Bovine Streptococcal Mastitis in Southwest and Northern States of Nigeria

*Amosun E. A, Ajuwape A.T.P. and Adetosoye A. I.
Department of Veterinary Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria

ABSTRACT: An investigation was carried out to identify the streptococci species isolated from clinical cases of bovine mastitis in Kwara, Kaduna and Oyo States of Nigeria. Milk samples from 200 clinically mastitic udders were bacteriological studied. A total of 130 streptococci isolate belonging to six species of streptococci, namely S. uberis, S. agalactiae, S. dysgalactiae, S. epidemicus, S. bovis, S. equinus were recovered from the milk examined. Streptococcus uberis was the most frequently encountered species with an incidence of (55.4%) followed by Streptococcus agalactiae (24.6%), Streptococcus dysgalactiae (12.3%) Streptococcus zoopidemicus (3.9%) Streptococcus bovis (2.3%) and Streptococcus equinus (1.5%). These species of streptococcus are of great public importance.

Key words: Streptococcus, Mastitis, Bovine.

INTRODUCTION

Milk is mostly produced by smallholders and semi-nomadic livestock owners in all tropical countries like Nigeria. Hence, the milk produced is mostly consumed by producers themselves, with little or nothing sold for cash, except occasionally and in seasons of surpluses (Chamberlain, 1989). Cows, water buffalo, sheep, goats and camels have been found to produce milk in different developed and developing countries, however cows have been the main suppliers of milk (Chamberlain, 1989). Mastitis is the inflammation of mammary gland or udder. It is characterised by palpable changes in the consistency of the mammary tissue and changes in the appearance of the milk (Radostitis et al, 1994; Oliveira et al, 2000; Viera-da-Motta et al, 2001; Menzies and Ramanoon, 2001). Mastitis leads to economic losses in terms of reduced milk yield or milk quality, early culling of severely affected animals. It results to expensive antibiotic treatment, veterinary services and losses of the young ones (MacDonald and Low, 1985; Buriel, 1997; Sordiell et al, 2000; Leitner et al, 2001). Streptococcus is isolated frequently from bovine mammary glands (Freney et al. 1992; Baron et al, 1994; Facklam. 2002; Fortin et al, 2003). Streptococcus agalactiae, S. dysgalactiae and S uberis have been reported as the three most common aetiological agents of mastitis (Calvinho and Oliver, 1998; Leigh, 1999; Khan et. al., 2003). Other Streptococcal species such as S. uberis, S. agalactiae, S. dysgalactiae, S. epidemicus, S. bovis, S. equinus have been implicated in bovine mastitis, although they are relatively infrequent (Lammler. 1991; Leigh. 1999; Khan et. al., 2003). Streptococcus agalactiae has been widely reported as an important pathogen of both animals and man (Schuctat and Wenger, 1994; Keefe, 1997; Mosabi et al, 1997; Ko, et. al., 2001). This organism primarily infects the cisterns and the ductal system of the mammary gland. An irritant is produced, causing inflammation of the gland which is mostly subclinical with occasional clinical symptoms (Myllys et. al., 1995). Accumulation of bacteria waste products intensifies the inflammatory response resulting in destruction of milk producing tissues and reduced milk yield or produce agalactia. It has been reported that Streptococcus agalactiae rarely cause severe illness, however, extensive scarring of a quarter may render it
unproductive in subsequent lactation. (Myllys et al, 1995). Other species of streptococcus including S. equinus, S. dysgalactiae, S. equisimilis, S. zooepidemicus have been isolated from bovine intramammary infections (Watts, 1989; Calivinho and Oliver 1998).

On the other hand, Streptococcus uberis is known worldwide as an environmental pathogen responsible for a high proportion of cases of clinical and subclinical mastitis in lactating cows and is also the predominant organism isolated from mammary gland during the non lactating period (Bradley, 2002; Khan et. al., 2003).

The main source of infection is the udder of infected cows, although when hygiene is poor, contamination of the environment may provide an additional source of infection. The teat of the udder and skin of cattle, milkers hand, floors, utensils and cloths are often heavily contaminated when good hygiene is not maintained. Sores on the teat are the commonest sites outside the udder for the persistence of the organism (Radostits et. al., 2000). The purpose of this study was to investigate the incidence of streptococci bovine mastitis in Nigeria dairy farms in southwestern and northern Nigeria.

