Role of protease-activated receptor-2 in inflammation, and its possible implications as a putative mediator of periodontitis

M Holzhausen/*, LC Spolidorio*, N Vergnolle+/**

Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, Calgary, T2N 4N1, Alberta, Canada *Departamento de Periodontologia e Patologia Oral, Escola Dental de Araraquara, Universidade Estadual de São Paulo, Araraquara, SP, Brasil

Proteinase-activated receptor-2 (PAR2) belongs to a novel subfamily of G-protein-coupled receptors with seven-transmembrane domains. This receptor is widely distributed throughout the body and seems to be importantly involved in inflammatory processes. PAR2 can be activated by serine proteases such as trypsin, mast cell tryptase, and bacterial proteases, such as gingipain produced by Porphyromonas gingivalis. This review describes the current stage of knowledge of the possible mechanisms that link PAR activation with periodontal disease, and proposes future therapeutic strategies to modulate the host response in the treatment of periodontitis.

Key words: protease-activated receptor-2 - alveolar bone loss - inflammation - host response - Porphyromonas gingivalis - periodontitis

Proteinase-activated receptors (PARs) belong to a recently described family of G-protein-coupled, seven-transmembrane-domain receptors. Activation of PARs occurs through proteolytic cleavage of their N-terminal domain by proteinases, resulting in the generation of a new N-terminal “tethered ligand”, which can autoactivate the receptor function (see Figs 1A, B) (Ossovskaya & Bunnett 2004). Four members of the PAR family have been cloned. PAR1, PAR3, and PAR4 can be activated by thrombin, and PAR1 can be activated by trypsin, mast cell tryptase, neutrophil proteinase 3, tissue factor/factor VIIa/factor Xa, membrane-tethered serine protease-1, or proteases from Porphyromonas gingivalis (Fig. 2) (Vergnolle et al. 2001, Lourbakos et al. 2001).

Selective synthetic peptides, corresponding to the tethered ligand sequences, are able to activate selectively the receptors through direct binding to the body of the receptor (Fig. 1C), without the need of proteolysis (Cocks & Moffatt 2000). With the exception of PAR3, all the other receptors have their selective agonist peptides. PAR1, PAR2, and PAR4 can be non-enzymatically and selectively activated by TFLLR-NH2, SLIGRL-NH2, and GYPGQV-NH2, respectively (Ossovskaya & Bunnett 2004).

In spite of showing similar structures and common mechanisms of activation, the PARs have different tissue localization and function. PAR4 can be found in human platelets, endothelium, epithelium, fibroblasts, myocytes, neurons, and astrocytes, and they are thought to be involved in the thrombus formation and pulmonary embolism (Ossovskaya & Bunnett 2004). PAR3 is found throughout the body, especially in the epithelium, endothelium, fibroblasts, osteoblasts, neutrophils, myocytes, neurons, and astrocytes (Abraham et al. 2000, Uehara et al. 2003, Ossovskaya & Bunnett 2004). PAR2 seems to play critical pathophysiological roles, as it is involved in leukocyte migration, inflammation of joints, skin, and kidney and allergic inflammation of airways (Ossovskaya & Bunnett 2004).

Financial support: Capes
*Corresponding author. E-mail: nvergnol@ucalgary.ca
++NV is an Alberta Heritage Foundation for Medical Research Scholar and a Canadian Institute for Health Research Investigator
Received 8 November 2004
Accepted 30 December 2004

