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BACTERIAL BIOFILM FORMATION, PATHOGENICITY, DIAGNOSTICS 
AND CONTROL: AN OVERVIEW
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ABSTRACT

Bacterial biofilms are complex, mono- or poly-microbialn  communities adhering to 
biotic or abiotic surfaces. This adaptation has been implicated as a survival strategy. The 
formation of biofilms is mediated by mechanical, biochemical and genetical factors. The 
biofilms enhance the virulence of the pathogen and have their potential role in various 
infections, such as dental caries, cystic fibrosis, osteonecrosis, urinary tract infection 
and eye infections. A number of diagnostic techniques, viz., bright-field microscopy, 
epifluorescence microscopy, scanning electron microscopy, confocal laser scanning 
microscopy and amplicon length heterogeneity polymerase chain reaction, have been 
employed for detection of these communities. Researchers have worked on applications 
of catheter lock solutions, a fish protein coating, acid shock treatment, susceptibility to 
bacteriophages, etc., for biofilm control. However, we need to rearrange our strategies 
to have thorough insight and concentrate on priority basis to develop new accurate, 
precise and rapid diagnostic protocols for detection and evaluation of biofilm. Above all, 
the strict compliance to these techniques is required for accurate diagnosis and control.
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Biofi lms are the colonial way of l i fe of 
microorganisms. More appropriately, they 
have been defined as complex microbial 
assemblages anchored to abiotic or biotic 
surfaces. This microbial assemblage may 
harbor single or multiple microbial populations 
or microcolonies. The cells are embedded 
in extracellular matrix, where they interact 

with each other and the environment. This 

miniature ecosystem provides a safe home for 

the members of the community, where they are 

untouched by the counter-defense mechanisms 

of host immune responses, phagocytosis and 

antibiotic treatment. Watnick and Kolter rightly 

called it as City of Microbes.[1] BioÞ lm formation 

has been observed by most of the bacteria 

found in natural, clinical and industrial setups.

WHY ARE BIOFILMS FORMED? 

It would not be absurd to say that the answer 

to this is still a matter of investigation. The 

voluminous studies are underway. The new 
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metabolic interaction, phylogenic grouping and 

ecological signiÞ cance of this adaptation are 

being explored.[2] The mono-microbial or poly-

microbial populations of the bioÞ lm tend to live 

unitedly thereby as a single community which 

may exhibit a mutually beneÞ cial relationship 

as evident in glucomannan-mediated pea-

rhizobia symbiosis.[3] Contrary to this, there may 

be a host parasitic interaction with pathogenic 

manifestations by infectious organism.[4-8] 

The b iof i lm format ion has a lso been 

documented  as  su rv iva l  s t ra tegy  o f 

pathogens.[9] Some microorganisms in bioÞ lm 

can even modulate the pathogenic potential of 

bacteria as evident from cariogenic bacteria in 

plaque bioÞ lms. 

The bioÞ lms have been reported to be less 

susceptible to antimicrobial agents and have 

reduced sensitivity to inhibitors, thereby 

adding to their survival.[10] The Þ ndings have 

shown delayed penetration of ciprofloxacin 

into Pseudomonas aeruginosa bioÞ lms.[11] E. 

coli bioÞ lms exhibited decreased susceptibility 

to cetrimide.[12] Similar reports are available 

in Staphylococcus aureus  exposed to 

tobramycin.[13] The resistance shown by these 

biofilms, in general, has been attributed 

to factors such as poor penetration of 

antimicrobials, nutrient limitation, accumulation 

of toxic metabolites and decreased oxygen 

tension.[14] 

The bioÞ lms also act as safe niche for some 

organisms to survive protozoan grazing. The 

studies on V. cholerae showed that bioÞ lms are 

the protective agents that enable the organism 

to survive protozoan grazing. Grazing on 

planktonic V. cholerae was found to select for 

the bioÞ lm-enhancing rugose phase variant, 

which is adapted to the surface-associated 

niche by the production of exopolymers.[15] 

HOW ARE THE BIOFILMS FORMED?

Researchers are of the view that the formation 

of biofilms is mediated by a number of 

mechanical, biochemical and genetical tools. 

