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The origin and spread of chloroquine resistance (CQR) 
in Plasmodium falciparum have grossly hampered global 
malaria control programmes. The genetic basis of CQR 
has been previously characterised; primarily two genes, 
the P. falciparum CQR transporter (Pfcrt) gene and the 
P. falciparum multi-drug resistance (Pfmdr1) gene have 
been directly and indirectly implicated, respectively (Fi-
dock et al. 2000). Several studies have inconclusively 
indicated correlations between development of CQR and 
mutations in the Pfmdr1 gene, but they have shown di-
rect positive correlations between development of CQR 
and amino acid substitutions (lysine to threonine at the 
76th position, commonly known as K76T) in the Pfcrt 
gene (Fidock et al. 2000). Thus, the Pfcrt gene has be-
come the main genetic marker for CQR in P. falciparum 
(Fidock et al. 2000, Wootton et al. 2002). However, oth-
ers have proposed that the K76T mutation does not act 
alone but in conjunction with other surrounding muta-
tions (Mehlotra et al. 2001). Accordingly, mutations in 
the 72nd-76th positions of the Pfcrt gene that were found 
in a majority of P. falciparum endemic areas are now 
also considered as molecular markers used for detecting 
CQR malaria parasites in field isolates. CQR is a wide-
spread phenomenon in almost all of the P. falciparum 
endemic regions and the prevalence of the five polymor-
phisms that form different haplotypes varies among the 
P. falciparum endemic regions. Although several stud-
ies report on the prevalence and distribution of differ-
ent Pfcrt haplotypes in to the 72nd-76th position within 
individual regions, no comprehensive and comparative 

studies of either the distribution by country of Pfcrt-
CQR haplotypes in P. falciparum or global evolutionary 
relationships are available. 

With regard to the mutations at the 72nd-76th po-
sition, the ancestral [CQ sensitive (CQS)] haplotype is 
known as C72V73M74N75K76, which is different from the 
derived CQR haplotypes (C72V73I74E75T76 and S72V73M74-
N75T76). Although two major derived (resistant) hap-
lotypes [SVMNT and CVIET, also referred to as the 
CQR mother haplotypes by Awasthi et al. (2011)] are 
distributed primarily in the CQ-resistant malaria en-
demic zones in high frequencies, three derived haplo-
types (from a total of 15) are also found in appreciable 
frequencies across the globe.

We collected independently published data on the 
prevalence, distribution and frequencies of all 15 hap-
lotypes for each country (Basco & Ringwald 2001, 
Mehlotra et al. 2001, 2008, Cortese et al. 2002, Kublin 
et al. 2003, Lim et al. 2003, Mu et al. 2003, Nagesha 
et al. 2003, Vinayak et al. 2003, 2006, Huaman et al. 
2004, Millet et al. 2004, Plummer et al. 2004, Vathsala 
et al. 2004, Vieira et al. 2004, Anderson & Roper 2005, 
Cooper et al. 2005, Dittrich et al. 2005, Alifrangis et al. 
2006, Jiang et al. 2006, Menard et al. 2006, Mishra et 
al. 2006, Mittra et al. 2006, Randrianarivelojosia et al. 
2006, Severini et al. 2006, DaRe et al. 2007, Echeverry 
et al. 2007, Fatemeh et al. 2007, Keen et al. 2007, Pati 
et al. 2007, Yang et al. 2007, Niang et al. 2008, Pineda 
et al. 2008, Restrepo et al. 2008, Zakeri et al. 2008, Al-
meida et al. 2009, Lumb et al. 2009, Gama et al. 2010, 
Mixson-Hayden et al. 2010) and merged the information 
to obtain distribution of different haplotypes by country. 
It was clear that there are only five major haplotypes as-
sociated with CQR (CVIET, SVMNT, SVIET, CVMNT 
and CVTNT) in global parasite populations; however, 
there are many other possible combinations of polymor-
phisms in positions 72-76 that include the key mutation 
K76T. Among these five haplotypes, the most common 
haplotypes globally are CVIET and SVMNT. Surpris-
ingly, CVMNT (the CQR haplotype that is closest to the 
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ancestral CQS haplotype CVMNK) is relatively uncom-
mon among them, suggesting that the shortest trajectory 
to CQR (a single mutation, leading from the ancestral 
CVMNK haplotype to the CQR haplotype CVMNT) 
is rarely observed in nature. This finding suggests that 
compensatory mutations in codons other than position 
76 may be required to restore the fitness of the CQR 
parasites bearing the K76T mutation. Accordingly, we 
infer possible mutational trajectories from the ancestral 
CVMNK (CQS) to different CQR haplotypes. A hypo-
thetical sketch of the possible step-wise mutation events 
from the ancestral CVMNK to different CQR haplo-
types is provided in Fig. 1.

