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Erythropoietin can promote survival of 
cerebral cells by downregulating Bax 
gene after traumatic brain injury in rats 
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Introduction 

The high incidence of adverse outcomes following 
traumatic brain injury (TBI) has been attributed to a 
large extent to the secondary mechanisms of neuronal 
cell death. [1,2] These mechanisms include induction of 
neuronal cell death and complement-mediated neuronal 
cell lysis.[3-7] A number of studies have demonstrated that 
TBI-induced neuronal cell death is crucial for secondary 
injury, and anti-apoptotic effects may account in large 
part for the protective effects.[8,9] Neuronal and glial cell 
death contribute to the overall pathology of TBI in both 
humans and animals. In both experimental head-injury 
models and human TBI, apoptotic cells and degenerating 
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cells exhibiting classic necrotic morphology have been 
observed.[10,11] 

Neuroprotective strategies for prevention of the 
neuropathological sequelae of TBI have largely failed 
in translation to clinical treatment.[12-14] Thus, there 
is a need for further understanding of the molecular 
mechanisms of the drugs which inhibit neuronal cell 
death in the injured brain.[15] Erythropoietin (EPO) is 
a cytokine that was originally identified as the major 
regulator of erythroid precursor cells.[16-18] However, 
increasing evidence suggests that EPO has broader 
functions independent of its effects on erythropoiesis. 
EPO has a neuroprotective effect in animal models 

Address for correspondence:
Dr. Z. B. Liao, 
Department of Neurosurgery, 
The First Affiliated Hospital of 
Chongqing Medical University, 
Chongqing- 400 016, China. 
E-mail: liaozhengbu@hotmail.com, 
stonebu8@yahoo.com.cn 

PMID: *** 
DOI: 10.4103/0028-3886.59466

Azhar
Rectangle



723Neurology India | Nov-Dec 2009 | Vol 57 | Issue 6

Liao, et al.: Erythropoietin protects peritrauma cortex from traumatic brain injury

of global and focal cerebral ischemia, as well as in 
adult rodent models of spinal ischemia,[19] Although 
the exact mechanism of neuroprotection is unknown, 
EPO likely promotes signaling cascades involved in 
cell survival and/or upregulation of antiapoptotic  
proteins.[20] In our earlier study we have shown 
enhanced erythropoietin- receptor expression for almost 
a week after TBI, where as EPO was slightly elevated, 
that too in the first 72 h only.[21] EPO administration 
protects neurons by enhancing Bcl-2 expression 
and thus inhibits TBI-induced neuronal cell death. 
However, EPO may exert its antiapoptotic effect via 
the differential regulation of the expression of genes 
involved in the apoptotic process. In the present study 
we explored the regulation of Bax gene after TBI, as 
well as the anti-apoptotic effects of recombinant human 
EPO (rhEPO) treatment. 

Materials and Methods

Animal experiments
Wistar rats (180-210 g, Chongqing Medical University, 
China) were housed under 12-h periods of light 
and darkness with free access to food and water. 
All procedures were performed in accordance with 
the National Institutes of Health Guide for the Care 
and Use of Laboratory Animals (NIH Publication 
No. 80-23, revised 1996). The number of animals used 
and their suffering were minimized. TBI (1000 g-cm) 
was induced in anesthetized rats using the weight-drop 
contusion model as described.[9,10] Briefly, 120 rats were 
anesthetized using sodium pentobarbital (60 mg/kg i.p.) 
and underwent a craniotomy, in which a circular region 
of the skull (3.0 mm diameter, cantered 2.3 mm caudal 
and 2.3 mm lateral to bregma) was removed over the 
right somatosensory cortex. A weight-drop device was 
placed stereotactically over the dura and adjusted to stop 
an impact transducer (foot plate) at a depth of 25 mm 
below the dura. Then, a 40-g weight was dropped from 
25 cm above the dura, through a guide role, onto the 
foot plate. Body temperature was also monitored during 
surgery with a rectal probe and maintained in the range 
of 36.5-37.5°C with a heating pad. After the injury, the 
scalp was sutured. No trauma was induced in the sham-
operated group. Rats were killed 5, 12, 24, 72, 120, and 
168 h after TBI. 

