INDIAN JOURNAL OF MEDICAL MICROBIOLOGY

(Official publication of Indian Association of Medical Microbiologists, Published quarterly in January, April, July and October)
Indexed in Index Medicus/MEDLINE/PubMed, ‘Elsevier Science - EMBASE’, ‘IndMED’

EDITORIAL BOARD

EDITOR
Dr. SAVITRI SHARMA
L V Prasad Eye Institute
Bhubaneswar - 751 024, India

ASSOCIATE EDITOR
Dr. Shobha Broor
Professor, Department of Microbiology
All India Institute of Medical Sciences
New Delhi - 110 029, India

ASSISTANT EDITOR
Dr. V Lakshmi
Professor and Head, Dept. of Microbiology
Nizam’s Institute of Medical Sciences
Punjagutta, Hyderabad - 500 082, India

ASSISTANT EDITOR
Dr. Reba Kanungo
Professor and Head
Department of Microbiology, Perunthalaivar Kamaraj Medical College and Research Institute, Kadhirkamam,
Puducherry - 605 009, India

ASSISTANT EDITOR
Dr. Shobha Broor
Professor, Department of Microbiology
All India Institute of Medical Sciences
New Delhi - 110 029, India

Assistant Editor
Dr. V Lakshmi
Professor and Head, Dept. of Microbiology
Nizam’s Institute of Medical Sciences
Punjagutta, Hyderabad - 500 082, India

ASSISTANT EDITOR
Dr. Reba Kanungo
Professor and Head
Department of Microbiology, Perunthalaivar Kamaraj Medical College and Research Institute, Kadhirkamam,
Puducherry - 605 009, India

MEMBERS

National

Dr. Arora DR (Rohtak)
Dr. Aruna Chakrabarti (Chandigarh)
Dr. Camilla Rodrigues (Mumbai)
Dr. Chaturvedi UC (Lucknow)
Dr. Hemashettar BM (Belgaum)
Dr. Kotech VM (Agra)
Dr. Madhavan PN (Chennai)
Dr. Mahajan RC (Chandigarh)
Dr. Mary Jesudasan (Trissur)
Dr. Meenakshi Mathur (Mumbai)
Dr. Nancy Malla (Chandigarh)
Dr. Philip A Thomas (Tiruchirapally)
Dr. Ragini Macaden (Bangalore)
Dr. Ramesh K Aggarwal (Hyderabad)
Dr. Renu Bhardwaj (Pune)
Dr. Sarman Singh (New Delhi)
Dr. Seyed E Hasnain (Hyderabad)
Dr. Sitaram Kumar M (Hyderabad)
Dr. Sridharan G (Vellore)
Dr. Sritharan V (Hyderabad)
Dr. Subhas C Parija (Pondicherry)

International

Dr. Arsecularatne SN (Srilanka)
Dr. Arvind A Padhye (USA)
Dr. Chinnaswamy jagannath (USA)
Dr. Christian L Coles (USA)
Dr. David WG Brown (UK)
Dr. Diane G Schwartz (USA)
Dr. Govinda S Visveswara (USA)
Dr. Kailash C Chadha (USA)
Dr. Madhavan Nair P (Canada)
Dr. Madhukar Pai (Canada)
Dr. Mohan Sopori (USA)
Dr. Paul R Klatser (Netherlands)
Dr. Vishwanath P Kurup (USA)

ADVISORY BOARD

Dr. KB Sharma (New Delhi), Dr. NK Ganguly (New Delhi), Dr. SP Thyagarajan (Chennai),
Dr. R Sambasiva Rao (New Delhi), Dr. MK Lalitha (Chennai), Dr. PG Shivananda (Manipal)

Annual Subscription Rs 2,000/- US $ 150
Single Copy Rs 600/- US $ 75

Published by MEDKNOW PUBLICATIONS
A-109, Kanara Business Center, Off Link Rd, Ghatkopar (E), Mumbai - 400075, INDIA
Phone: 91-22-6649 1818/1816, Fax: 91-22-6649 1817 - E-mail: publishing@medknow.com, Web: www.medknow.com