The results of the frequency distribution of the five 
CQR haplotypes (CVIET, SVMNT, SVIET, CVMNT 
and CVTNT) reveal that almost all of the African coun-
tries are populated predominantly by the CVIET haplo-
type in almost absolute frequencies (except for Tanzania 
and Congo) (Fig. 2). This discrepancy might be due to the 
recent report of the SVMNT haplotype in Tanzania (Ali-
frangis et al. 2006) and Angola (Gama et al. 2010). Simi-
larly, the South American P. falciparum isolates seem to 
be thickly populated with the SVMNT haplotypes and 
the southeast Asian populations have a mixture of all 
of the five Pfcrt haplotypes (CVIET, SVMNT, SVIET, 
CVMNT and CVTNT) (Fig. 2). There seems to be a very 
clear haplotype structure across the malaria endemic re-
gions of the world (Fig. 2). We also calculated the fre-
quencies of these five haplotypes in each of the 38 coun-
tries separately and estimated Nei’s genetic distance (Nei 
1972) between each possible pair of populations (1,406 
possible pairs in total) using the GeneDist program inte-
grated within the PHYLIP-Phylogeny Inference Package 
v. 3.68 [distributed by J Felsenstein (2004), Department 
of Genome Sciences, University of Washington, Seattle, 
USA]. We used the genetic distance matrix to construct 

a neighbour-joining (NJ) population phylogenetic tree 
employing the Molecular Evolutionary Genetics Analy-Molecular Evolutionary Genetics Analy-
sis computer program v. 4.0 (Tamura et al. 2007). The 
NJ tree produced two major clades, one comprising the 
CVIET and SVIET haplotypes and the other compris-
ing the SVMNT, CVMNT and CVTNT haplotypes (Fig. 
3). The smaller (SVMNT, CVMNT and CVTNT) clade  
consisted of 13 countries [3 southeast Asian countries, 
Papua New Guinea (PNG), India, Iran and all of the 
seven South American countries]; the larger (CVIET and 
SVIET) clade bears 25 countries (23 African countries 
and two southeast Asian countries) (Fig. 3). We gener-
ally found a perfect correlation between the distributions 
of the five haplotypes among the countries (Fig. 2) and 
the populations appearing on the phylogenetic trees (Fig. 
3). Interestingly, the aggregation of countries into a par-
ticular clade seems unrelated to both their geographic 
locations and their continental boundaries. For example, 
India is placed in a monophyletic position with Ecuador 
(Fig. 3), which is not consistent with the distribution of 
the different Pfcrt haplotypes (Fig. 2).

Utilising the frequency distribution of the five Pfcrt 
haplotypes (CVIET, SVMNT, SVIET, CVMNT and 
CVTNT) in 38 countries, we documented the intercon-
tinental genetic differentiation and migration patterns 
of CQR P. falciparum. For this analysis, we merged the 
haplotype frequency information from all of the coun-
tries into three continents (Africa, South America and 
Asia) and estimated the population pair-wise Fst (Wright 
1969) values between each pair of continents using the 
computer program GenePop v. 4.0 (Rousset 2008). We 
took the liberty of merging the data from southeast Asia, 
PNG, India and Iran into the Asian continent. The amount 
of genetic differentiation was higher between Africa and 
Asia (Fst = 0.3243) than between South America and 
Asia (Fst = 0.1286). However, a very high Fst value (Fst = 
0.6843) was found between Africa and South America. 
Furthermore, to determine whether the data fit the iso-
lation-by-distance (IBD) model of population structure 

Fig. 1: hypothetical sketch displaying mutational trajectory leading to 
different chloroquine (CQ) resistance-Plasmodium falciparum trans-
porter haplotype from the ancestral CVMNK (CQ sensitive) haplotype. 