Animal groups
Rats were randomly divided into three groups: 
Recombinant human EPO (rhEPO) treated TBI (n 5 60), 
vehicle-treated TBI (n 5 60), and sham-operated 
(n 5 10). EPO (5,000 IU/kg; 3cbio, Shengyang province, 
China) or vehicle (2 mL containing 2.50 mg human 
serum albumin, 5.84 mg sodium chloride, 1.164 mg 
sodium phosphate monobasic dehydrate, and 2.225 mg 
sodium phosphate dibasic dehydrate per mL) was 

administered intraperitoneally once a day for seven days 
after TBI. Doses of EPO were selected based on previous 
studies. [11] Tissue samples were collected from ten EPO- 
and ten vehicle-treated rats at 5, 12, 24, 72, 120, and 168 
h after TBI. The sham-operated tissue samples were 
collected 168 h after TBI.

Tissue processing
Rats were killed by decapitation and the brains 
were rapidly dissected, frozen on liquid nitrogen, 
and stored at 280°C for biochemical analysis for 
TdT-mediated dUTP Nick-End Labeling (TUNEL) 
staining and immunofluorescence, Rats were deeply 
anesthetized with sodium pentobarbital (60 mg kg i.p.) 
and then transcardially perfused with 400 ml 4% 
paraformaldehyde and 100 ml 30% sucrose. Fixed brains 
were removed and stored at 280°C.

RT-PCR 
Brain tissues from the peritrauma cortex (surround the 
impact point from 1 cm to 1.5 cm) in rhEPO-treated 
TBI, vehicle-treated TBI, and sham-operated rats were 
rigorously homogenized. Total RNA from the peritrauma 
cortex tissue was isolated using the TRIzol method. For 
Bax RT-PCR amplification, the forward and reverse 
primers were 5’-CTCAGAAGGAATTGATGTCG-3’and 
5’-TCACGCCAACCCTCCACCAC-3’respectively, 
yielding a145-bp PCR product. b-actin was used 
as an internal standard; the forward and reverse 
primers were 5’-ATGCATCCTGCACCACCAAC-3’and 
5’- TGGAGAAACCTGCCAAGTAT-3’respectively, 
yielding a 410-bp PCR product. The reaction was 
maintained at 42°C for 60 min, then at 92°C for 5 min 
before 35 cycles of: 94°C for 30 s, 53°C for 30 s, and 72°C 
for 60 s, followed by 72°C for 10 min. PCR products were 
electrophoresed on a 1.5% agarose gel and stained with 
ethidium bromide (2 mg/mL). 

Western blotting 
Brain tissues from the peritrauma cortex in rhEPO-treated 
TBI, vehicle-treated TBI, and sham- operated rats were 
rigorously homogenized and sonicated for 30 s in 
a lysis buffer as described.[6] Protein concentrations 
were determined and aliquots of 10 ug of the total 
proteins were separated by electrophoresis on 
SDS- polyacrylamide gels. Briefly, protein samples were 
separated by electrophoresis on an 8% polyacrylamide 
gel and electrotransferred to a nitrocellulose membrane. 
Non-specific binding sites were blocked by incubating 
overnight at 4°C in TBS containing 2% BSA and 0.1% 
Tween-20. Membranes were rinsed for 10 min in buffer 
(TBS containing 0.1% Tween-20) and then incubated with 
anti-Bax, anti-b-actin, (1:2000, Santa Cruz Biotechnology 
anti-rat) followed by anti-goat IgG horseradish 
peroxidase-conjugate (Santa Cruz Biotechnology). 
After rinsing with buffer, the immunocomplexes were 
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visualized using an enhanced chemiluminescence kit 
(Amersham Pharmacia Biotech Inc., Piscataway, NJ) 
according to the manufacturer’s instructions. Film 
signals were digitally scanned and then quantified using 
NIH Image software. b-actin was used as an internal 
control for all Western blots. 

Immunofluorescence
The peritrauma coronal sections of 10-um thickness 
were cut with a cryostat and mounted on slides. 
Cryosections were fixed in 1% paraformaldehyde in 
PBS and postfixed in a mixture of ethanol and acetic acid 
(2:1) at 20°C. Sections were washed in PBS and blocked 
by incubating in PBS containing 0.3% Triton X-100 and 
2% BSA. Bax were localized with rabbit anti-Bax (Santa 
Cruz Biotechnology anti-rat) antibody at 1:2000. Bound 
primary antibodies were detected by incubation with 
fluorescein isothiocyanate (FITC)-coupled anti-rabbit IgG 
at 1:2500. Controls were performed by omission of the 
primary antibody. And the results of immunofluorescence 
controls were negative as no staining was observed in 
peritrauma cortex tissue. Sections were observed using 
the Aristoplan confocal laser-scanning microscope. 