The journal is printed on acid free paper.
CONTENTS

<table>
<thead>
<tr>
<th>Article Type</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guest Editorial</td>
<td>The Need for Control of Viral Illnesses in India: A Call for Action</td>
<td>309</td>
</tr>
<tr>
<td>C Lahariya, UK Baveja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review Article</td>
<td>Immunobiology of Human Immunodeficiency Virus Infection</td>
<td>311</td>
</tr>
<tr>
<td>P Tripathi, S Agrawal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Articles</td>
<td>Serum Levels of Bel-2 and Cellular Oxidative Stress in Patients with</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>Viral Hepatitis</td>
<td></td>
</tr>
<tr>
<td>HG Osman, OM Gabr, S Lotfy, S Gabr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapid Identification of</td>
<td>Identification of Non-sporing Anaerobes using Nuclear Magnetic</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>Resonance Spectroscopy and an Identification Strategy</td>
<td></td>
</tr>
<tr>
<td>S Menon, R Bharadwaj, AS Chowdhary, DV Kaundinya, DA Palande</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Original Articles</td>
<td>Species Distribution and Physiological Characterization of Acinetobacter Genospecies from Healthy Human Skin of Tribal Population in India</td>
<td>336</td>
</tr>
<tr>
<td>SP Yavankar, KR Pardesi, BA Chopade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended-spectrum Beta-lactamases in Ceftazidime-resistant</td>
<td>Escherichia coli and Klebsiella pneumoniae Isolates in Turkish Hospitals</td>
<td>346</td>
</tr>
<tr>
<td>S Hosoğlu, S Gündeş, F Kolaylı, A Karadenizli, K Demirdağ, M Günaydın, M Altindis, R Çaylan, H Ucmak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typhoid Myopathy or Typhoid Hepatitis: A Matter of Debate</td>
<td></td>
<td>351</td>
</tr>
<tr>
<td>M Mirsadraee, A Shirdel, F Roknee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlation Between in Vitro</td>
<td>Susceptibility and Treatment Outcome with Azithromycin in Gonorrhoea:</td>
<td>354</td>
</tr>
<tr>
<td></td>
<td>A Prospective Study</td>
<td></td>
</tr>
<tr>
<td>P Khaki, P Bhalla, A Sharma, V Kumar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparison of Radiorespirometric</td>
<td>Buddemeyer Assay with ATP Assay and Mouse Foot Pad Test in</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td>Detecting Viable Mycobacterium leprae from Clinical Samples</td>
<td></td>
</tr>
<tr>
<td>VP Agrawal, VP Shetty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detection of Mycoplasma</td>
<td>Species in Cell Culture by PCR And RFLP Based Method: Effect of</td>
<td>364</td>
</tr>
<tr>
<td></td>
<td>BM-cyclin to Cure Infections</td>
<td></td>
</tr>
<tr>
<td>V Gopalkrishna, H Verma, NS Kumbhar, RS Tomar, PR Patil</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Virulence Factors and Drug Resistance in *Escherichia coli* Isolated from Extraintestinal Infections

S Sharma, *GK* Bhat, *S* Shenoy

Antimicrobial Susceptibility Testing of *Helicobacter pylori* to Selected Agents by Agar Dilution Method in Shiraz-iran

J Kohanteb, A Bazargani, M Saberi-Firoozi, A Mobasser

Outbreak of Acute Viral Hepatitis due to Hepatitis E virus in Hyderabad

P Sarguna, A Rao, KN Sudha Ramana

A Comparative Study for the Detection of Mycobacteria by BACTEC MGIT 960, Lowenstein Jensen Media and Direct AFB Smear Examination

S Rishi, P Sinha, B Malhotra, N Pal

Cytokine Levels in Patients with Brucellosis and their Relations with the Treatment

H Akbulut, I Celik, A Akbulut

Brief Communications

Rapid Detection of Non-enterobacteriaceae Directly from Positive Blood Culture using Fluorescent In Situ Hybridization

EH Wong, G Subramaniam, P Navaratnam, SD Sekaran

Latex Particle Agglutination Test as an Adjunct to the Diagnosis of Bacterial Meningitis

K Surinder, K Bineeta, M Megha

Helminthic Infestation in Children of Kupwara District: A Prospective Study

SA Wani, F Ahmad, SA Zargar, BA Fomda, Z Ahmad, P Ahmad

Clinical and Mycological Profile of Cryptococcosis in a Tertiary Care Hospital

MR Capoor, D Nair, M Deb, B Gupta, P Aggarwal

Candida spp. other than *Candida albicans*: A Major Cause of Fungaemia in a Tertiary Care Centre

S Shivaprapaksha, K Radhakrishnan, PMS Karim

Case Reports

Enterobacter sakazakii in Infants: Novel Phenomenon in India

P Ray, A Das, V Gautam, N Jain, A Narang, M Sharma

Ocular Toxocariasis in a Child: A Case Report from Kashmir, North India

BA Fomda, Z Ahmad, NN Khan, S Tanveer, SA Wani

Cutaneous Actinomycosis: A Rare Case

SC Metgud, H Sumati, P Sheetal

Fatal Haemophagocytic Syndrome and Hepatitis Associated with Visceral Leishmaniasis

