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Abstract
In conducting and reporting of  medical research, there 
are some common pitfalls in using statistical methodology 
which may result in invalid inferences being made. This 
paper is aimed to highlight to inexperienced statisticians 
or non-statistician some of  the common statistical pitfalls 
encountered when using statistics to interpret data in medical 
research. We also comment on good practices to avoid these 
pitfalls.

Introduction
Statistical methods in medical research allow inferences to 
be extended beyond study subjects to the study population 
e.g. future patients1. Furthermore, statistical methods allow 
use of  information in an objective way and take into account 
the sampling variability. Thus statistical methodology is an 
integral part of  modern medical research2. However there 
are many pitfalls that are encountered when using these 
statistical methods. Statistics is a huge discipline with different 
paradigms, schools of  thought and alternative methodologies 
such that sometimes rationales for choosing one method over 
the other can be confusing. Inappropriate statistical methods 
are sometimes used when designing a study, selecting the 
types of  variables, the distributions of  variables, the number 
of  groups compared or the dependency structure among 
these groups.

The primary goal of  the analysis and the study design 
determine the appropriate statistical analysis method to be 
used3. It is also easy to overlook statistical and mathematical 
assumptions of  different methods. In this paper we discuss 
some of  the common statistical landmines during study 
design, analysis and interpretation of  the results. This is 
primarily intended for inexperienced statisticians or non-
statisticians.

Study design pitfalls
It is important to choose the right study design in order 
to answer the research question in a cost effective manner. 
The study design may influence the study cost through the 
sample size, number of  arms, number of  follow-up visits 
per study participant and the amount of  testing to be done, 
among other factors. It should be stated that not seeking 
statistical advice on study design is one of  the commonly 
encountered statistical “hazards” in research.

Apart from choosing the most effective study design and 
sample size calculations, this stage also involves specifica-
tion of  main hypotheses, outcomes, potential confounding 
or risk factors; and for randomized controlled trials, defin-
ing randomization and blinding procedures.

We highlight some of  the common errors encountered 
involving sampling plan, sample size calculations, laboratory 

assays and randomizations.

Sampling plan
Proper sampling is a precondition for avoiding bias.  For 
example in assessing prevalence of  HIV, a sample of  
special groups e.g. pregnant women cannot represent the 
general population as pregnant women are highly sexually 
active individuals. Another important pitfall related to the 
sampling exercise in medical research is non-response e.g. in 
behavioural health studies, non-response can easily be due to 
self-selection which introduces selection bias.

Sample size calculations
It is ideal that the sample size is calculated to obtain estimates 
of  desired precision or to detect an effect if  it exists (e.g. a 
minimum detectable difference between two treatments). A 
smaller sample than required would not have enough power 
for statistical conclusions. Obviously, unnecessarily larger 
samples would require more resources than could be justified 
by the gain in precision or power to detect the difference. 
The following points should be seriously considered when 
calculating a sample size for a study:

1. Sampling technique used e.g. simple random sampling 
or cluster sampling.

2. Variability in the population i.e. how individual data 
points vary around the expected value.

3. Accuracy of  the estimate or detectable difference 
required and

4. The statistical model or test e.g. paired t-test or two 
independent sample t-test to be used for analysis.

It is common to have drop-outs or loss to follow-up in a 
cohort study. This is especially common in populations 
that are transient, such as migrant groups or labourers who 
shift from one geographic region to the next in search of  
employment. If  the number of  study participants who are 
lost to follow-up is large, it can lead to a substantial reduction 
in the sample size and subsequently loss of  power to test the 
hypothesis or loss of  precision in estimating the size of  an 
effect. Therefore, when calculating sample size, it is important 
to have an estimate of  the dropout rate. This rate should be 
factored in the calculation of  the sample size so that the final 
sample size is more than the required effective sample size. 
This will ensure that if  the number of  participants lost to 
follow-up during the study is not more than the anticipated 
drop-out rate, the study will still have the required power or 
precision.

Laboratory assays
When conducting a study involving an expensive assay to 
detect the presence of  an uncommon characteristic in blood 
samples it may be advantageous to pool samples in order to 
reduce the number of  tests performed and hence the cost. 
Such sample pooling is only cost-effective if  the probability 
of  a positive test is small. In this case, Statistical knowledge 
is useful to calculate the most effective number of  samples 
to be pooled, and estimate the expected number of  vials 

Statistical Pitfalls in Medical Research
VB Nyirongo1, MM Mukaka1, LV Kalilani-Phiri2



Statistical Pitfalls 16

MMJ 20(1) 2008 www.mmj.medcol.mw

required for follow-up on positive tests. A common mistake 
in sample pooling is not considering the probability of  
samples testing positive, and calculating the expected number 
of  tests to be done, which may result in testing more samples 
than necessary. The cost saving in terms of  the assay need to 
be matched by the drawing of  a sample of  sufficient amount 
to permit both individual testing when the pooled sample is 
positive and contribution to a pooled sample.