MATERIALS AND METHODS

Samples collection
The milk samples were collected from White Fulani, Bunaji, Red Bororo, Kuri, Friesian crossed with White Fulani and Bunaji which were managed under semi-intensive system. Two-hundred milk samples were collected from cows with clinical mastitis from farms in three different states namely Oyo State, Kwara and Kaduna State of Nigeria. Milk samples were collected from June 2005 to March. 2006. The milk samples were obtained aseptically from the affected udders and the initial stream of fore milk was discarded. About 5ml of milk from each cow was collected in sterile labeled bottle. Samples were transported on ice (Coleman® flask) to the our laboratory for analysis.

Bacteriology
The milk samples were inoculated on to 7% sheep blood agar (oxoid Columbia blood agar) MacConkey agar No. 2 (Oxoid CM 109®) plates and incubated aerobically at 37°C for 24-72hr. Haemolysis and pigmentation were scored after 24h. Colonies yielding Gram-positive cocci with catalase-negative and oxidase negative reaction were subjected to CAMP test and Esculin hydrolysis as described by (Cruikshank et. al., 1975, Barrow and Feltham, 1993). Carbohydrates utilization was conducted in peptone water as described by (Cruickshank et. al, 1975) containing lactose, maltose, mannitol, raffinose glycerol, salicin, sorbitol, sucrose and trehalose respectively. All carbohydrates were inoculated with 0.1ml of the bacteria suspension and incubated at 37°C for 24hr. Positive reactions were indicated by a change from straw colour to pink colour using Andrade's indicator (Cruickshank et al, 1975).

Serotyping
Serological grouping of isolates were performed with a commercial latex agglutination kit for the identification of streptococcal groups A, B, C, D, F and G. Streptococci were tested using the broth method described by the manufacturer (Oxoid). A drop was dispensed from each latex reagent into the six circular rings on the reaction card. Pasteur pipette was used to add 1 drop of extract to each of the six rings. Mixing sticks provided was used to spread the mixture over the entire area of the ring using a separate stick for each ring. Visible agglutination within 1min was considered positive.

RESULTS

Out of the 200 milk samples studied for streptococci infection, streptococcus species were isolated from 130 (65%) of the milk samples. The serological and biochemical characteristics of the 130 streptococci isolated are as shown in Table 1. The isolates were found to belong to 6 distinct species namely Streptococcus uberis was the most common streptococci with an incidence of 55.38% followed by S. agalactiae 24.62% while Streptococcus dysgalactiae; S. zooepidemicus; S. bovis and S. equinus had an incidence of 12.31%, 3.85%, 2.3%, 1.54%, respectively (Table 2).

Seventy-two isolates were identified as non-groupable streptococci (Streptococcus uberis). Thirty-two isolates were identified as group B streptococci (S. agalactiae). They were all CAMP test positive, exhibited (β-haemolysis on sheep blood agar and none hydrolyse esculin (Table 2).

Lancefield group C contains two species, S. dysgalactiae and S. zooepidemicus. S. zooepidemicus exhibit beta-haemolysis on blood agar which distinguishes these organisms from the alpha-haemolytic S. dysgalactie, S. zooepidemicus hydrolysed esculin while S. dysgalactiae didn't. S. dysgalactiae is differentiated from S. zooepidemicus on basis of trehalose utilization. S. dysgalactiae utilized trehalose while S. zooepidemicus did not (Table 2).

Lancefield group D contains two species S. bovis and S. equinus. S. bovis fermented lactose, mannitol and raffinose while Streptococcus equinus did not fermented sugars (Table 2).
Table 1:
Summary of Streptococci isolated from clinical mastitic Cows in Ibadan, Ilorin and Kaduna

<table>
<thead>
<tr>
<th>Isolates</th>
<th>Ibadan (Oyo State n = 66)</th>
<th>Ilorin (Kwara State n = 36)</th>
<th>Kaduna (Kaduna State n = 28)</th>
<th>Total = 130</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Positive</td>
<td>Incidence (%)</td>
<td>No Positive</td>
<td>Incidence (%)</td>
</tr>
<tr>
<td>S. uberis</td>
<td>47</td>
<td>71.21%</td>
<td>16</td>
<td>44.44%</td>
</tr>
<tr>
<td>S. agalactiae</td>
<td>19</td>
<td>28.79%</td>
<td>8</td>
<td>22.22%</td>
</tr>
<tr>
<td>S. dysgalactiae</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>22.22%</td>
</tr>
<tr>
<td>S. zooepidemicus</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>5.56%</td>
</tr>
<tr>
<td>S. bovis</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>5.56%</td>
</tr>
<tr>
<td>S. equinus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>66</td>
<td>100%</td>
<td>36</td>
<td>100%</td>
</tr>
</tbody>
</table>

n - no of isolates

Table 2:
Biochemical and Serological Identification of Streptococci Isolated from Mastitic Cows