P Mathur, JC Samantaray, P Samanta

A Rare Case of Mucormycosis of Median Sternotomy Wound Caused by *Rhizopus arrhizus*

R Chawla, S Sehgal, S Ravindra Kumar, B Mishra

Mycobacterium fortuitum Keratitis

C Sanghvi

Correspondence

Prevention of Parent-to-Child Transmission of HIV: An Experience in Rural Population

N Nagdeo, VR Thombre
Combining Vital Staining with Fast Plaque: TB Assay
D Rawat, MR Capoor, A Hasan, D Nair, M Deb, P Aggarwal

Disseminated Histoplasmosis
PK Maiti, MS Mathews

Authors’ Reply
RS Bharadwaj

Microwave Disinfection of Gauze Contaminated with Bacteria and Fungi
VH Cardoso, DL Gonçalves, E Angioletto, F Dal-Pizzol, EL Streck

Endoscope Reprocessing: Stand up and Take Notice!
A Das, P Ray, M Sharma

Prevalence of Toxoplasma gondii Infection amongst Pregnant Women in Assam, India
BJ Borkakoty, AK Borthakur, M Gohain

MR Capoor, D Rawat, D Nair, M Deb, P Aggarwal

Resurgence of Diphtheria in the Vaccination Era
N Khan, J Shastri, U Aigal, B Doctor

A Report of Pseudomonas aeruginosa Antibiotic Resistance from a Multicenter Study in Iran
MA Boroumand, P Esfahanifard, S Saadat, M Sheikhvatan, S Hekmatayzdi, M Saremi, L Nazemi

Trends of Antibiotic Resistance in Salmonella enterica Serovar Typhi Isolated from Hospitalized Patients from 1997 to 2004 in Lagos, Nigeria
KO Akinyemi, AO Coker

Book Review
Hospital-Acquired Infections: Power Strategies for Clinical Practice
Reba Kanungo

Title Index, 2007

Author Index, 2007

Scientific Reviewers, 2007

..
Trends of Antibiotic Resistance in *Salmonella enterica* Serovar Typhi Isolated from Hospitalized Patients from 1997 to 2004 in Lagos, Nigeria

Dear Editor,

The increasing treatment failure with the empirical therapy in recent times among typhoid fever patients necessitates responsibility of medical microbiologists to assess and report the patterns of antibiotic resistance among *Salmonella enterica* serovar Typhi in our environment. A retrospective study of 274 *Salmonella enterica* serovar Typhi isolates recovered from patients whose blood and/or stool samples were brought to the Central Public Health Laboratory Services (CPHLS), Yaba, from 1997 to 2004 was conducted in order to assess antimicrobial resistance patterns of the isolates. Susceptibility to ampicillin (25 µg) chloramphenicol (30 µg), cotrimoxazole (25 µg), tetracycline (50 µg), nalidixic acid (30 µg), ciprofloxacin (20 µg) and ofloxacin (20 µg) was determined for all isolates by the disk diffusion Kirby Bauer method.1 After 1999, reference broth micro dilution methods recommended by National Committee for Clinical Laboratory Standard (NCCLS) for susceptibility testing using the established break points was adopted.2 For ampicillin and chloramphenicol, break points 8.0 and 16.0 µg/mL were used for intermediate and resistant, respectively. Tetracycline and cotrimoxazole ≥4.0 µg/mL for intermediate and ≥8.0 µg/mL for resistant was used, while nalidixic acid ≥4.0 µg/mL for resistant was used. The minimum inhibitory concentration (MIC) of ≤0.03 µg/mL was taken to be fully sensitive for ciprofloxacin and ofloxacin. For analysis in this study, both intermediate and resistant categories were considered to be resistant. *Escherichia coli* ATCC 25922 was used as control in susceptibility testing. In all, 221 *Salmonella enterica* serovar Typhi strains were resistant to at least three antibiotics given a prevalence of 80.7%. In 1997 alone, out of 29 isolates screened, 70.0% were resistant to more than three antimicrobials. This was gradually increased in the subsequent years. For example, 80.0% and 88.6% were recorded in 2000 and 2002, respectively, with a slight decrease in 2004 to 84.6% (Table). Similar trends were recorded for *Salmonella enterica* serovar Typhi with single drug resistance. For instance, in aggregates, the highest percentage of resistance was found to chloramphenicol (83.6%) followed closely by ampicillin (81.8%), cotrimoxazole (81.4%) and tetracycline (79.6%), while the least was nalidixic acid (59.0%). A strain of *Salmonella enterica* serovar Typhi with reduced ciprofloxacin and ofloxacin susceptibility was recorded in 1999 and 2004 (Table).