Bes ides th is ,  cer ta in  phys iochemical 

interactions such as cell surface hydrophobicity 

(long-range noncovalent interactions, deÞ ned 

as the attraction among apolar or slightly 

polar cells or other molecules immersed in 

an aqueous solution), charge, roughness and 

chemical constitution of the material have also 

been studied to mediate bacterial adhesion to 

the surface during bioÞ lm formation.[16] 

The studies on Staphylococcus epidermidis 

indicated that its adherence was to a higher 

extent to silicone substrate than to acrylic. This 

behavior has been attributed to higher surface 

hydrophobicity and roughness of silicone as 

compared to acrylic. [16]

The roughness of polymeric surfaces has also 

been implicated to some extent in promoting 

the adhesion of bacterial cells due to increased 

surface area and protection from shear forces 

during colonization.[17] The formation of bioÞ lm 

on polyvinyl chloride (PVC), polyethylene (PE) 

and stainless steel surfaces has also been 

studied. It was observed that in general, the 

accumulation of bioÞ lm on surfaces of different 

materials  was quite similar. However, the cell 

volume was recorded to be slightly higher on 

PE surface than on PVC surface.[18]
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Further, recent studies on Pseudomonas 

aeruginosa and Staphylococcus epidermidis 

suggested that adhesion was dependent 

in pyrolytic carbon surface free energy and 

roughness. Thus, the improvement of pyrolytic 

carbon physicochemical properties has been 

suggested as a feature leading to reduction in 

valvular prosthetic infections.[19] However, the 

bioÞ lms are formed preferentially at high shear 

locations which are even as small as heart 

valves.[20]

MECHANICAL TOOLS OR SURFACE 
FACTORS  

The pili and flagella are generally involved 

as adhesive structures to help in attachment 

to the biotic or abiotic surfaces.[21,22] The 

role of attachment factor, cellulose Þ ber and 

lipopolysacchride (LPS) interactions to maintain 

strength and integrity in biofilm making in 

Pseudomonas fl uorescens SBW25 has also 

been studied.[23] The requirement of type IV 

pili has been implicated in maximal biofilm 

formation by Clostridium perfringens.[24] 

Biochemical tools
Biofilm formation appears to be influenced 

by large-scale changes in protein expression 

over time. There is an increased production 

of proteins involved in attachment, resistance 

and virulence as the biofilm develops. The 

evidence is available on characterization of 

temporal protein production in Pseudomonas 

aeruginosa bioÞ lms.[25] Scientists are of the view 

that a novel histone-like nucleoid structure�like 

protein is involved in the formation of lateral 

ß agella and that it has a role in bioÞ lm formation 

in Vibrio parahaemolyticus.[26] Moreover, the 

soluble colonization factor, TcpF, in different 

serotypes of Vibrio cholerae has also been 

studied as a tool in bioÞ lm formation.[27] Some 

amino acid residues have also been identiÞ ed 

to have a role in the plague biofilm Hemin 

storage (Hms) proteins.[28] Moreover, the 

roles of proteins exported via the PrsD-PrsE 

Type I secretion system; and RbmA, a novel 

protein, have been well documented in bioÞ lm 

formation in Rhizobium leguminosarum and 

V. cholerae, respectively.[15,29] There exists 

interplay between cyclic AMP�cyclic AMP 

receptor protein and cyclic di-GMP�signaling 

biofilm formation in Vibrio cholerae. [30] A 

cyclic-di-GMP phosphodiesterase has been 

found to inversely regulate bioÞ lm formation in 

Pseudomonas aeruginosa.[31] The role of HtrA 

gene in surface protein expression and bioÞ lm 

formation by Streptococcus mutans has also 

been studied.[32] 

Genetical tools 

BioÞ lm formation is said to be under genetic 

control. A number of workers have worked 

on genetics of bioÞ lm formation, especially in 

medically important bacteria.[33,34] The bioÞ lm 

formation in Bordetella, especially B. pertussis, 

the causal organism of whooping cough, has 

attracted the attention of medical fraternity due 

to evidences of high antimicrobial tolerance 

and contribution to persistent infections.[35] In 

detailed studies on Bordetella, a gram-negative 

bacterium harbored in respiratory tract of 

humans and animals, it has come to light that 

the bioÞ lm development is regulated by BvgAS 

signal transduction system.[35] This regulatory 

system is said to regulate the expression of 

almost all known or suspected colonization 

and virulence factors currently associated with 

infection of the said organism. 

