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INTRODUCTION

Radiation therapy (RT) is the most commonly 

used therapeutic modality in the treatment 
of oral cancer. Free radical-induced cellular 
damages have been implicated in many 
patho-biological conditions, malignancy, aging 
process, degenerative diseases, etc.[1] Tumor 
cells are readily killed by heat than are normal 
cells, especially, erythrocytic precursors are 
more heat sensitive than the granulocytic 
precursor.[2] Exposure to ionizing radiation has 
been reported to induce hyperthermia in cats, 
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rabbits,[3] and humans.[4] Glutathione peroxidase 
(GPx) protects aerobic cells against oxygen 
toxicity and lipid peroxidation. Glutathione 
(GSH) acts as a substrate or cofactor for the 
antioxidant enzymes GPx; glutathione-S-
transferase (GST); and glutathione reductase 
(GR), which is involved in the termination of 
peroxidation. In addition, cancer patients may 
also face a number of side effects from their 
radiation treatment, including fatigue, skin 
problems, loss of appetite, and also some 
biochemical complications like damage to the 
macromolecules such as DNA, protein, and 
membrane phospholipids. Supplementation is 
essential to reduce the toxicity during RT in oral 
cancer. Our previous study also suggested that 
an antioxidant supplementation can improve 
the antioxidant enzyme activity in radiation-
treated oral cancer patients.[5] α-tocopherol, 
a free-radical scavenger and chain-breaking 
antioxidant, has been taken for the present 
study to reduce the adverse effects during 
radiotherapy in oral squamous cell carcinoma 
(OSCC) patients. Its structural role, membrane-
stabilizing effects, and protective action on 
membrane lipids and unsaturated fatty acids 
against oxidative degradation have been 
reported.[6] The aim of our present investigation 
was to evaluate the relationship between 
α-tocopherol and radiation toxicity, as well 
as the effect of α-tocopherol on oxidant and 
antioxidant enzymes in OSSC patients.

MATERIALS AND METHODS

Blood samples were collected from histologically 
conÞ rmed patients between 1999 and 2001, 
prospectively from 79 consecutive consenting 
patients presenting at the Government Arignar 
Anna Memorial Cancer Research Institute and 

Hospital, Kancheepuram, Tamil Nadu, India, 
and included in this cancer clinical trial. These 
79 patients with OSCC (mean ± SD = 50 ± 12 
years) comprised of 47 males and 32 females. 
OSCC patients had cancer at various sites such 
as the cheek (n = 24), tongue (n = 15), alveolus 
(n = 13), ß oor of the mouth (n = 10), lip (n = 8), 
palate (n = 6), retromolar trigone (n = 2), and 
combined sites (n = 1). Tumor staging was done 
according to the Tumor Nodular Metastasis 
(TNM) classification of the American Joint 
Committee on Cancer (AJCC) into stages I 
(n = 0), II (n = 15), III (n = 41), and IVA (n = 23). 
Patients with metastasis and those suffering 
from hypertension, diabetes, and infection 
were excluded from the study. All patients gave 
informed consent prior to their inclusion in the 
study, and the medical practitioner monitored 
the entire experiment. Studies were performed 
in accordance with the ethical standards of the 
institution.

The present study consisted of three groups. 
Group I consisted of OSSC patients (n = 79), 
and they were randomly divided into two 
groups, viz., II and III. Group II consisted of 
OSCC patients treated with RT (n = 48); and 
group III, OSCC patients treated with RT and 
simultaneously supplemented with α-tocopherol 
(RT + AT) (n = 31) during the entire period of 
radiotherapy. RT was given with a Telecobalt 
beam using anterior and lateral wedge pair 
or lateral parallel portals (Gammatron - 60CO; 
Theraton - 780 - 60CO; Phoenix - 60CO) at a 
dosage of 6000 cGy in Þ ve fractions per week 
for a period of 6 weeks. α-tocopherol capsules 
(Bio-E capsules) were given at the dosage of 
400 IU per day for 6 weeks from the Þ rst day 
of RT to the end of the treatment in RT + AT 
patients. Oral intake of α-tocopherol is relatively 
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safe at the dosage of 400 IU/day for a period of 
1 to 2 years.[7]

After overnight fasting, 5.0 ml of each of the 
blood samples was collected in a test tube 
containing EDTA as an anticoagulant, before 
and after RT and after supplementation 
with α-tocopherol. Red blood cells (RBCs) 
hemolysates were used for the assay of 
malondialdehyde (MDA),[8] SOD,[9] catalase 
(CAT),[10] GPx,[11] GR,[12] GST,[13] and glucose-
6-phosphate dehydrogenase (G6PD)[14] by 
standard procedures. Chemicals used for this 
analysis were Analar grade, and Þ ne chemicals 
were from Sigma Chemical Co., St. Louis, MO. 
The collection of patients� blood was approved 
by the human ethics committee of the hospital. 
The data were subjected to Students t test.