Neuronal cell death assay 
The peritrauma coronal sections of 10-um thickness were 
cut with a cryostat. Neuronal cell death in the peritrauma 
cortex was examined with a commercial TUNEL assay 
kit (Santa Cruz Biotechnology) that enzymatically labels 
DNA strand breaks. Slides were incubated with blocking 
solution for 10 min at 20°C to eliminate endogenous 
peroxidases, followed by permeabilization solution 
for 2 min on ice. Then the TUNEL reaction (50 mL) was 
added and the slides were incubated in a humidified 
atmosphere in the dark for 1 h at 37°C. As a negative 
control, sections of the peritrauma cortex were used after 
the standard procedures, but labeled dUTP was omitted. 
Results are expressed as counting TdT-mediated dUTP 
Nick-End Labeling (TUNEL) labels apoptotic cells. 
Sections were observed using the Aristoplan confocal 
laser-scanning microscope. TUNEL labels, apoptotic 
cells were counted at five different fields in the inner 
border of the peritrauma cortex in five sections per 
rat over a microscopic field of 0.01 mm2, and averaged 
and expressed as cells/0.01 mm2. Five rat/group were 
analyzed by an observer blind to the experimental 
treatment (see below). 

Image and data analysis
After capturing images with a digital camera, 
quantification of the results from Immunofluorescence, 
Western blotting and RT-PCR was performed with 
National Institutes of Health IMAGE 1.61 software. 
The total number of TUNEL-positive cells per image 
(cells/0.01 mm2, objective 340) was calculated by an 
observer blind to the experimental treatment. In each 

section, five peritrauma cortical areas outside labeled 
neurons were chosen randomly to obtain an average 
value for the subtraction of background by an observer 
blind to the experimental treatment. Statistical analysis 
was performed by ANOVA. All results were expressed 
as mean 6 SD. A P value of ,0.05 was considered to be 
statistically significant. 

Results 

Erythropoietin administration decreases Bax mRNA 
after traumatic brain injury 
Basal levels of Bax mRNA were observed in sham-operated 
brain tissue [Figure 1a] (0.09 6 0.021). In the vehicle- treated 
group, Bax mRNA was slightly upregulated at 5 h after 
TBI [0.11 6 0.046;1.2-fold increase vs. sham, n 5 5, 
P . 0.05; Figure 1b], significantly upregulated at 12 h 
[0.19 6 0.048; n 5 5, P , 0.05 vs. sham; Figure 1b], peaked 
at 24 h [0.37 6 0.052, n 5 5, P , 0.05 vs. sham; Figure 1b] 
and persisted at peak levels up to 168 h post-TBI. We also 
evaluated the effects of EPO administration on Bax mRNA 
level in TBI rats. In the rhEPO-treated group, Bax mRNA 
expression in the ipsilateral peritrauma cortex peaked at 
72 h [0.29 6 0.053, n 5 5, P . 0.05 vs. sham; Figure 1b] and 
returned to near baseline by 120 h post-TBI [0.18 6 0.056, 
n 5 5, P . 0.05 vs. sham, Figure 1b].

Erythropoietin administration decreases the 
expression of Bax protein after traumatic brain injury 
Next we determined whether EPO administration 

Figure 1: (a,b) Time course of TBI-induced expression of Bax mRNAs. 
Traumatic brain injury -induced expression of Bax mRNA in the 
peritraumatic cortex of rhEPO-treated rats. Data in the bar graph 

