DD method) are more practical as

due to their simplicity and reproducibility. Requirement of additional equipment (spectrophotometer) is

also eliminated.4 The results obtained by using both media were in acceptable concordance (>93%) with those obtained

by MBD method. Similar findings were corroborated by previous studies.4 Disparate readings were attributable to ‘trailing growth phenomenon’ in an isolate of C. tropicalis. This discrepancy was also observed in prior studies.5,6

A large number of recent studies have compared E-test or DD on different media.1,2,6 But studies comparing E-test MIC on RPMIG and GMB-MHA could not be seen in the pertinent literature. The overall levels of agreement between E-strip MICs obtained by RPMIG and GMB-MHA at 24 h were comparable (97% agreement) for both amphotericin-B and fluconazole for resistant and susceptible isolates. However, a single disparity in an isolate of C. tropicalis in fluconazole susceptibility was observed, where RPMI-G and BMD gave a resistant and GMB-MHA depicted a susceptible MIC. This disparity could not be explained as repeat testing yielded the same result. Higher MIC levels (1-2 dilutions) were noted by E-strip method as compared to BMD method. These findings have been reported previously.5

It was observed in the current and prior studies that GMB-MHA has enhanced growth, simplified reading and minimal microcolonies around zone of inhibition.1,4 Thus GMB-MHA appears to be a useful medium for E-test, as it compared well with BMD and RPMI-G (except a single C. tropicalis outlier despite repeat testing). The stock-solution of GMB can be refrigerated and added to the molten and cooled MHA which is made routinely. In a resource constraint and busy clinical laboratory, AFT by MIC method on GMB-MHA followed by confirmation by BMD of resistant strains is recommended to exclude false resistance. Further, meaningful large-scale studies and continued refinement of all susceptibility techniques are required for routine AFT.

Prior studies have shown that agar-based susceptibility testing (E-test and DD method) are more practical as compared to BMD due to their simplicity and reproducibility. Requirement of additional equipment (spectrophotometer) is also eliminated.4 The results obtained by using both media were in acceptable concordance (>93%) with those obtained by MBD method. Similar findings were corroborated by previous studies.4 Disparate readings were attributable to ‘trailing growth phenomenon’ in an isolate of C. tropicalis. This discrepancy was also observed in prior studies.5,6

A large number of recent studies have compared E-test or DD on different media.1,2,6 But studies comparing E-test MIC on RPMIG and GMB-MHA could not be seen in the pertinent literature. The overall levels of agreement between E-strip MICs obtained by RPMIG and GMB-MHA at 24 h were comparable (97% agreement) for both amphotericin-B and fluconazole for resistant and susceptible isolates. However, a single disparity in an isolate of C. tropicalis in fluconazole susceptibility was observed, where RPMI-G and BMD gave a resistant and GMB-MHA depicted a susceptible MIC. This disparity could not be explained as repeat testing yielded the same result. Higher MIC levels (1-2 dilutions) were noted by E-strip method as compared to BMD method. These findings have been reported previously.5

It was observed in the current and prior studies that GMB-MHA has enhanced growth, simplified reading and minimal microcolonies around zone of inhibition.1,4 Thus GMB-MHA appears to be a useful medium for E-test, as it compared well with BMD and RPMI-G (except a single C. tropicalis outlier despite repeat testing). The stock-solution of GMB can be refrigerated and added to the molten and cooled MHA which is made routinely. In a resource constraint and busy clinical laboratory, AFT by MIC method on GMB-MHA followed by confirmation by BMD of resistant strains is recommended to exclude false resistance. Further, meaningful large-scale studies and continued refinement of all susceptibility techniques are required for routine AFT.

Table: Comparison of susceptibility by the E-test method on RPMI-G and GMB-MHA

<table>
<thead>
<tr>
<th>Candida spp. ** (n)</th>
<th>Total no. of susceptible isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RPMI-G</td>
</tr>
<tr>
<td></td>
<td>Amphotericin B (µg/mL)*</td>
</tr>
<tr>
<td>C. tropicalis (12)</td>
<td>10</td>
</tr>
<tr>
<td>C. parapsilosis (8)</td>
<td>7</td>
</tr>
<tr>
<td>C. albicans (8)</td>
<td>7</td>
</tr>
</tbody>
</table>

*Interpretive criteria: amphotericin - ≤1 µg/mL (sensitive), >2 µg/mL (resistant); fluconazole - ≤8 µg/mL (sensitive), ≥64 µg/mL (resistant); **C. krusei (2) and C. glabrata (1) were resistant to amphotericin B and fluconazole on RPMI-G and GMB-MHA

References

*MR Capoor, D Rawat, D Nair, M Deb, P Aggarwal
Department of Microbiology, Vardhman Mahaveer Medical College and Safdarjung Hospital, New Delhi - 110 029, India

*Corresponding author (email: <rajeevmalini@rediffmail.com>)
Received: 12-05-07
Accepted: 26-06-07