RESULTS

The percentages of different demographic 
variables in patients with OSCC in this clinical 
study showed the ratio of men to women was 
1.46 and the frequency of OSCC occurrence 
was in the age mean SD 50 ± 12 (95% CI, 

47.3-52.6%) years. The occurrence of OSCC 
in cheek, ß oor of mouth was more predominant 
in women; whereas in men, the incidence in all 
the other sites was higher. The clinical staging 
of these patients revealed that 52% of patients 
were in stage III, 29% in stage IVA, and 19% 
in stage II. OSCC was more predominant in 
stage III patients, followed by stage IVA (without 
metastasis) patients. No metastatic patients 
were involved in this study. Most of the patients 
had well-differentiated carcinoma [Table 1].

The levels of MDA in hemolysate were 
signiÞ cantly high (P < 0.001; 95% CI, 7.6-8.0%) 
in RT patients when compared to OSCC 
patients (95% CI, 6.9-6.6%); whereas on 
vitamin E supplementation, the levels were 
significantly reduced (P < 0.001; 95% CI, 
5.4-5.8%) in RT + AT patients when compared 
to RT patients [Figure 1]. The activities of 
SOD (95% CI, 4.0-4.2%) and CAT (95% CI, 
0.69-0.72%) were significantly decreased 
(P < 0.001) in RT patients as compared to 
OSCC patients (SOD: 95% CI, 5.31% to 5.33%; 
CAT: 95% CI, 1.03-1.07%). The activities were 
signiÞ cantly increased (P < 0.001; SOD: 95% 

Table 1: Socio-demographic variables of OSCC in the study sample
Demographic variables Total (n = 79) Male (n = 47) Female (n = 32)

Age
 Oral squamous cell cancer (50 ± 12 year) 79 47 32
Site of occurrence
 Cheek 24 (30) 10 (21) 14 (44)
 Tongue 15 (19) 11 (23) 4 (12.5)
 Alveolus 13 (16) 9 (19) 4 (12.5)
 Floor of mouth 10 (13) 4 (9) 6 (19)
 Lip 8 (10) 7 (15) 1 (3)
 Palate 6 (8) 4 (9) 2 (6)
 Retromolar trigone 2 (3) 2 (4) -
 Combined sites 1 (1) - 1 (3)
Stages
 Stage I - - -
 Stage II 15 (19) 8 (17) 7 (22)
 Stage III 41 (52) 27 (57) 14 (44)
 Stage IVA 23 (29) 12 (26) 11 (34)

Percentage given in parenthesis
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Figure 1: Levels of malondialdehyde in the hemolysate 
of experimental groups. Values are expressed as 
mean ± SD. A statistically signiÞ cant value of Group II 
was compared with that of Group I, and that of Group III 
was compared with that of Group II. ***P < 0.001. 

Figure 2: Activity of superoxide dismutase in the 
hemolysate of experimental groups. Values are 
expressed as mean ± SD. A statistically significant 
value of Group II was compared with that of Group I, 
and that of Group III was compared with that of Group 
II. ***P < 0.001. 

Figure 3: Activity of catalase in the hemolysate 
of experimental groups. Values are expressed as 
mean ± SD. A statistically signiÞ cant value of Group II 
was compared with that of Group I, and that of Group III 
was compared with that of Group II. ***P < 0.001. 

Figure 4: Activities of glutathione S-transferase and 
glucose 6-phosphate dehydrogenase in the hemolysate 
of experimental groups. Values are expressed as 
mean ± SD. A statistically signiÞ cant value of Group II 
was compared with that of Group I, and that of Group 
III was compared with that of Group II. ***P < 0.001.  
GST - µmoles of CDNB conjugated/min/mg Hb; G6PD 
- units/mg Hb

CI, 4.98-5.6%; CAT: 95% CI, 1.04-1.13%) 
in RT + AT patients when compared to RT 
patients [Figures 2 and 3].