Fig. 1: mechanisms of activation of protease-activated receptor-2 (PAR2). A represents the receptor in its “inactivated” form, waiting for the cleavage of its N-terminal domain at a specific site (besides the white box). The “tethered ligand” sequence (white box), which is exposed following enzyme-specific cleavage, binds to a site on the receptor (A and B). Synthetic peptides can also activate PAR2 by binding to the receptor (red box) without enzymatic cleavage of the receptor (C).
PAR2 has been localized in many different cell types: in epithelial or non-epithelial cells (Lourbakos et al. 2001). In the gastrointestinal tract, IL-6 and IL-8 released by prostanoids and cytokines including interleukin-6 (IL-6), which is a potent stimulator of osteoclast differentiation and bone resorption. Uehara et al. (2003) demonstrated that a synthetic PAR2 agonist peptide activates human gingival fibroblasts to produce IL-8 and to selectively stimulate MMP activity from these cells. This particular study suggests that PAR2 activation could account for collagen degradation associated with periodontitis lesions. Most recently, a study by Chung et al. (2004), showed that PAR2 is involved in the up-regulation of human beta-defensin in human gingival epithelial cells, stimulated by the peptide agonist of PAR2, and Porphyromonas gingivalis proteases. Thus, this study points to a possible role for PAR2 in the gingival tissues, where its activation could act as an emergency mechanism, that would constitute a first alarm in mucosal tissues, alerting for the invasion of bacterial pathogens, and organizing a primary inflammatory response.

Taken together, these studies suggest a role for PAR2 activation in inducing inflammation and bone resorption during periodontitis. However, another study by Smith et al. (2004) suggests that PAR2 activation could inhibit bone resorption. In that study, the authors showed that the selective PAR2-activating peptide SLIGRL-NH2 inhibited osteoclast differentiation, thereby acting as a potential inhibitor of bone destruction. This result, which contradicts the suggested role for PAR2 activation in bone loss, reflects the difficulties of using in vitro approaches to evaluate the role of the different mediators that are involved in periodontal diseases.

The experiments from our group (data not published) provided the first evidences for in vivo evaluation of the role of PAR2 activation in periodontitis. We showed that local application of a selective PAR2 agonist (SLIGRL) in oral cavity of rats, causes gingival granulocyte infiltration, and periodontitis through a mechanism involving prostaglandin release and matrix metalloproteinase activation. In addition, seven days after PAR2-agonist treatment, a peak of granulocyte infiltration measured by an increased myeloperoxidase (MPO) activity was observed. As polymorphonuclear neutrophils represent the main source for MPO in acute inflammation, and because they constitute the frontline of the acute host inflammatory response, promoting the release of a number of inflammatory mediators that are able to stimulate osteoclasts (Dennison & Van Dyke 1997), it can be proposed that recruited neutrophils might be responsible, at least in part,
for the initiation of periodontitis. Therefore, our study also suggests that PAR₂ agonist-induced bone loss is due, at least in part, to the induction of an acute inflammatory response. In agreement with previous in vitro studies, which supported a destructive role for PAR₂ (Uehara et al. 2000, Lourbakos et al. 2001), our in vivo approach definitively demonstrated a pro-inflammatory and bone destruction role for PAR₂ activation in periodontal tissues. Proteinases, through the activation of PAR₂, should then be added to the number of mediators implicated in periodontal disease (Fig. 3).

Interestingly, gingipains-R (RgpB and HRgpA) activate also the PARs, PAR₁ and PAR₄, which are expressed on the surface of platelets and are responsible for platelet aggregation (Lourbakos et al. 2001b). This mechanism may constitute the biological plausibility of the association between periodontitis and cardiovascular disease. However, no study has yet linked the role of PAR₁ or PAR₄ to periodontal diseases.

Conclusions

The pro-inflammatory role of PAR₂ in inflammation is adequately and clearly demonstrated by several studies, which showed that PAR₂ activation leads to widespread pro-inflammatory effects, including the release of pro-inflammatory cytokines, and regulation of a number of inflammatory diseases.

The association of PAR₂ with the pathogenesis of periodontitis is supported by some concepts: (i) PAR₂ can be activated by gingipain, a bacterial protease produced by the major periodontopathogen, P. gingivalis; (ii) PAR₂ is expressed by cells that are actively involved in periodontal pathologies, such as oral epithelial cells, fibroblasts, and osteoblasts, and PAR₂ activation in those cells leads to the production of mediators of bone resorption; (iii) PAR₂ activation by a selective peptide agonist leads to gingival granulocyte infiltration, and alveolar bone loss in rats, through a mechanism involving prostaglandin release and matrix metalloproteinase activation.

These findings indicate that PAR₂ might represent a potential target for the design of drug therapies focused on the modulation of periodontal inflammation.

REFERENCES