Therefore, the high prevalence of MDR (multidrug resistant) *Salmonella enterica* serovar Typhi recorded may be attributed to two main reasons. Firstly drug abuse, which is because of therapeutic intervention in suspected cases of typhoid fever due to attitude of self-medications. This prevents early reporting of patients to the hospitals at the onset of disease symptoms, except where complications had occurred, as observed in this study, where only untreated cases of typhoid fever by self-medication were brought to the hospitals. It should be noted that severe, refractory or complicated infections have been attributed to increase chloramphenicol and other antibiotic resistance in strains of *Salmonella enterica* serovar Typhi in some parts of the world,3 a situation that seems to have come to stay in our environment. Secondly, either clonal spread and/or extrachromosomal genes may be potential mechanisms for increase in the level of reduced susceptibility as noticed in this study, an observation that has been well documented in literature.4,5 The implication of high prevalence of multiple antibiotic resistance recorded in our study is that efficacy of the relatively cheap empirical therapy for typhoid fever patients in Nigeria is now doubtful and thus calls for urgent attention. More importantly, the increasing trends of MDR - *Salmonella enterica* serovar Typhi may spread to neighbouring countries of Africa and other parts of the world particularly among the travelers returning from this region, if the unprecedented upsurge remains unchecked. This study revealed increased circulation of MDR - *Salmonella enterica* serovar Typhi isolates over relatively short period. We suggest restriction and/or immediate stoppage, for a while, of the use of chloramphenicol and other first line antibiotics for the treatment for typhoid fever, to prevent possible emergence
of resistance strains to relatively safe antimicrobials such as ciprofloxacin and ofloxacin in Nigeria.

References

*KO Akinyemi, AO Coker

Department of Microbiology (KOA), Lagos State University; and Department of Medical Microbiology and Parasitology (AOC), College of Medicine, University of Lagos, Nigeria

*Corresponding author (email: <akinyemiko@yahoo.com>)

Received: 26-01-06
Accepted: 04-03-07

Table: Antibiotic resistance in *Salmonella enterica* serovar Typhi isolated from hospitalized patients from 1997-2004 in Lagos

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of isolates</th>
<th>Number of isolates resistant to each antimicrobial (%)</th>
<th>Number of MDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>29</td>
<td>20 (70.0) 21 (72.4) 21 (72.4) 20 (70.0) 14 (42.3) 0 (0.0) 0 (0.0)</td>
<td>20 (70.0)</td>
</tr>
<tr>
<td>1998</td>
<td>37</td>
<td>28 (75.7) 30 (81.1) 26 (70.3) 30 (81.1) 16 (43.2) 0 (0.0) 0 (0.0)</td>
<td>28 (75.7)</td>
</tr>
<tr>
<td>1999</td>
<td>26</td>
<td>21 (80.0) 20 (76.9) 20 (76.9) 21 (80.0) 11 (42.3) 1 (3.8) 1 (3.8)</td>
<td>20 (76.9)</td>
</tr>
<tr>
<td>2000</td>
<td>38</td>
<td>30 (79.0) 31 (81.6) 29 (76.3) 31 (81.6) 17 (47.4) 0 (0.0) 0 (0.0)</td>
<td>30 (79.0)</td>
</tr>
<tr>
<td>2001</td>
<td>33</td>
<td>28 (84.8) 29 (87.9) 28 (84.8) 27 (81.8) 17 (51.5) 0 (0.0) 0 (0.0)</td>
<td>28 (84.8)</td>
</tr>
<tr>
<td>2002</td>
<td>35</td>
<td>31 (88.6) 31 (88.6) 30 (85.7) 30 (85.7) 20 (57.1) 0 (0.0) 0 (0.0)</td>
<td>31 (88.6)</td>
</tr>
<tr>
<td>2003</td>
<td>37</td>
<td>32 (86.5) 33 (89.2) 31 (83.8) 30 (81.1) 20 (56.8) 0 (0.0) 0 (0.0)</td>
<td>31 (83.8)</td>
</tr>
<tr>
<td>2004</td>
<td>39</td>
<td>34 (87.2) 34 (87.2) 33 (84.6) 34 (87.2) 23 (59.0) 1 (2.5) 1 (2.5)</td>
<td>33 (84.6)</td>
</tr>
<tr>
<td>Total</td>
<td>274</td>
<td>224 (81.8) 229 (83.6) 218 (79.6) 223 (81.4) 140 (51.1) 2 (0.7) 2 (0.7)</td>
<td>221 (80.7)</td>
</tr>
</tbody>
</table>

MDR - Multidrug resistant, Amp - Ampicillin, Chl- Chloramphenicol, Tet - Tetracycline, Cot - Cotrimoxazole, Nal - Nalidixic acid, Cip - Ciprofloxacin, OfI - Ofloxacin