BACTERIAL BIOFILM FORMATION
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The genet ics  o f  b io f i lm format ion in 

Pseudomonas and E. coli, the important human 

pathogens of otitis media and urinary tract 

infection, has also been documented. A three-

component regulatory system in Pseudomonas 

a e r u g i n o s a  a n d  t h e  t r a n s c r i p t i o n a l 

antiterminator RfaH in Escherichia coli have 

been found to regulate and repress biofilm 

formation, respectively.[36,37]

BioÞ lm formation has also been attributed to 

the quorum-sensing system. Quorum-sensing 

is a cell-to-cell signaling which allows the 

bacteria to react to environmental changes in 

order to survive and thrive. AlgR repression of 

the Rhl quorum-sensing system in a bioÞ lm-

specific manner has also been stated in 

Pseudomonas aeruginosa.[38] The rapA gene 

controls the antibiotic resistance of bioÞ lms of 

Escherichia coli, thereby assisting in survival of 

the organisms in this mode.[39] In depth studies 

have shown that cell density�dependent 

regulator hapR controls the production of 

the factor in bioÞ lms. Researchers have also 

focused their attention on gene expression 

within a catheter-associated urinary tract 

infection biofilm model.[40] The studies on 

Staphylococcus aureus, an important bioÞ lm 

former on medical implants and host tissues, 

showed that the quorum-sensing system was 

turned on by auto-inducing peptides (AIPs). 

It has been reported that the agr quorum-

sensing system of this organism modulates the 

expression of virulence factors in response to 

AIPs. Further to it, it has been demonstrated 

that repression of this system forms the 

biofi lm, and reactivation in established 

bioÞ lms disperses the cells.[41] The dispersal 

or detachment in staphylococcal bioÞ lms has 

been studied as a protease-mediated process, 

where the extracellular protease production 

increased as a result of activation of quorum 

sensing. Thus, manipulating the protease gene 

and using quorum sensing as a tool have been 

suggested to modulate the treatment of S. 

aureus bioÞ lms.[41] 

BIOFILMS AND PATHOGENICITY

It has been well documented that biofilms 

add to the virulence of the pathogen. It 

has been estimated that the frequency of 

infections caused by biofilms, especially 

in the developed world, lies between 65% 

and 80% as per reports from Centres for 

Disease Control and Prevention (CDC) 

and National Institutes of Health (NIH), 

respectively.[42] Many food-borne pathogens 

such as E. col i ,  Salmonel la,  Yersinia 

enterocolitica, Listeria, Campylobacter form 

biofilms on the surface of food or storage 

equipments. Moreover, the potent ial ly 

pathogenic bacteria, viz., Staphylococcus 

aureus, Enterococcus faecalis, Streptococcus, 

E. coli, Klebsiella, Pseudomonas, tend to 

grow on catheters, artiÞ cial joints, mechanical 

heart valves, etc. Thus, these organisms 

can lead to persistent infections as a result 

of periodic release from the said focus.[20,42] 

In Pseudomonas aeruginosa, the localized 

deplet ion of nutr i t ion in a biof i lm has 

been hypothesized as inducer for release 

or detachment of cells from the biofilm.[43] 

However, in general, factors such as microbially 

generated gas bubbles, cross-linking cations, 

growth status, contact surface material, shear 

stress, quorum sensing and activation of lytic 

bacteriophages have been considered to be 

important contributors in bioÞ lm detachment. 
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The biofilm activity has been recorded in 
various infections, viz., dental caries, cystic 
fibrosis, osteoradionecrosis, urinary tract 
infections, native valve endocarditis, otitis 
media and eye infections. 

The pathogenic and commensal isolates of 
Histophilus somni have been characterized for 
bioÞ lm.[44] The studies have shown association 
of E. coli and Proteus mirabilis, important 
uropathogens, biofi lms in patients with 
complicated catheter-associated urinary tract 
infections.[45] The recurrent epidemics of cholera 
have been explained as the bacterial ability to 
form bioÞ lms with biotic and abiotic surfaces 
of aquatic ecosystem.[46] The different studies 
evidenced distribution of bacterial proteins 
and greater disease burden attributable to 
bioÞ lm formation by Haemophilus infl uenzae in 
cases of otitis media.[47,48] The bioÞ lm formation 
has been observed in clinical isolates of 
Staphylococcus aureus.[49]

Dental caries has also been potentially 
attributed to the plaque bioÞ lms.[50,51] Recent 
studies have focused on the role of bioÞ lms in 
eye infections.[52] The bioÞ lms in such cases 
have been generally associated with corneal 
infection through contact lens. 