A significant decrease in the activities of 
glutathione-dependent enzymes - GST 
(P  < 0.001; 95% CI, 0.62-0.66%), GPx 

(P  < 0.001; 95% CI,  4.8-5.3%), G6PD 
(P < 0.001; 95% CI, 0.48-0.52%), and GR 
(P < 0.05; DF 1.176; 95% CI, 1.2-1.4%) - was 
noted in RT patients when compared to OSCC 
patients (GST: 95% CI, 0.81-0.85%; GPx: 95% 
CI, 6.5-7.5%; G6PD: 95% CI, 0.67-0.71%; GR: 
95% CI, 1.3-1.5%); whereas increased activities 
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of GST (P < 0.001; 95% CI, 1.82-1.89%), 
GPx (P < 0.001; 95% CI, 7.6-8.8%), G6PD 
(P < 0.001; 95% CI, 0.71-0.85%), and GR 
(P > 0.05; DF 2.275; 95% CI, 1.34-1.6%) were 
observed in RT + AT patients when compared 
to RT patients [Figures 4 and 5].

DISCUSSION

Lipid peroxidation is a free radical-mediated 
process. It is involved in the formation 
of lipid radicals, a re-arrangement of the 
unsaturated lipids that results in a variety 
of degraded products like alkanes, MDA, 
conjugated dienes, lipid hydroperoxides; and 
eventually destruction of membrane lipids,[15] 
and modulates membrane-bound ATPases.[16] 

Figure 5: Activities of glutathione peroxidase and 
glutathione reductase in the hemolysate of experimental 
groups. Values are expressed as mean ± SD. A 
statistically signiÞ cant value of Group II was compared 
with that of Group I, and that of Group III was compared 
with that of Group II. *P < 0.05 (degree of freedom, 1.76); 
**P < 0.05 (degree of freedom, 2.275); ***P < 0.001. Group 
I: oral squamous cell carcinoma patients (GPx: 95% CI, 
6.5-7.5%; GR: 95% CI, 1.3-1.5%); Group II: oral squamous 
cell carcinoma patients treated with radiotherapy (GPx: 
95% CI, 4.8-5.3%; GR: 95% CI, 1.2-1.4%); Group III: 
oral squamous cell carcinoma patients treated with 
radiotherapy and simultaneously supplemented with 
α-tocopherol (GPx: 95% CI, 7.6-8.8%; GR: 95% CI, 
1.34-1.6%). GPX - µmoles of GSH oxidized/min/mg Hb; 
GR - µmoles of NADPH oxidized/min/mg Hb)

The increased levels of MDA in RBCs of RT 
patients can be attributed largely to higher 
rate of lipid peroxidation. Radiation-induced 
free radicals produce peroxidation of lipids, 
leading to structural and functional damage 
to cellular membranes. RBC membranes are 
more prone to lipid peroxidation because of 
their high polyunsaturated lipid content and 
direct exposure to molecular oxygen and 
hemoglobin.[17,18] The reduction to compensate 
the increased lipid peroxidation by radiation due 
to fall in total radical-trapping capacity of blood 
plasma and marked reduction in plasma levels of 
antioxidants such as vitamins E, C, β-carotene, 
and GSH during RT (data not shown) result in 
elevation of lipid peroxidation products.

In RT + AT patients, lower levels of MDA 
were observed. The reduction may be due 
to protective effect of α-tocopherol on cell 
membrane lipids and unsaturated fatty acids 
(UFAs) against oxidative degradation. Inhibition 
of oxidation of membrane components occurs by 
blocking the free-radical peroxidation process, 
the main targets of which are UFAs.[19] α-
tocopherol is considerably more lipophilic and a 
potent antioxidant. Penetration to a precise site 
in the membrane may be an important feature of 
the protection against highly reactive radicals. As 
α-tocopherol is a major lipid phase antioxidant, it 
confers protection against oxidative lipid damage 
in RBC membrane of RT + AT patients. Although 
in biological membranes, α-tocopherol is present 
in a low molar ratio compared to the abundance 
of phospholipids that are highly susceptible 
to oxidative damage, it confers protection to 
membrane against lipid peroxidation both 
enzymatically and non-enzymatically (data not 
shown). Supportive nutritional therapy with 
antioxidants during RT reduces the generation of 

lipid peroxides that results from the treatment.[20] 
Several dietary supplements containing vitamins 
also play a signiÞ cant role in this matter. The 
present results strongly favored the protective 
role of α-tocopherol, which was evident from 
signiÞ cant reduction in lipid peroxide levels.

