Seasonal Transmission of Leishmania (Leishmania) mexicana in the State of Campeche, Yucatan Peninsula, Mexico

Fernando J Andrade-Narvaez, Silvia B Canto Lara, Nicole R Van Wynsberge, Eduardo A Rebollar-Tellez, Alberto Vargas-Gonzalez, Nelly E Albertos-Alpuche

Universidad Autónoma de Yucatán, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Laboratorio de Inmunología, Avenida Itzáes No. 490x59, Código Postal 97000, Mérida, Yucatán, México

In the Yucatan Peninsula, Mexico, localized cutaneous leishmaniasis (LCL) caused by Leishmania (Leishmania) mexicana is a typical wild zoonosis restricted to the forests, and humans are only accidentally involved. The transmission of L. (L.) mexicana has been related to the patient’s occupation: “chicleros” (gum collectors) and agricultural workers. The objective of this study was to document L. (L.) mexicana seasonally in endemic areas of LCL in the state of Campeche, Yucatan Peninsula, Mexico. The timing of incidence of LCL in humans during 1993-1994, as well as the rate and time of infection in rodents and sand flies between February 1993 and March 1995 were analyzed. Rodents and sand flies were found infected between November and March, when men carried out their field activities and are exposed. Based on results analyzed, it is concluded that L. (L.) mexicana in the endemic area of LCL in the state of Campeche, Yucatan Peninsula, Mexico, presents a seasonal transmission restricted to the months of November to March. The knowledge of the timing of the transmission cycle in an endemic area of leishmaniasis is very important because intervention measures on the high-risk focus and population might be restricted.

Key words: Leishmania (Leishmania) mexicana - seasonal transmission - Mexico

Leishmaniasis are mostly zoonotic diseases. The outbreak of the disease in patients, the relative abundance of vector and reservoir species, and their rate and time of infection are the major components for the study of the “epidemiological triangle” (Lainson 1988) in the transmission of the disease. When all the eco-epidemiological elements are present, an outbreak of the disease occurs. The disease might follow an irregular pattern of high epidemic bursts or regular biological cycles. These transmission cycles might range over several years or be seasonal.

Outside Mexico, very few observations of time variation in number of patients with leishmaniasis have been reported (e.g. Gentile et al. 1981, Lindtjorn 1984, Coronel et al. 1987). Even more rarely is the publication of the timing of appearance of infected wild hosts, potential reservoir of Leishmania spp. (Bettini et al. 1980, Kerr et al. 1995).

The seasonal abundance of sand flies have been more often studied (e.g. Strangways-Dixon & Lainson 1966, Chaniotis et al. 1971, Ready et al. 1984, Travi et al. 1988, Gomez et al. 1990).

In the Yucatan Peninsula, LCL is a typical wild zoonosis restricted to the forests, and human is only accidentally involved (Lainson & Strangways-Dixon 1963, 1964, Chablé-Santos et al. 1995, Rebollar et al. 1996a). The population at risk are men between 14 and 45 years of age who overnight in the forest (Andrade-Narváez et al. 1990). The transmission of the LCL is often related to the patient’s occupation (Seidelin 1912, Beltran & Bustamante 1942, Andrade-Narváez et al. 1992).

To know the timing of the transmission cycle in each focus of leishmaniasis is very important because high-risk season might be restricted. Thus, intervention measures such as prevention through medical education could be directed to the high-risk population. Moreover, epidemiological and ecological studies could be directed to that season and consequently the cost of research diminished.

The objective of the present study was to document the periodicity of the transmission of L. (L.) mexicana in the state of Campeche, Peninsula of Yucatan, Mexico. The multidisciplinary study included the incidence rate of patients with LCL during 1993-95, a two-years (March 1993 to March 1995) field research on small terrestrial rodents infected by L. (L.) mexicana (Chablé-Santos et al. 1995, Van Wysbergh, unpublished data), and sand fly studies in the same site (Rebollar-Teller et al. 1996a, b) to obtain the rate and time of capture of infected rodents and sand flies between February 1993 and March 1995.

MATERIALS AND METHODS

Study area - The clinical study was performed in the whole state of Campeche (17°48’N-20°47’N; 89°25’W-92°27’W) while the rodents and sandflies collections site was located in a medium-sized subperennial forest located 8 km southeast of the village of La Libertad (18°34’N, 90°31’W). The climate is subtropical with a relative humidity over 80%, an unpredictable rain season (annual rainfall over 1401 mm) mostly during the summer, and an

Financial support: UNDP/World Bank/WHO Special Programme for Tropical Diseases Research (TDR) RCS/TDR/WHO ID 900248
*Corresponding author. Fax: (52-999) 923-6120. E-mail: anarvaez@tunku.uady.mx
Received 3 July 2003
Accepted 20 October 2003
average temperature of 27° ± 5°C (Flores & Espejel Carvajal 1994).

Medical research - The clinical team responsible for epidemiological surveillance traveled monthly to the endemic area of LCL in the state of Campeche from January 1993 to December 1995. Patients from the Yucatan peninsula, Mexico, with a suggestive clinical picture of LCL, who sought treatment, were evaluated. This study was reviewed and approved by the Ethical Committee of the Universidad Autónoma de Yucatán, in agreement with international ethical guidelines for biomedical research involving human subjects (Ley General de Salud, Mexico). Written informed consent to participate was obtained from each patient. Eligibility for this study included a confirmed diagnosis of LCL based on visualization of the parasite by smear, biopsy, and/or isolation-culture (Garcia-Miss et al. 1990). Montenegro skin test was performed using a suspension of 1x10^6 promastigotes of L. (L.) mexicana (MHOM/MEX/83/UAUDYCV) in 0.5% phenol saline (Andrade-Narváez et al. 1990).