DIAGNOSTICS OF BIOFILM 

Accurate diagnosis is the key to better 
understanding the biof i lm, harness i ts  
beneÞ cial effects and curb deleterious after 
effects. Despite the potential beneÞ ts of bioÞ lm 
formation, the thrust is on the detrimental 
effects of this adaptation. The identiÞ cation of 
bioÞ lms in persistent infections may assist in 
deciding suitable therapies. A large number of 

techniques are being used to study bioÞ lms. 
The diagnosis starts with establishing the 
surface-associated bioÞ lms using bright-Þ eld 
microscopy, epifluorescence microscopy, 
scanning electron microscopy. Confocal laser 
scanning microscopy (CLSM) has further 
made it easy to carry out in situ examination 
of bioÞ lms using lower magniÞ cation.[20] Activity 
of destructive and nondestructive bioÞ lms is 
measured by employing radioisotopic and 
nonradioisotopic methods. Radioisotopic 
methods are cumbersome and require 
trained personnel and safe handling.[53] 
The introduction of molecular diagnostic 
methods has linked bacterial bioÞ lms to many 
infections. Investigations have been carried 
out on assessment of diversity of the microbial 
community in bioÞ lms by using Amplicon length 
heterogeneity polymerase chain reaction.[54] 
Further, differential expression of proteins in 
bioÞ lms also offers a reliable opportunity for 
identifying the bioÞ lm-speciÞ c proteins as basis 
of diagnosis and treatment. The extracellular 
matrix proteins may also be useful detection 
targets for diagnosis of bioÞ lms.

CONTROL OF BIOFILMS

Attempts have been made to devise fruitful 
strategies to control biofi lms. The acid 
shock treatment on proteins expression 
and upregulat ion of stress-responsive 
proteins during acid tolerance in biofilm 
cells of Streptococcus mutans has been 
documented. [55,56] The acid is  said to 
affect  the physiology of biofilm cells of 
Streptococcus mutans.[57] The blocking of 
bacterial biofilm formation using catheter 
lock solutions in staphylococcal biofilm 
formation on abiotic surfaces, by a Þ sh protein 
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coating and synergistic activity of dispersin 

B and cefamandole nafate in inhibition of 

staphylococcal bioÞ lm growth are some of the 

important works carried out in this Þ eld.[58-60] 

Recent advances focus on bacteriophages 

as specific and effective therapeutic agents 

with lytic action against target bacteria. Thus, 

combination of antibiotics and bacteriophage 

application has been suggested as a valuable 

approach for bioÞ lm control. The phage philBB-

PF7A showed 63% to 91% activity for biomass 

removal in Pseudomonas fluorescens, an 

important food spoilage pathogen.[61] Phage 

specific for Enterobacter was demonstrated 

to control bioÞ lm by depolymerase activity on 

polysaccharide. Similarly, in Pseudomonas 

aeruginosa, depolymerase enzyme reduced 

the viscosity of alginates and the EPS of the 

organism, thereby leading to dispersal of 

bioÞ lm.[62] The dual approach of impregnation of 

medical devices with phages and incorporation 

of phages in hydrogel coating of catheter has 

proven its efÞ cacy, especially in Staphylococcus 

epidermidis.[62] The vulnerability of pathogenic 

biofilms to Micavibrio aeruginosavorus and 

Bdellovibrio bacteriovorus attack has been 

documented.[63,64] However, recent studies have 

shown the dispersal of Þ lms by using genetically 

engineered bacteriophages.[65]

It has been suggested that further understanding 

of the composition and function of extracellular 

matrix proteins may hold the key to controlling 

bioÞ lm infections and that proteins speciÞ cally 

expressed by bioÞ lm bacteria may be useful 

targets of therapeutic interventions.

POSSIBLE BASIC APPROACH

Biofilms have attracted the attention of 

the entire science fraternity. Undoubtedly, 
progressive efforts have been made for better 
understanding of this adaptation. Some of 
the key investigations focus on pathways for 
transition from solitary to biofilm mode, the 
biochemistry and genetics involved and the 
efÞ cacy of antimicrobials in bioÞ lm dispersal. 
However, the basic areas also need to be 
addressed more emphatically to devise 
successful methods to control its detrimental 
effects. BioÞ lm accumulation has multifactorial 
control determined by its balance of attachment, 
proliferation and detachment processes and that 
the bioÞ lms resist antimicrobial action and host 
defenses 

In routine laboratory medicine practices, 
careful correlation of various parameters 
such as persistent infections, co-infections, 
unresponsiveness to antimicrobials, incremental 
release of microorganisms from the foci and 
repeated contaminating sources, to biofilm 
formation may act as a key tip-off for timely 
diagnosis and subsequent control of the bioÞ lms.
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