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Cutaneous leishmaniasis (CL) caused by Leishma-
nia (Leishmania) mexicana Biagi, 1953, emend. Gar-
ham, 1962, is a seasonal wild zoonosis that is endemic 
in the Yucatan Peninsula, Mexico (Andrade-Narváez et 
al. 2003). In this area, CL, known as “chiclero’s ulcer”, 
produces a single ulcer in 84.5% of patients and is com-
monly (39.9%) located on the ear lobe (Seidelin 1912, 
Canto-Lara et al. 1998, Andrade-Narváez et al. 2001). 
The annual incidence rate of symptomatic infection, 
i.e., CL, in the state of Campeche is 0.5%, whereas the 
subclinical infection prevalence rate is 19% (Andrade-
Narváez et al. 1990, Arjona-Villicaña 2002).

In Campeche, three rodent species have been identi-
fied as primary reservoirs of L. (L.) mexicana: Ototylomys 
phyllotis Merriam, 1901; Peromyscus yucatanicus JA Al-
len & Chapman, 1897, and Heteromys gaumeri JA Allen 
& Chapman, 1897. The two latter species are endemic to 
the Yucatan Peninsula (Chable-Santos et al. 1995, Canto-
Lara et al. 1999, Van Wynsberghe et al. 2000, 2009).

P. yucatanicus has been adapted to captivity and a col-
ony has been established for experimental studies in our 
institution. Previous studies have demonstrated that P. 
yucatanicus experimentally infected with 1 x 106 L. (L.) 
mexicana promastigotes showed clinical and histological 
features similar to those of humans with CL caused by the 

same parasite species (Sosa-Bibiano et al. 2012). These re-
sults support the utility of P. yucatanicus as a novel exper-
imental model to study CL caused by L. (L.) mexicana.

In the laboratory mouse (Mus musculus Linnaeus, 
1758) model of CL, the resistance of C57BL/6 mice to 
Leishmania (Leishmania) major infection has been asso-
ciated with the classical activation of macrophages. Ac-
tivated macrophages express inducible nitric oxide (NO) 
synthase and the up-regulation of this gene induces the 
synthesis of NO from L-arginine in a two-step process, 
with hydroxyl-arginine and citrulline as intermediates. 
NO is a potent cytotoxin involved in the killing of Leish-
mania parasites and therefore it is a key molecule in the 
control of the disease (Stenger et al. 1994, Fang 1997, 
Bogdan et al. 2000).

In 1976, Preston and Dumonde, based on a study 
about asymptomatic or subclinical infections in humans 
caused by L. (L.) mexicana, demonstrated that low doses 
(102, 103) of Leishmania (Leishmania) tropica induced 
subclinical infection in M. musculus (González & Biagi 
1968, Preston & Dumonde 1976). Subsequently, it was 
demonstrated that the parasite dose determines the Th1/
Th2 nature of the response to L. (L.) major independent 
of the infection route or the strain of the host or parasite 
(Bretscher et al. 1992, Doherty & Coffman 1996, Menon 
& Brestcher 1998).