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Haemolysis</th>
<th>CAMP test</th>
<th>Esculin hydrolysis</th>
<th>Lactose</th>
<th>Mannitol</th>
<th>Raffinose</th>
<th>Sorbitol</th>
<th>Sucrose</th>
<th>Trehalose</th>
<th>Salicin</th>
<th>Lancefield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groupable</td>
<td></td>
</tr>
<tr>
<td>Streptococcus agalactiae</td>
<td>β</td>
<td>100%</td>
<td>0</td>
<td>85.5%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>B</td>
</tr>
<tr>
<td>S. dysgalactiae</td>
<td>α</td>
<td>0</td>
<td>0</td>
<td>63.8%</td>
<td>0</td>
<td>0</td>
<td>73.9%</td>
<td>100%</td>
<td>100%</td>
<td>52.5%</td>
<td>C</td>
</tr>
<tr>
<td>S. zooepidemicus</td>
<td>β</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100%</td>
<td>100%</td>
<td>0</td>
<td>100%</td>
<td>C</td>
</tr>
<tr>
<td>S. bovis</td>
<td>α</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>95.1%</td>
<td>100%</td>
<td>0</td>
<td>100%</td>
<td>60.5%</td>
<td>100%</td>
<td>D</td>
</tr>
<tr>
<td>S. equinus</td>
<td>α</td>
<td>0</td>
<td>57.8%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100%</td>
<td>0</td>
<td>100%</td>
<td>100%</td>
<td>D</td>
</tr>
<tr>
<td>Non-groupable</td>
<td></td>
</tr>
<tr>
<td>S. uberis</td>
<td>α</td>
<td>0</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>0</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>ng s = Non-groupable</td>
</tr>
</tbody>
</table>

DISCUSSION

In this study, 72 of 130 isolates (55.38%) were identified as *S. uberis*. None of the organisms could be grouped using A, B, C, D, F and G coagulation reagents. Typically, the organisms are esculin positive and are lactose, mannitol, sorbitol, sucrose, trehalose and salicin fermenters. *Streptococcus uberis* is the most frequently isolated streptococcal species from bovine mammary gland. (McDonald and McDonald, 1976) reported that *S. uberis* accounted for 56.5% of 455 streptococcal isolates from 72 dairy herds. This finding is similar to our findings in this study. (Bramley and Dodd, 1984) reported that 73% of British herds harbored at least one cow infected with *S. uberis* and that this organism was responsible for 14% of clinical mastitis cases. (Watts, 1988) reported that 98 of 317 isolates (30.9%) were identified as *S. uberis*.

Our findings support the observation of (Keefe, 1997) that the prevalence of infection with group B streptococci can reach 44% in infected herds. Recently, (Ekin and Gurturk, 2006) also recorded 44.7% group B streptococci from bovine mammary glands. The *S. agalactiae* encountered in this study was 100% CAMP
test and 0% esculin positive, respectively. This finding conforms to that earlier reported by (Watts, 1988).

In this study Lancefield group C contains two species, *S. dysgalactiae* and *S. zooepidemicus*. *S. zooepidemicus* exhibited β-haemolysis on sheep blood agar, which distinguishes these organisms from alpha-haemolysis of *S. dysgalactiae*. All sixteen isolates (12.31%) identified as *S. dysgalactiae* in this study exhibited serological and biochemical characteristic similar to those described previously for bovine *S. dysgalactiae* by (McDonald and McDonald, 1976). *S. zooepidemicus* is differentiated from *S. dysgalactiae* on the basis of trehalose utilization. *S. zooepidemicus* utilizes lactose, sucrose and sorbitol but not trehalose (Farrow and Collins, 1984). In this study, two species reacted with group D antisera. Of these, 3(2.31%) produced 100% esculin hydrolysis, and 100% and 60.5% of lactose, mannitol, raffmose and trehalose fermentation, respectively. The strains were identified as *S. bovis* (Barrow and Feltham, 1993). The second strain under group D Lancefield group of streptococci have an incidence of 1.54%. This strain produced 57.8% esculin hydrolysis and 100% for sucrose and salicin, but lactose, mannitol, raffmose and trehalose fermentation, respectively. The strains were identified as *S. equinus* (Barrow and Feltham, 1993). In this study a total of six Lancefield groups were determined for 130 gram-positive, catalase-negative strains were identified as *S. dysgalactiae* A1993). In this study a total of six Lancefield groups were determined for 130 gram-positive, catalase-negative streptococci and members of related genera. J. Clin. Microbiol. 30:267-2661.

Bovine streptococcal mastitis in Nigeria

and NAGase activity in Israel Assaf Sheep throughout lactation Small Ruminant Research 39:107-112.