The lowered activities of SOD and CAT in RT 
patients may have been due to inactivation 
of both these enzymes by the singlet oxygen 
generated by radiation.[21] Furthermore, the 
toxic oxygen radicals may react with intrinsic or 
extrinsic radical scavenger, forming a secondary 
free radical that by itself can produce injury.[22] 
SOD reacts with superoxide radicals and 
converts them to hydrogen peroxide; excessive 
amounts of these metabolites start lethal chain 
reactions, which oxidize and disable structures 
that are required for cellular integrity and 
survival.[23] Tumor cells have increased rates 
of metabolism compared with normal cells, 
which would typically lead to increased number 
of reactive oxygen species. The reduced 
activities of both the enzymes in red cell might 
be due to abnormalities in the regulation 
of SOD and CAT genes in the pluripotent 
stem cells;[24] alternatively, it could be due to 
posttranslational modiÞ cation of the enzymes by 
free radicals.[25] RBCs are more susceptible to 
superoxide radical, so the increased exposures 
of circulating RBCs to superoxide generated by 
cancer cells damage the RBCs. Decreases in 
SOD and CAT were also observed in RBCs of 
CMF-treated breast cancer patients.[26] RT + AT 
patients showed increased activity of SOD; this 
might be due to protective effect of α-tocopherol 
on RBCs. Retention of normal RBC function 
might have resulted in normal activities of SOD, 
which facilitates the removal of superoxide 
anions produced by radiation. Addition of 

α-tocopherol in vitro enhances the activity of 
SOD in rabbits.[27]

Human erythrocytes are rich in GSH and GPx. 
GSH acts as a substrate or cofactor for the 
antioxidant enzymes GPx, GST, and GR, which 
are involved in the termination of peroxidation, 
by removing peroxides generated within the 
cell. The three enzymes GPx, GR, and G6PD 
act in consort, with G6PD supplying reducing 
equivalent needed for GR activity which in 
turn maintains adequate concentration of GSH 
required for GPx activity. GPx removes H2O2, 
one of the powerful mediators of oxidative 
stress.[28] GPx plays a critical role in maintaining 
the redox status during acute oxidative stress. 
This protective role of GPx is coordinated with 
other antioxidant enzymes.[29]

The utilization of GSH may be mediated by GST 
or GPx system. Unavailability of GSH, causing 
a reduction in the activity of GPx and GST, has 
been reported. GST also possesses peroxidase 
activity and can directly attack the peroxides.[30] 
The activities of GSH-dependent enzymes 
[GST, GPx, G6PD, and GR (nonsigniÞ cant)] 
were lowered in RT patients when compared 
to OSCC patients. Significant decreases in 
the activities of antioxidant enzymes have 
been studied in radiation-induced Swiss 
mice.[31] The erythrocyte GSH-related enzyme 
activity and radiation response were studied 
by others.[6,32] In intact and healthy cells, the 
enzymes are restored immediately after each 
interaction. In the case of RT patients, normal 
synthesis/repair is disrupted due to damage in 
DNA and membranes.[33] The slow recovery in 
the activity of antioxidant enzymes in RT could 
be due to the lack of antioxidant enzymes. 
RT + AT patients showed an improvement in 
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their activities, which might be due to the fact 
that α-tocopherol improves the red cell survival 
in patients with GSH synthetase deÞ ciency and 
increases red cell GPx and GST activities.[34] 
Improvement of RBCs by α-tocopherol in 
RT + AT patients may have restored the 
activities.

The present Þ ndings suggest that radiotherapy 
causes increased MDA levels and concomitant 
decrease in the activities of SOD, CAT, and 
GSH-dependent enzymes which arise as a 
result of enormous production of free radicals in 
the system of radiation-treated OSCC patients. 
α-tocopherol supplementation improves the 
oxidant-antioxidant enzymes status and thereby 
protects the erythrocytes from free radical 
damage during radiotherapy.
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