Fig. 2: frequency distribution of the five most common chloroquine 
resistance-Plasmodium falciparum transporter haplotypes (CVIET, 
SVMNT, SVIET, CVMNT and CVTNT) in the 38 malaria endemic 
countries.
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(Wright 1943), we calculated the geographic distance be-
tween the capital cities in each pair of countries and cal-
culated the genetic distance utilising the online computer 
program IBDSW v. 3.16 (ibdws.sdsu.edu/~ibdws/). This 
analysis yielded a statistically significant positive value (r  
= 0.404; p < 0.0010). These data provide evidence in sup-
port of the fact that similarities between the Pfcrt hap-
lotypes are highly dependent on the geographic distance 
between the countries. Furthermore, we employed the 
pair-wise Fst values between continents to estimate the 
mean number of effective migrants in each generation 
(Nm) (Wright 1978) and, surprisingly, detected a greater 
number of effective migrants of CQR parasites between 
South America and Asia (Nm = 1.69) than between Asia 
and Africa (Nm = 0.52) (Fig. 3). However, a comparative-
ly lower level of Pfcrt haplotype migration was detected 
between Africa and South America (Nm = 0.11). Consid-
ering that the initial evolution of the SVMNT haplotype 
occurred in South America (Sa et al. 2009) followed by 
another independent origin in PNG (Mehlotra et al. 2001, 
Awasthi et al. 2011), the results could be interpreted to 
represent the rapid movement of the SVMNT haplotype 
between South America and PNG. Further evidence for 
this inference is the fact that the Indian SVMNT type 
was found to be of the PNG type by DNA sequencing 
of the 2nd exon in Indian isolates (Awasthi et al. 2011). 
Similarly, the CVIET haplotype is believed to have orig-
inated in southeast Asia and accordingly was found to 
have migrated from southeast Asia to Africa via India 
(Awasthi et al. 2011) (Fig. 4). However, a very meagre 
number of Pfcrt haplotypes could have been exchanged 
between South America and Africa (Fig. 4). This result 

agrees with the population phylogenetic analysis (Fig. 
3), in which the smaller clade (SVMNT) was found to 
represent countries from Asia, PNG and South Ameri-
ca, whereas the larger clade (CVIET) represents a large 
proportion of African countries and only two southeast 
Asian countries (Fig. 3).

How important and relevant is this information 
(Pfcrt haplotype global evolutionary history) in terms 
of P. falciparum CQR management and future malar-
ia control measures? The population and evolutionary 
genetic analyses of different Pfcrt haplotypes provide 
baseline information to correlate the intercontinental 
usage of antimalarial agents and successful establish-
ment of CQR P. falciparum in different places around 
the world. For example, in South America, use of amo-
diaquine and CQ, which have not been used for the last 
several years, have resulted in the complete fixation of 
the SVMNT haplotype (Sa et al. 2009). There exist only 
two single reports of the CVMNK CQS allele in South 
America (Brazil and Venezuela) (Contreras et al. 2002, 
Gama et al. 2011). Moreover, it is reported that even in 
the absence of drug pressure, the SVMNT haplotype 
provides equal fitness to the parasite (as was in pres-
ence of drug pressure) in comparison to the CVIET 
haplotype (Sa et al. 2009). Furthermore, in the absence 
of CQ, the CVIET haplotype-bearing P. falciparum are 
known to revert back to the CQS type upon treatment 
with the CQR-reversing agent verapamil, whereas the 
SVMNT-bearing P. falciparum do not (Sa et al. 2009). 
This finding is supported by the fact that non-usage 
of CQ in some countries, such as Kenya (Mwai et al. 
2009), Malawi (Kublin et al. 2003) and China (Wang 
et al. 2005), have resulted in reversion to the ancestral 
state of CQS from the CQR CVIET haplotype, whereas 
this reversion was not observed for the SVMNT haplo-
type (Sa et al. 2009).