Randomisation
In experimental clinical studies, the primary aim is usually 
to compare effects of  treatment regimens. Therefore, if  the 
groups differ in other characteristics apart from the treatment 
regimen, the comparisons may be biased if  prognosis is 
related to some of  these factors. It is therefore, important 
that the groups are as balanced in terms of  all other factors 
(both known and unknown) as possible. It is easy to adjust 
for known potential confounders at analysis stage, but not 
the unknown factors. Randomisation is one of  the statistical 
tools used to ensure that treatment groups are balanced.  If  
randomisation is done correctly, any imbalances between 
groups are due to chance alone. Randomisation using blocks 
ensures that the numbers of  participants are balanced 
between groups. Blocking is particularly necessary in small 
studies because simple randomisation can lead to imbalance 
in the number of  participants in the trial arms, which could 
reduce the power of  a study4, 5. However caution is needed 
when deciding on the length of  the blocks so that they are 
short enough to balance the groups but not too long such 
that investigators are able to predict the assignment of  an 
individual treatment. Other forms of  randomisation used 
include stratification and minimisation techniques to ensure 
balancing with respect to known prognostic factors4, 5.

We should highlight that errors at the study design stage 
usually have high gravity stemming from the fact that design 
errors cannot be corrected once the study has been done4. 
In the next section we highlight some of  the common errors 
encountered involving statistical analysis.

Statistical analysis and reporting pitfalls
It is ideal to consider for analysis only hypotheses, outcomes, 
potential confounding or risk factors pre-specified during 
study design so that strong inferences can be made from the 
results.  Pre-specifying main hypotheses avoids the problem 
of  multiple testing and data snooping/dredging during 
analysis5.

Subgroup analysis
Ad hoc subgroup analyses are vulnerable to data dredging.  
Ideally results of  such analysis should be viewed as 
exploratory6.  Even with subgroups specified before seeing 
the data, subgroup analyses introduce multiple testing which 
increases the chance of  obtaining a false positive result and 
therefore should be corrected for7. On the flip side, there is 
a high chance of  missing a true treatment effect due to small 
sample sizes in subgroups. Also subgroup analyses cannot 
be used to assess interaction between factors (interaction 
between two variables exists when there is a difference 
in effect of  one variable on the outcome across another 
variable). For example, it is wrong to conclude that there 

is interaction by looking at two subgroups and finding a 
significant difference in one but not in the other6,7,8.

A special case of  subgroup analysis is removing seemingly 
outlying observations.  Outliers might represent an important 
aspect of  the system and careful consideration including 
sensitivity analysis should be done before removing them.

Effect measure modification/interaction
Effect measure modification/interaction refers to the extent 
to which the joint effect of  two risk factors on disease differs 
from the independent effects of  each of  the factors8,9. 
One example is phenylketonuria (PKU), a metabolic 
disorder in which the combination of  a genetic mutation 
and an environmental factor, in this case dietary exposure 
to a particular amino acid gives rise to mental retardation 
in children10. Statistical interaction is a model-dependent 
concept and sometimes a chosen model cannot represent 
the underlying biological mechanisms of  causality10, 11, 12, 13.  
Statistical interaction depends on the form of  statistical model 
used to estimate a measure of  effect e.g.  a risk measure (risk 
difference, risk ratio or odds ratios). Statistical interaction 
can also depend on the scale of  analysis. It is possible to 
find an interaction on an additive scale and no interaction 
on the multiplicative scale.  However, biological interaction 
refers to the interaction of  two factors in causing disease. It 
is therefore important for investigators to clearly define the 
interaction being assessed and use correct parameters when 
assessing the interaction.

Confounding
It is not always possible to conduct randomized controlled 
trials (RCTs) which are considered the gold standard because 
of  ethical, economical and other reasons. Alternatively, 
observational studies are used to explore and potentially 
infer causality. However, unlike RCTs, there is usually an 
imbalance of  prognostic factors in different exposure 
groups leading to confounding (i.e. masking the effect of  
the exposure variable on the outcome) and bias. A potential 
confounder is a variable that is associated with the exposure 
variable and also influences the outcome14, 15. A classic 
example of  confounding is the initial association between 
alcohol consumption and lung cancer which is confounded 
by smoking (smoking is associated with alcohol use, an 
independent risk factor for lung cancer).

