CONTENTS

Guest Editorial

Novel HIV Prevention Strategies: The Case for Andhra Pradesh
JA Schneider

Review Article

Chikungunya Fever: A Re-emerging Viral Infection
M Chhabra, V Mittal, D Bhattacharya, UVS Rana, S Lal

Special Article

Fabrication and Evaluation of a Sequence-specific Oligonucleotide Miniarray for Molecular Genotyping
J Iqbal, F Hänel, A Ruryk, GV Limmon, A Tretiakov, M Dürst, HP Saluz

Original Articles

A Comparison of PCR Detection of Meca with Oxacillin Disk Susceptibility Testing in Different Media and Sceptor Automated System for both Staphylococcus aureus and Coagulase-negative Staphylococci Isolates
S Ercis, B Sancak, G Hasçelik

Effect of Exposure to Hydrogen Peroxide on the Virulence of Escherichia coli
A Hegde, GK Bhat, S Mallya

A Low Molecular Weight Es-20 Protein Released In Vivo and In Vitro with Diagnostic Potential in Lymph Node Tuberculosis
N Shende, V Upadhye, S Kumar, BC Harinath

Community-based Study on Seroprevalence of Herpes Simplex Virus Type 2 Infection in New Delhi
R Chawla, P Bhalla, K Bhalla, M Meghachandra Singh, S Garg

Changing Patterns of Vibrio cholerae in Sevagram Between 1990 and 2005
P Narang, DK Mendiratta, VS Deotale, R Narang

Rapid Serodiagnosis of Leptospirosis by Latex Agglutination Test and Flow-through Assay
TMA Senthilkumar, M Subathra, M Phil, P Ramadass, V Ramaswamy

High Level Ciprofloxacin Resistance in Salmonella enterica Isolated from Blood
R Raveendran, C Wattal, A Sharma, JK Oberoi, KJ Prasad, S Datta

Role of Enteric Fever in Ileal Perforations: An Overstated Problem in Tropics?
MR Capoor, D Nair, MS Chintamani, J Khanna, P Aggarwal, D Bhatnagar

www.ijmm.org
Brief Communications

Evaluation of a Modified Double-disc Synergy Test for Detection of Extended Spectrum β-lactamases in Ampc β-lactamase-producing Proteus mirabilis
MKR Khan, SS Thukral, R Gaind

Antimicrobial Susceptibility Profile of Neisseria gonorrhoeae at STI Clinic
C Shilpee, VG Ramachandran, S Das, SN Bhattacharya

Detection of Extra-cellular Enzymes of Anaerobic Gram-negative Bacteria from Clinically Diseased and Healthy Sites
JM Nagmoti, CS Patil, MB Nagmoti, MB Mutnal

Haemagglutination and Siderophore Production as the Urovirulence Markers of Uropathogenic Escherichia coli
MA Vagarali, SG Karadesai, CS Patil, SC Metgud, MB Mutnal

The use of Dried Blood Spots on Filter Paper for the Diagnosis of HIV-1 in Infants Born to HIV Seropositive Women
S Mini Jacob, D Anitha, R Vishwanath, S Parameshwari, NM Samuel

Evaluation of the Usefulness of Phage Amplification Technology in the Diagnosis of Patients with Paucibacillary Tuberculosis
D Biswas, A Deb, P Gupta, R Prasad, KS Negi

Case Reports

Cytomegalovirus Oesophagitis in a Patient with Non-hodgkin’s Lymphoma
SS Hingmire, G Biswas, A Bakshi, S Desai, S Dighe, R Nair, S Gupta, PM Parikh

Hydatid Cyst of Mediastinum
S Sehgal, B Mishra, A Thakur, V Dogra, PS Loomba, A Banerjee

Ochrobactrum anthropi Septicaemia
U Arora, S Kaur, P Devi

Intestinal Myiasis Caused by Muscina stabulans
S Shivekar, K Senthil, R Srinivasan, L Sureshbabu, P Chand, J Shanmugam, R Gopal

Pyopericardium Due To Group D Streptococcus
K Karthikeyan, KR Rajesh, H Poornima, R Bharathidasan, KN Brahmadathan, R Indra Priyadarsini

Pleural Effusion: A Rare Complication of Hepatitis A
A Bukulmez, R Koken, H Melek, O Dogru, F Ovali

Correspondence

Prevalence of Inducible AmpC β-lactamase-Producing Pseudomonas aeruginosa in a Tertiary Care Hospital in Northern India
A Bhattacharjee, S Anupurba, A Gaur, MR Sen