represent mean 6 SD (n 5 10). *P , 0.05 versus sham-operated animals. 
#P , 0.05 versus vehicle-treated traumatic brain injury animals
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regulates TBI-induced Bax protein expression. Sham-
operated samples expressed basal levels of Bax 
(0.23 6 0.043). Relative to the sham group, Bax in the 
vehicle-treated TBI was elevated 1.3-fold [0.31 6 0.046, 
n 5 5, P . 0.05; Figure 2] at 5 h after TBI, reached a peak 
at 72 h [0.72 6 0.051;3.1-fold, n 5 5, P , 0.05; Figure 2], 
and was sustained to 168 h [0.61 6 0.046;2.6-fold, 
n 5 5, P , 0.05; Figure 2]. In the rhEPO-treated TBI 
group, Bax was increased by 1.1fold [0.27 6 0.051; vs. 
sham, n 5 5, P . 0.05; Figure 2] at 5 h post-TBI, 1.4-fold 
[0.34 6 0.053, n 5 5, P , 0.05; Figure 2] at 72 h, and 
1.2-fold [0.27 6 0.042, n 5 5, P . 0.05; Figure 2] at 168 h. 
To determine the relative number of cells expressing 
Bax within the peritrauma cortex, immunofluorescence 
imaging was used. Bax was detected in many cells in the 
peritrauma cortex, many of which had morphological 
features characteristic of neurons. Strong Bax induction 
was observed throughout the peritrauma cortex 
from  24 h to 168 h post-TBI in the vehicle-treated group, 
whereas Bax expression was only observed transiently in 
the rhEPO-treated TBI group [Figure 3], consistent with 
Western blot analysis. Weak Bax immunoreactivity was 
also detected in the superficial cortex of sham-operated 
rats (data not shown).

Figure 2: (a,b) Time course of TBI-induced expression of Bax proteins. 
Traumatic brain injury -induced expression of Bcl-2 protein in the 
peritrauma cortex of rhEPO-treated traumatic brain injury rats and 

vehicle-treated traumatic brain injury rats. Data in the bar graph 
represent mean 6 SD (n 5 10). *P , 0.05 versus sham-operated animals. 

#P , 0.05 versus vehicle-treated animals

Erythropoietin administration decreased the number 
of TdT-mediated dUTP Nick-End Labeling -positive 
neurons after traumatic brain injury 
To evaluate the potential anti-apoptotic effects of EPO, 
we measured the number of apoptotic profiles by TUNEL 
staining. No TUNEL-positive cells were observed in the 
sham. TUNEL-positive cells were noted in the vehicle-
treated TBI, predominantly in the peritrauma cortex 
[Figure 4]. The number of TUNEL-positive cells in the 
vehicle-treated TBI increased at 24 h [42 6 5.59, n 5 5, 
P , 0.05; Figure 4] post-TBI and peaked at 72 h [68 6 7.51, 
n 5 5, P , 0.05; Figure 4]. However, only scattered TUNEL-
positive cells were observed in the rhEPO-treated TBI at 72 h 
[32 6 5.48 n 5 5, P , 0.05 vs. control; Figure 4]. Cell death 
was relatively constant over the time course in the rhEPO-
treated TBI. In some TUNEL-positive cells, a condensed, 
clumped, or pyknotic nuclear pattern was observed. 

Discussion

Based on the morphological criteria and the TUNEL 
method, cerebral cell loss was characterized by both 
cell necrosis and cell death These observations are in 
agreement with the previous studies. TBI initiates a 
complex cascade of events that eventually result in 
injury and subsequent necrosis and/or apoptotic death 
of cerebral cells.[22] We demonstrated that EPO inhibits 
apoptotic cell death in peritrauma cortex as determined 
by DNA fragmentation, confirming previous data 
which suggested that inhibition of cell death is one of 
the most potential protective mechanisms of EPO.[23-25] 
In rats subjected to TBI, systemic administration of EPO 
for seven days post trauma significantly reduced the 
number of TUNEL-positive cells in the peritrauma cortex 
compared to the vehicle-treated group, suggesting that 
EPO affords protection by inhibiting cell death. 