Also in Genome Wide Association studies, recently becoming 
increasingly popular, confounding or spurious associations 
due to population admixture are a major concern. A simple 
example is a study with cases and controls coming from 
different ethnic groups with different allele frequencies for a 
particular genedue to different ancestry. 

Common methods used to account for confounding in 
the analysis stage are stratification or including potential 
confounders in a regression model. Statistical analysis can 
only control for confounding that has been measured, and 
does not control for unmeasured confounders. Additionally, 
adjustment only takes into account the extent to which 
the confounders have been measured. In some studies 
the measurement of  confounders is not as rigorous as 
for the main exposure and outcome variables. Inadequate 
measurement of  confounders can introduce bias11, 12. Caution 
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should also be taken not to adjust for variables that are in the 
causal pathway as this may create spurious associations and 
in some cases attenuate, inflate or remove a true effect16, 17.

Model choice
Choosing aspects of  the study design to model is very 
important. For example, ignoring some characteristics like 
dependence among observations can result in inefficient 
estimators18.  Dependence occurs when data is collected 
from an individual over a period of  time or from a group of  
people who are in clusters e.g. children in a classroom and 
paired data. Ignoring dependence gives invalid inferences 
due to underestimating of  standard errors. For example, use 
of  two sample t-test for paired data is clearly inappropriate.

Model choice also encompasses choosing the functional 
form of  the relationship between the response and 
explanatory variables. All assumptions should be evaluated 
before using a model to ensure that valid inferences are 
made. Before selecting a model, researchers should evaluate 
the assumptions implied by the model against the data and 
prior information.

Another aspect of  choosing a model involves selecting 
explanatory variables to enter the model. When selecting the 
variables to enter a model, one needs to be aware that putting 
a lot of  variables into the model may result in unstable 
estimates especially when a set of  explanatory variables 
are highly correlated with the exposure19. Also inclusion of  
variables unrelated to the outcome increases unexplained 
variability. On the other hand selecting a few variables into 
the model may also result in biased estimates if  the omitted 
variables are true confounders.

Furthermore, expert knowledge might require including 
variables in the model which otherwise would not have been 
chosen using mathematical criteria alone. Also note that 
different mathematical criteria or automated procedures can 
lead to different sets of  variables being selected.

Another aspect of  model choice is variable categorization. 
Categorization of  continuous variables is very common in 
order to simplify the analysis. However this may result in loss 
of  information. Therefore categorisation should be done 
only when necessary20, 21, 22.

Missing data
Missing of  data can be common in some variables e.g. CD4 
count, lead levels in the body or behavioral characteristics: 
smoking status and drinking habits. Missing data could be 
due to a whole range of  reasons e.g. limited precision of  the 
recording machine or interviewee’s non-response. Missing 
data can be non-random and ignoring it in the analysis 
introduces bias. An example of  non-random missing data is 
levels of  alcohol consumption where alcoholics are likely to 
have missing data due to non-response.

Another form of  missing data is loss to follow-up e.g. in 
a study of  HIV infected individuals where the outcome is 
morbidity or mortality, patients maybe lost to follow-up if  
they were too sick to come for follow-up visits or died, and 
the researchers were unable to trace them and therefore coded 
as missing. This will cause bias and needs to be considered 

when analyzing the data as the degree of  missing depends 
on the outcome.

Interpretation of results
It is common to report only p-values for statistical tests. 
However, confidence intervals for estimates are more 
informative than p-values.  A p-value depends on both the 
size of  the difference in the groups and precision (i.e. sample 
size and population variability) 8, 23. Large studies with more 
precision may give small p-values even if  the difference is 
not clinically important20. On the other hand small studies 
with less precision but a large difference between groups will 
also give a small p-value. Therefore a p-value does not tell 
us whether the significance is due to effect size or sample 
size. However from the confidence interval both precision 
of  the estimate and observed difference between groups are 
available.

It is also a common mistake to perceive a significant statistical 
association as sufficient basis for inference on causation. 
Statistical association is only one of  the required factors. 
More information e.g. biological plausibility is needed to 
declare causation.

Statistical software
Statistical software with graphical user interface has brought 
many advantages but also problems. Menu-driven software 
encourages or permits blind and incorrect use of  statistical 
methods. With robust software, some of  the errors can easily 
go unnoticed or ignored and this has increased the danger of  
applying inappropriate analysis methods.  It is also common 
to have software output including some irrelevant statistics 
under specific model assumptions. 