Inbred laboratory strains of mice have been helpful 
in elucidating the cell types, cytokines, signal transduc-
tion cascades and antileishmanial effector mechanisms 
involved in the clinical resolution and progression of dis-
ease. Although these experimental models have had the 
major advantage of allowing control over the genetics of 
both the parasite and the host, they do not recapitulate 
the pathology observed in human disease.
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Peromyscus yucatanicus (Rodentia: Cricetidae) is a primary reservoir of Leishmania (Leishmania) mexicana 
(Kinetoplastida: Trypanosomatidae). Nitric oxide (NO) generally plays a crucial role in the containment and elimi-
nation of Leishmania. The aim of this study was to determine the amount of NO produced by P. yucatanicus infected 
with L. (L.) mexicana. Subclinical and clinical infections were established in P. yucatanicus through inoculation 
with 1 x 102 and 2.5 x 106 promastigotes, respectively. Peritoneal macrophages were cultured alone or co-cultured 
with lymphocytes with or without soluble Leishmania antigen. The level of NO production was determined using 
the Griess reaction. The amount of NO produced was significantly higher (p ≤ 0.0001) in co-cultured macrophages 
and lymphocytes than in macrophages cultured alone. No differences in NO production were found between P. yu-
catanicus with subclinical L. (L.) mexicana infections and animals with clinical infections. These results support the 
hypothesis that the immunological mechanisms of NO production in P. yucatanicus are similar to those described in 
mouse models of leishmaniasis and, despite NO production, P. yucatanicus is unable to clear the parasite infection.
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A new approach to study host-parasite relationships 
has been the use of wild animals, particularly primary 
reservoirs, as experimental animal models. Wild animals 
are similar to humans in that they are genetically poly-
morphic and thus represent an emerging system for the 
genetic analysis of the physiological and behavioural bas-
es of habitat adaptation (Guénet & Bonhomme 2003).

Laboratory studies using natural hosts as experimen-
tal models of Leishmania could increase our understand-
ing of the mechanisms involved in immune activation 
during nonpathogenic and pathogenic infections. The 
study of dogs, the main reservoir of visceral leishmania-
sis, has led to increased interest in the immune respons-
es and the Leishmania antigens implicated in protective 
cellular immunity in canine visceral leishmaniasis (Al-
var et al. 2004, Baneth et al. 2008).

The possible role of NO in P. yucatanicus infected by 
L. (L.) mexicana remains unknown. Therefore, as part 
of our continuing effort to develop P. yucatanicus as a 
novel experimental animal model to study CL caused by 
L. (L.) mexicana, in the present study, we determined the 
amount of NO produced by peritoneal macrophages and 
macrophages and lymphocytes co-cultured in the pres-
ence or absence of soluble Leishmania antigen (SLA). 
The macrophages and lymphocytes were obtained from 
P. yucatanicus animals that were clinically or subclini-
cally infected with L. (L.) mexicana.

MATERIALS AND METHODS

Animals - Wild P. yucatanicus animals adapted well 
to captivity and a colony derived from wild progenitors 
captured in the state of Campeche has been maintained 
for experimental studies in our institution since 1998. 
Six-18-month-old P. yucatanicus animals of both sex-
es were selected. The animals were maintained in the 
animal care facility of the Regional Research Centre of 
the University of Yucatan. The mice were individually 
housed in small cages (19 x 29 x 12 cm) lined with wood 
shavings and were fed rodent chow ad libitum (2018S 
Harlan, Wisconsin). For enrichment and food balance, 
the mice were given fresh fruit or vegetables once per 
week. The animals were kept at 22ºC ± 1ºC with a 12/12 
h light cycle. Physical enrichment was provided weekly 
in the form of cardboard tubes for use as hiding places 
and soft paper for use as nesting material. The animals 
were euthanised with an overdose of sodium pentobarbi-
tal (100 mg/kg IV).

Parasites and antigen - The L. (L.) mexicana MHET/
MX/97/Hd18 strain was selected and its infectivity was re-
stored by passage in Syrian golden hamsters (Chable-San-
tos et al. 1995, Canto-Lara et al. 1999, Van Wynsberghe 
et al. 2000, Dumonteil et al. 2003). Promastigotes were 
grown in Senekjie medium for seven days at 23ºC. Sta-
tionary phase promastigotes were washed three times in 
RPMI-1640 (RPMI medium, Gibco) before being counted 
and adjusted to the concentrations needed for inoculation. 
SLA was obtained from stationary promastigotes that 
were washed twice in phosphate buffered saline (PBS), 
resuspended in PBS and phenylmethanesulfonyl fluo-
ride and subjected to five freeze-thaw cycles at -70ºC and 

37ºC. The protein content was determined by the Brad-
ford method. The final concentration of SLA used for the 
in vitro stimulation of the co-cultures was 2.5 µg/mL.