Furthermore, in our earlier study,[21] our findings 
demonstrated that Bcl-2 protein is induced in peritrauma 
cortical cerebral cells in rhEPO-treated rats for 5 h post 
trauma and this effect was maintained up to 168 h, 
whereas in vehicle-treated rats the effect was maintained 
only for 72 h. Previous studies conducted in similar animal 
models of TBI have also shown that severe TBI leads to 
an increase in the Bax/Bcl-2 ratio suggesting that the 
fine balance between the activity of pro-apoptotic and 
anti-apoptotic Bcl-2 family members can determine cell 
survival and modulate the induction of cell death.[22-25] 
In order to further clarify the anti-apoptotic mechanisms 
of EPO, we have also investigated the effect of TBI on 
the activation of Bax in the brain tissue with and without 
treatment of EPO. Bax is a cell-death gene implicated 
in the regulation of diverse biological phenomena, 
including cell death, cell survival and growth, cellular 
differentiation, hypoxia and ischemia.[26-30] The results in 
our study presented here demonstrates that TBI leads to 
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activation of Bax, which suggests that it might be a marker 
of injury linked to the pathophysiology of TBI.[31] Induction 
of Bax expression peaked at 24 h and remained stable 
for 72-120 h in vehicle-treated TBI, whereas it was only 
slightly elevated in rhEPO-treated TBI. Roughly half of the 
cerebral cells in the peritrauma cortex of vehicle- treated 
TBI rats were Bax immunoreactive. Cerebral cells 
expressing Bax protein appeared to be peritrauma 
cortical neurons and glial cells. Administration of EPO 
also decreased the number of TUNEL-positive cells, 
suggesting that Bax plays an important role in regulating 
neuronal death and a complementary role as an inducible 
neuroprotective protein after TBI. In vitro studies suggest 
that Bax possesses a key role in the phosphatidyl-inositol 
3-kinase-Akt (PI3K-Akt) pathway that acts as a cell death 
signal in the regulation of cell death in neuronal or glial 
cells. [32-33] It is already known from the recent literature 

that Bax plays a key role in the EPO-mediated cell death 
action in the nervous system.[34-36] It appears, therefore, 
that activation of Bax may serve a dual role in inhibiting 
or promoting cell death pathways in a cell type- and 
stimulus-dependent manner.[37]

Based on the information in the literature, recently, 
data provided by in vitro studies suggests that EPO-
mediated protection against cell death may involve 
cross-talk between JAK2[38] and NF-kB resulting in an 
early (within 24 h of TBI) activation of NF-kB signaling 
pathways.[39] However, an EPO-triggering activation 
through a specific signal transduction pathway and 
regulatory mechanisms, such as types of activated Bax 
homodimers could ensure the transient activation of the 
cell death factor and subsequently promote its beneficial 
role.[40-43] This might be one of the potential mechanisms 

Figure 4: (a,b) rhEPO-treatment after traumatic brain injury decreases the number of apoptotic profiles in sections of the peritrauma cortex. 
Representative photomicrographs from the vehicle-treated traumatic brain injury (a-c) and rhRhEPO-treated traumatic brain injury (d-f) showing 

TUNEL-positive profiles in the peritrauma cortex 12 h, 72 h, and 120 h post TBI. Quantification of TUNEL-positive neurons in the ipsilateral cortex is 
shown in the bar graph. Data are presented as mean 6 SD (n 5 10). #P , 0.05 versus vehicle-treated animals

Figure 3: Erythropoietin treatment after traumatic brain injury decreases Bax in sections of the peritrauma cortex. Bax immunofluorescence in 
vehicle- treated traumatic brain injury rats (a-c) and rhEPO-treated TBI rats (d-f)12 h, 72 h, and 120 h after traumatic brain injury
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underlying the protective action of EPO, which functions 
independently or in combination with other intracellular 
signaling cascades. Alternative protective mechanisms 
that might be activated downstream from the EPO/
EPOR system could include the regulation of mitogen-
activated protein kinase (MAPK) and the (PI3K/Akt) 
system, as well as the increased expression of HSP70. [44- 46] 
Evidence to support these hypotheses is derived from 
observations of in vitro and in vivo studies of TBI- induced 
injury in the central nervous system(CNS.)[47] Our 
data demonstrated that EPO administration offered 
significant protection against TBI via reducing Bax gene 
and upregulating Bcl-2 gene[48] expression involved in 
inhibiting TBI-induced neuronal cell death. However, 
the mechanism by which EPO protects peritrauma 
cortical cerebral cells against TBI is not fully elucidated. 
Improved understanding of EPO-mediated signaling 
cascade is needed in order to delineate the benefits 
of EPO therapy and incorporate its potential use into 
clinical practice in the future. Based on these findings, 
EPO treatment may represent a novel therapeutic 
approach due to its capacity to preserve CNS function 
and directly protect peritrauma cortex from traumatic 
brain injury in rats. 
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