Parental History of Ulcer and the Prevalence of Helicobacter pylori Infection in their Offspring
KS Ahmed, AA Khan, JD Ahi, CM Habibullah
Ciprofloxacin Breakpoints in Enteric Fever - Time to Revise our Susceptibility Criteria
C Rodrigues, N Jai Kumar, J Lalwani, A Mehta

West Nile Virus in the Blood Donors in UAE
M Alfaresi, A Elkoush

Estimation of Antibodies To HBsAg in Vaccinated Health Care Workers
TV Rao, IJ Suseela, KA Sathiavathy

Seroprevalence of Rubella Among Urban and Rural Bangladeshi Women Emphasises the Need for Rubella Vaccination of Pre-pubertal Girls
A Nessa, MN Islam, S Tabassum, SU Munshi, M Ahmed, R Karim

Novel Digestion Patterns with Hepatitis B Virus Strains from the Indian Subcontinent Detected using Restriction Fragment Length Polymorphism
P Vivekanandan, HDJ Daniel, S Raghuraman, D Daniel, RV Shaji, G Sridharan, G Chandy, P Abraham

Acute Urticaria Associated with Dicrocoelium dendriticum Infestation
A Sing, K Tybus, I Fackler

Book Reviews

Guidelines to Authors
Dear editor,

Inactivation of β-lactam antibiotics by enzyme is a major mechanism of resistance in gram-negative bacteria. Although a variety of β-lactamases has been described, class A and C are the most important. *Pseudomonas aeruginosa*, one of the most common pathogens responsible for hospital infection, is intrinsically resistant to many antibiotics. It also shows an increasing pattern of resistance towards β-lactam antibiotics, especially by production of class C chromosomal β-lactamases.[1] Hence, this study was designed to determine the prevalence rate of inducible AmpC β-lactamase-producing *P. aeruginosa* in a tertiary care hospital in North India as well as to detect *in vitro* susceptibility pattern of antipseudomonal antibiotics.

In a duration of six months (November 2005 to April 2006), 162 consecutive non-repetitive isolates of *P. aeruginosa* were obtained from SS hospital, Banaras Hindu University (BHU), Varanasi, India. The sources of isolates were pus (92), swab (33), urine (32) and blood (5). An *in vitro* susceptibility pattern to common antipseudomonal antibiotics was also determined according to CLSI guidelines[2] for all the strains. Screening of AmpC β-lactamase was performed by disc antagonism test. A 0.5 McFarland of test isolate was spread over Mueller-Hinton agar (Hi-Media, Mumbai, India) plate, and cefotaxime (30 μg) and cefoxitin (30 μg) (Hi-Media) discs were placed 20 mm apart from centre to centre. The isolates that showed blunting of cefotaxime zone of inhibition adjacent to cefoxitin discs were considered screen positive and were selected for confirmation of inducible AmpC β-lactamase production by the modified three-dimensional test described previously.[3] *E. coli* ATCC 25922 was used as negative control.

Among the test isolates, 36 (22%) were suspected to be AmpC β-lactamase producers, which were further confirmed by modified three-dimensional test. Among positives, 34 were isolated from hospitalized patients, and two were from out-patients who attended the clinic. Antibiotic susceptibility testing showed piperacillin/tazobactam, imipenem and cefoperazone/sulbactam to be the most effective (Table).

β-Lactamase-producing bacteria can cause major therapeutic failure if they remain undetected. Although clinicians often treat infections based on the results of antibiotic susceptibility tests available, the number of infections caused by AmpC β-lactamase-producing organism, particularly *P. aeruginosa*, is on the rise and poses a threat to patients due to treatment failure.[4] This emphasizes the need for detection of isolates that produce this enzyme so as to avoid therapeutic failures and nosocomial outbreaks. It should also be mentioned that there is currently no clear consensus regarding guidelines for phenotypic screening or confirmatory tests for AmpC β-lactamase-producing organisms.[5] Although comparison between studies is difficult to do since the patient populations in these centers and methods of study differ, interestingly, we found a slightly high prevalence of AmpC β-lactamase-producing *P. aeruginosa* (22%) in our centre as compared to earlier studies in India. It was 17.3% in Kolkata,[4] whereas in a study conducted in Aligarh, it showed 20%.[3]

The referral hospital had always shown a high prevalence of *P. aeruginosa* infection in the recent past.[5] In our study, all the 34 AmpC-producing isolates from the patients admitted at different wards of the hospital could be clonal dissemination of the same β-lactamase gene, although genetic analyses have not been performed. Antibiogram pattern of these isolates showed that there were cross-resistance between aminoglycosides and quinolones. Although carbapenems remain the first choice for the treatment of patients infected with ESBLs or AmpC β-lactamase, our study shows that β-lactam/β-lactamase inhibitor (sulbactam or tazobactam) combinations can also be a good option.