Experimental infection - To study NO production, 
three groups of 14 P. yucatanicus mice were inoculated 
in the base of the tail as follows: Group 1, RPMI me-
dium (control), Group 2, 1 x 102 promastigotes of L. (L.) 
mexicana (subclinical group), and Group 3, 2.5 x 106 

promastigotes of L. (L.) mexicana (clinical group). The 
evolution of the infection was followed up weekly for 
12 weeks. All animals were examined for the following 
clinical signs that are suggestive of Leishmania infec-
tion: oedema, erythema, ulcers and scars.

L. (L.) mexicana kDNA detection in subclinically in-
fected animals by polymerase chain reaction (PCR) - To 
verify the subclinical infection, another group of 22 P. yu-
catanicus mice inoculated with 1 x 102 L. (L.) mexicana 
promastigotes were sacrificed at 18 weeks post-infection 
and biopsy samples were obtained from the skin for para-
site DNA detection by PCR. Briefly, DNA was extracted 
from tissue biopsy samples after homogenisation with 
100 mM Tris-HCl, pH 8.0, 100 mM ethylenediamine tet-
raacetic acid (EDTA), 100 mM NaCl, 1% sodium dodecyl 
sulfate and 4 µL of 10 mg/mL proteinase K (Sigma). The 
DNA precipitate was dissolved in 200 µL of Tris-EDTA. 
Total DNA (300 ng) was amplified in 100 mM KCl, 20 
mM Tris-HCl, 0.1 mM EDTA, 1 mM dithiothreitol and 
1.75 mM MgCl2 in the presence of 0.2 mM of each de-
oxyribonucleotide, 10 pmol of each primer and 2.5 units 
of Taq DNA polymerase in a final volume of 25 µL. 
Primers 13A (5’GTGGGGGAGGGGCGTTCT3’) and 
13B (5’ATTTTACACCAACCCCCAGTT3’) were used 
to amplify a conserved region of the kinetoplast DNA 
(kDNA) minicircle (120 bp) of L.(L.) mexicana (Kerr et 
al. 2006). The positive PCR control was DNA extracted 
from a logarithmically growing culture of L. (L.) mexi-
cana strain MHET/MX/97/Hd18 and the negative control 
was the PCR mixture without DNA. PCR products were 
separated by electrophoresis in 1% agarose gels in tris-
borate-EDTA (45 mM tris-borate, 1 mM EDTA).

Macrophages and lymphocytes - All P. yucatanicus 
mice included in the NO experiments were inoculated 
intraperitoneally with incomplete Freund ś adjuvant 
10 days before being euthanised. Macrophages were 
obtained by peritoneal cavity lavage with RPMI. The 
cells were washed three times in RPMI and their via-
bility was determined by the trypan blue exclusion test. 
Macrophages were adjusted to 1 x 105/mL in complete 
culture medium containing RPMI supplemented with 
10% foetal bovine serum, 1% non-essential amino ac-
ids, 0.1% β-mercaptoethanol and 100 U/mL penicillin-
streptomycin. Splenocytes were obtained by maceration, 
washed three times with RPMI and depleted of erythro-
cytes by treatment with lysis solution (Promega Z3141). 
Macrophages were separated from lymphocytes by ad-
herence to glass dishes at 37ºC at 5% CO2 for 2 h. Lym-
phocytes were washed in RPMI and adjusted to 1 x 106 
in complete culture medium. Macrophages alone or in 
co-culture with autologous lymphocytes were plated in 
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24-well flat-bottom culture plates with RPMI. Another 
co-culture was stimulated with 2.5 µg/mL SLA. All 
groups were incubated at 37ºC at 5% CO2 for 96 h. The 
in vitro experiments were repeated once.