Reporting pitfalls
Arguably, errors conducted during analysis or reporting 
stage usually have relatively low gravity compared to design 
errors as it can be cheaper to re-analyse the data or correct 
the reporting than redoing the whole study4. However 
these mistakes are no less important as published reports 
provide the main window for third parties to assess the 
quality of  research including design and statistical analysis.  
For example reporting group means for paired data without 
reporting within-pair changes may mislead the audience as 
to whether proper analyses or conclusions are made. Also in 
well conducted randomized trials, any difference in baseline 
characteristics between treatment groups can be attributed 
to chance and testing for statistical difference creates 
conceptional problems. Thus detailed analyses and reporting 
on testing equality of  baseline characteristics between 
randomisation groups is at the very least wastage of  space. 

Using graphical tools
Figures and tables should not be used to “store” data! 20 i.e. 
just throwing software output in the table/graph which does 
not aid the interpretation. Good statistical, graphical and 
text tools have to be used for reporting summarised data and 
information in a useful and non-misleading manner and to 
aid interpretation of  the results. 



Statistical Pitfalls 18

MMJ 20(1) 2008 www.mmj.medcol.mw

Discussion
We have highlighted some common statistical dangers in 
medical research involving design, analysis and reporting.  
Gross mistakes can be minimised by distinguishing 
exploratory from confirmatory analyses24. Statistical analyses 
in experimental studies (randomized clinical trials) should 
be limited to those pre-specified in the study protocol. 
On the other hand exploratory analyses in observational 
research require deciding a priori on the model type before 
parameter estimation. Thus aims of  a study are very 
important and should be stated clearly at the beginning.  
Controlling for confounders by randomisation rather 
than adjusting for them in the regression model can avoid 
having highly linearly correlated explanatory variables in the 
model (multicollinearity problem) i.e. confounders (both 
known and unknown) are controlled at the design stage4, 25. 
Randomisation is the only method that can balance unknown 
confounders between treatment groups. Controlling for 
confounders by randomisation is possible when interested in 
hypothesis testing of  marginal associations only. To calculate 
adjusted estimates or conditional associations, known and 
measured confounders must be controlled in analysis as well. 
Some methods of  controlling for confounders in the design 
stage e.g. matching do not permit estimation of  the effect 
of  the confounder during analysis. On the other hand the 
analysis for effects always has to take into account the effect 
modifiers and confounders if  marginal effects are different 
to the effects in subgroups. This should include taking into 
account effect modifications during sample size calculation, 
in order to have enough power to detect them if  they exist.

Aims of  the study can help in deciding whether to do 
subgroup analyses or not. Doing subgroup analysis when 
effects estimation is the aim and subgroups and marginal 
effects are similar (for example there is homogeneity of  odds 
ratio across subgroups) unnecessarily reduces the effective 
sample size resulting in reduced precision for the estimates4, 
26.

Additionally, study objectives, design and power of  the study 
should always be considered in interpreting the results. There 
should be a distinction between “pragmatic” (effectiveness) 
and “explanatory” (efficacy) studies when designing and 
interpreting biomedical research. When the aim of  the 
analysis is to describe or explain the phenomenon, estimates 
should be adjusted for prognostic/risk factors5. On the 
other hand if  estimation of  the effects is the aim of  analysis, 
confounders, including effect modifiers have to be included 
in the model. For hypothesis testing, analysis should adjust 
for all baseline characteristics that are potential risk factors 
and were specified at study design.  P-values have also to 
be adjusted to account for multiple testing in subgroup 
analyses, ideally specified at study design. Otherwise any 
ad hoc subgroup analysis would be exploratory and no 
strong inference can be made lest one be accused of  data 
dredging27.

In analysis, assumptions of  statistical methods or models 
used should be fulfilled satisfactorily or checked e.g. linear 
regression analysis should only be done after establishing 
that the relationship between the response and explanatory 
variables is linear and the variability of  responses is 
normal with constant variance.  A common assumption 
in statistics is the independence of  observations; however 

dependent data are very common in practice.  Ignoring the 
dependency structure between observations results in either 
under-estimating standard errors, or inefficient estimators, 
depending on the “within” and “between” variability for 
groups of  dependent observations. 

This discussion paper has highlighted a few statistical pitfalls 
and our list is by no means exhaustive. For specialist statistical 
pitfalls see e.g. the paper by Chatfield28 and references therein. 
Thus we should be cautious about many potentially slippery 
patches as we hike to statistical excellence.   
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