<table>
<thead>
<tr>
<th>Table: In vitro susceptibility pattern of P. aeruginosa in SS Hospital, Banaras Hindu University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotics</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>Piperacillin/tazobactam</td>
</tr>
<tr>
<td>Imipenem</td>
</tr>
<tr>
<td>Cefoperazone/sulbactam</td>
</tr>
<tr>
<td>Cefazidime</td>
</tr>
<tr>
<td>Ceftriaxone</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
</tr>
<tr>
<td>Amikacin</td>
</tr>
<tr>
<td>Gentamicin</td>
</tr>
<tr>
<td>Tobramycin</td>
</tr>
<tr>
<td>Netilmicin</td>
</tr>
</tbody>
</table>

n* - Number of susceptible isolates

References

Parental History of Ulcer and the Prevalence of \textit{Helicobacter pylori} Infection in their Offspring

Dear editor,

\textit{Helicobacter pylori} infection is present in almost all patients with duodenal ulcers and gastric ulcers.\(^1\) The pathogenic role of \textit{H. pylori} in peptic ulcer disease is well known. Up to 95\% of patients with duodenal ulcers, and 80\% of patients with gastric ulcers suffer from this infection.\(^2\) The present study was carried out in the population of south India, which is considered the population at high risk of stomach cancer.\(^3\) We assessed the relationship between subjects with a history of gastric or duodenal ulcer and the risk of infection in their offsprings with the help of PCR assay targeting the 16S rRNA gene. The 16S rRNA gene is a highly specific target for amplification and has been previously of help in reclassifying the organism.\(^4\)

Another scientist demonstrated the specificity of unique \textit{H. pylori} gene primer in identifying the organism in paraffin-embedded gastric biopsy specimen.

The subjects referred to for upper gastrointestinal endoscopy at Deccan College of Medical Sciences and Research Center, Hyderabad, were interviewed about their mother or father had been referred for endoscopy with the same symptoms or any history of ulcer. The questionnaire sought details on risk factors for \textit{H. pylori} infection, such as housing conditions, family demographics and socioeconomic factors. By 16S rRNA amplification, the status of \textit{H. pylori} was confirmed. A total of 160 subjects were enrolled in the study, of which 70 subjects reported a parental history (mother or father) of ulcer, and 90 were without any history of ulcer. Of a total of 70 subjects, 14.2\% were \textit{H. pylori} negative and 85.7\% were \textit{H. pylori} positive (10 and 60, respectively). In those with no family history of ulcer, the prevalence of \textit{H. pylori} was 80\% and 20\% \textit{H. pylori} negative (72 and 18, respectively, of 90). The results propose the hypotheses that the transmission of \textit{H. pylori} may be influenced by the presence of ulcer or that \textit{H. pylori} strains causing peptic ulcer may be more infective than other strains as published in earlier studies.\(^5\) This may be because of the relation between a history of ulcer and \textit{H. pylori} infection in his or her family or due to common environmental or genetic factors that influence susceptibility to infection. In addition, the high prevalence of \textit{H. pylori} infection in subjects with no family history of ulcer suggests how the living conditions, socioeconomic factors and cultural background of the subjects are important in mounting the prevalence and transmission of \textit{H. pylori} infection.

References

*Corresponding author (email: <khajashakeel@gmail.com>)

Presented at UP - PATHMICON ‘06, Banaras Hindu University, Varanasi on 11.11.2006.

KS Ahmed, AA Khan, JD Ahi, CM Habibullah
Centre for Liver Research and Diagnostics (KSA, AAK, CMH), Kanchanbagh, Hyderabad - 500076, India; and Dr Hari Singh Gour University (KSA, JDA), Sagar, Madhya Pradesh - 470 003, India

*A Bhattacharjee, S Anupurba, A Gaur, MR Sen
Department of Microbiology, Institute of Medical Sciences (IMS), Banaras Hindu University (BHU), Varanasi - 221 005, India

*Corresponding author (email: <ab_0404@rediffmail.com>)

Received: 24-01-07
Accepted: 01-05-07