Mammalian research - The mammalian study was performed in medium-sized subperennial forest located 8 km southeast of the village of La Libertad, Campeche, from February 1993 to March 1995. The methods for the technique of capture-recapture as so for isolation-culture and Leishmania spp. identification have been described previously (Chablé-Santos et al. 1995).

Entomological research - Data selected to be analyzed in this study were taken from a two year study on vectors of LCL to document sylvatic transmission cycle in the state of Campeche, Mexico (Rebollar-Tellez et al. 1996a) and from a second study done to describe the abundance of anthropophilic species of sand flies collected on human bait (Rebollar-Tellez et al. 1996b). Both studies were carried out in the same area where rodents were collected.

RESULTS

Medical research - Patients with a suggestive clinical picture of LCL were confirmed by the visualization of the parasite by smear, biopsy, and/or isolation-culture. A total of 111 cases were diagnosed. The monthly number of new cases presented a peak between February and March and very few ulcers appeared between June and November (Figure).

Mammalian research - In the two-years research, 184 rodents belonging to six species were studied in the laboratory. From April to October, no cutaneous signs of leishmanial infection were found (Figure), but during the next five months, i.e. from November to March, L. (L.) mexicana was isolated and identified by monoclonal antibodies from 22 rodents (Canto-Lara et al. 1999).

Entomological research - The two most probable vector of LCL in the Peninsula Lutzomyia o. olmeca and Lu. cruciata were the most abundant species captured deep in the forest from February 1993 to January 1994 (21.7% and 19.2% respectively). Although five anthropophilic species (N = 888) were collected throughout the year, the 25 infected females were collected only between November 1993 and February 1994. The rodentophilic L. o. olmeca (Shaw & Lainson 1968) had the highest infection rate (7.1%) and were the more abundant in October.

In the second study regarding abundance of anthropophilic species of sand flies (Rebollar-Tellez et al. 1996b), the highest peak of Lu. cruciata was found in March with lesser peaks in December, January, and February (Figure).

DISCUSSION

The present study is the first documented report in which each of the characteristics that ensure the transmission of the causing Leishmania spp. in a focus is comprehended.

It is well known that in an endemic area of LCL the geographical and temporal distributions and the habitats of reservoir, vector, and humans need to overlap (Bray 1987). To prove seasonally of transmission of a particular Leishmania spp., the cycle of transmission should not only occur during that specific season but the lack of potential transmission should be observed during the rest of the year. Based on results analyzed, it is concluded that L. (L.) mexicana in the endemic area of LCL in the state of Campeche, Yucatan Peninsula, Mexico, presents a seasonal transmission restricted to the months of November to March.

Although leishmaniasis can exist as a zoonosis for many years among wild animals and vector sand flies, when men enter the forest and establish their settlements, they are exposed to the bites of infected sand flies and become infected (Hashiguchi et al. 1985.) The future status of leishmaniasis in a newly-established village depends on the behavior of the inhabitants and the growth of the village, as pointed out by Herrr and Christensen (1976).

In the Yucatan Peninsula, the disease affected in the past mainly gum’s collectors (most frequent economic activity) due to the fact that they entered frequently in the forest and overnight during months thus being in close contact with the phlebotomine vector especially at the...
present study led us to document that the season of infection of both reservoirs and vectors. Therefore, the reported each year has a peak from March to July, if the high humidity, low temperature, would probably when high humidity, low temperature, would probably

mexicana transmission, particularly in the winter season

Peninsula have ideal ecological conditions for

December and March. More studies on quantitative capture (Rebollar Téllez, unpublished data). Distribution during February 1994, representing 56.52% of the annual

terminated as

Reproductive season of the parasite present is the same in both the reservoir and in humans (Chablé-Santos et al. 1995, Van Wynsberge et al. 2000).

Two sand flies are mainly involved in the transmission of the parasite, the anthropophilic Lu. cruciata and the rodentophilic Lu. olmeca. High abundance of the anthropophilic vector occurred between December and March (Rebollar-Téllez et al. 1996b) and the population of the rodentophilic sandfly peaked between October and January (Rebollar-Téllez et al. 1996a). When wild rodents were used to bait the vector 26 Lu. olmeca were captured during February 1994, representing 56.52% of the annual capture (Rebollar Téllez, unpublished data). Distribution of Lu. cruciata (Coquillet) in the Peninsula of Yucatan overlaps the distribution of localized cutaneous leishmaniasis (Biagi & de Biagi 1953) and Lu. cruciata has been found as on of the most anthropophilic species of sand flies (Biagi et al. 1966, Cruz-Ruiz et al. 1994). Reproductive season of Lu. cruciata occurred between December and March.

In summary, it appears that the forests of the Yucatan Peninsula have ideal ecological conditions for L. (L.) mexicana transmission, particularly in the winter season when high humidity, low temperature, would probably support increases in sand flies and also reservoir population. Although the number of human cases of LCL reported each year has a peak from March to July, if the incubation period is considered, there is a strong correlation between the abundance, rates, and timing of infection of both reservoirs and vectors. Therefore, the present study led us to document that the season of transmission of LCL caused by L. (L.) mexicana in the sylvatic region of the state of Campeche, occurs from November to March. More studies on quantitative epidemiology should be done to design control strategies focused to this season and high risk population affected.

REFERENCES