The two CQR mother haplotypes (CVIET and 
SVMNT) have different foci of origin, e.g., CVIET in 
southeast Asia and SVMNT in South America and PNG 
(Mehlotra et al. 2001). However, approximately 60% of 
the total Pfcrt-CQR haplotypes in southeast Asia and In-
dia had the SVMNT haplotype, imported from PNG (Figs 

Fig. 3: neighbour-joining tree to understand evolutionary relationship 
among 38 populations (countries) where chloroquine resistance is 
prevalent. The smaller clade depicts SVMNT, CVMNT and CVTNT 
dominated countries whereas the bigger clade depicts CVIET and 
SVIET dominated countries.

Fig. 4: estimated genetic differentiation and inferred hypothetical 
migration patterns of chloroquine resistance-Plasmodium falcipar-
um transporter haplotypes among four malaria endemic continents 
(southeast Asia, Papua New Guinea, Africa and South America).  
Nm: mean number of effective migrants in each generation.
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2, 4). This observation fits well with the high rate of on-
going migration of the SVMNT haplotypes from PNG to 
southeast Asia (Fig. 4) and a moderate level of migration 
of the CVIET haplotypes from southeast Asia to Africa 
via India (Awasthi et al. 2011). Since it is proposed that 
Nm > 1 is enough to overcome the genetic differentiation 
between two populations (Wright 1978), the current mi-
gration rate is frightening for global CQR management. 
This situation is especially daunting because a very high 
migration rate has been documented for the frequent hap-
lotype, SVMNT, which does not revert back to CQS even 
when CQ is withdrawn from the malaria control program 
(Sa et al. 2009, Awasthi et al. 2011).

However, to visualise the relevance of such informa-
tion in a public health perspective, an absolute correlation 
between the Pfcrt gene and CQR P. falciparum must first 
be ascertained because several studies have indicated 
that the Pfcrt-K76T mutation might not be the sole de-
terminant of CQR in P. falciparum (Mehlotra et al. 2001, 
2008, Das & Dash 2007). Furthermore, the global pattern 
of natural selection and evolution of the Pfcrt gene seems 
different from that of the Pfcrt gene in the Indian P. falci-
parum (Wootton et al. 2002, Das & Dash 2007). Consid-
ering that the 7th chromosomal region surrounding the 
Pfcrt is tightly linked (Fowler et al. 2006, Volkmann et 
al. 2007, Gupta et al. 2010, Mu et al. 2010), more genetic 
studies in this region are needed to clearly ascertain the 
specific role played by the Pfcrt gene in conferring CQR 
on P. falciparum. Furthermore, genetic diversity patterns 
of the microsatellite loci flanking the mutations between 
positions 72 and 76 could also provide valuable insight 
into the evolutionary pattern of the Pfcrt gene in general 
(Ariey et al. 2006, Mixson-Hayden et al. 2010). However, 
the absence of such data from all of the studies discussed 
here debars us from establishing any relationships among 
the evolutionary histories of the CQR-Pfcrt haplotypes.

In conclusion, the overall results of the present evo-
lutionary genetic study reflecting the distribution, fre-
quencies and migration patterns of different CQR-Pfcrt 
haplotypes provides valuable information on the evo-
lutionary history of the haplotypes (and possibly of the 
CQR P. falciparum) that could be used for CQR manage-
ment (Escalante et al. 2009). Considering the high fit-
ness properties of the SVMNT haplotype in the absence 
of CQ pressure (relative to the corresponding CVIET 
haplotype) and the high rate of intercontinental migra-
tion and successful establishment of this haplotype, the 
current CQR situation seems daunting for CQR malaria 
management programs in southeast Asia and in India 
(Vinayak et al. 2003, 2006, Restrepo et al. 2008, Aw-
asthi et al. 2011). While the information presented here 
establishes the influence of positive natural selection of 
the SVMNT haplotype, other determinants (both ge-
netic and environmental) might also play a role in the 
successful establishment of CQR P. falciparum. 
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