NO quantification - The culture supernatants were 
collected and the amount of NO produced was indirectly 
determined by the quantification of the nitrite (NO2

-) 
concentration using Griess reagent. Briefly, after 96 h of 
incubation, cell culture supernatants from macrophages 
were mixed with an equal volume of Griess reagent and 
the absorbance was spectrophotometrically measured at 
540 nm. The NO2

- concentration was determined using a 
standard NaNO2 curve and was expressed as µM/mL.

Statistical analysis - Analysis of variance (one-way 
ANOVA) with a p-value < 0.05 was used to compare the 
levels of NO production among the three culture types 
(peritoneal macrophages alone and co-cultures of mac-
rophages and autologous lymphocytes with or without 
SLA stimulation) and among the doses of infection: no 
parasite (control), 1 x 102 promastigotes of L. (L.) mexicana 
(subclinical infection) and 2.5 x 106 (clinical infection).

Ethics - All animals were handled according to the 
Mexican Law for the use of laboratory animals (fmvz. 
unam.mx/fmvz/principal/archivos/062ZOO.PDF) and  
the Guide for the Care and Use of Laboratory Animals 
(NRC 1996) and the proposal was approved by our insti-
tutional bioethics committee.

RESULTS

Experimental infection - Subclinical infection was 
induced in 100% of P. yucatanicus mice inoculated with 
1 x 102 L. (L.) mexicana parasites and 92.3% (12/13) of 
rodents inoculated with 2.5 x 106 parasites developed 
one or more suggestive signs of CL beginning at two 
weeks post-infection. The most frequent symptoms were 
oedema, induration, ulcers and, later, scars at the inocu-
lation site. No lesions were found in the control group 
inoculated with RPMI.

L. (L.) mexicana kDNA detection in subclinically in-
fected animals by PCR - The PCR results were positive 
for 12 of the 22 P. yucatanicus (54.5%) mice inoculated 
with 1 x 102 L. (L.) mexicana promastigotes.

NO production - The level of NO production was 
significantly higher (p ≤ 0.0001) in co-cultured mac-
rophages and lymphocytes than in the monocultured 
macrophages for all three groups of P. yucatanicus (Ta-
ble). The level of NO production was significantly higher 
(p ≤ 0.05) in subclinically infected P. yucatanicus mice 
than control mice (Fig. 1). No differences in NO produc-
tion were found between P. yucatanicus mice inoculated 
with 1 x 102 parasites and those inoculated with 2.5 x 106 
parasites at 12 weeks post-infection (Fig. 2).

DISCUSSION

In the present study, we determined that NO was 
produced by peritoneal macrophages and by co-cultured 
macrophages and lymphocytes from P. yucatanicus 
mice infected with L. (L.) mexicana and grown in the 

TABLE
Nitric oxide productions in all groups

Groups Stimulus Mean SD

Healthy MФs 0.5553 0.51833
Co-culture 0.8835a 0.57388

Co-culture/SLA 1.1064a 0.58228
Subclinical MФs 0.8159 0.36438

Co-culture 1.1321a 0.55636
Co-culture/SLA 1.4287a 0.39042

Clinical MФs 0.6521 0.43567
Co-culture 1.0058a 0.31240

Co-culture/SLA 1.2500a 0.48972

a: p < 0.05. Two samples were analyzed for each animal. Four-
teen animals per group were used. Results are expressed as 
means ± standard deviation (SD). SLA: Leishmania antigen.

Fig. 1: nitric oxide (NO) productions by control and sub-clinical in-
fected Peromyscus yucatanicus. Data in sub-clinical rodents were 
registered at 12 week post-infection. Two samples were analysed for 
each animal. Fourteen animals per group were used. Results are ex-
pressed as means ± standard deviation. Asterisks mean p < 0.05. SLA: 
Leishmania antigen.

Fig. 2: nitric oxide (NO) productions by clinical and sub-clinical in-
fected Peromyscus yucatanicus at 12 week post-infection. Two sam-
ples were analysed for each animal. Fourteen animals per group were 
used. Results are expressed as means ± standard deviation. Asterisks 
mean p < 0.05. SLA: Leishmania antigen.
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presence or absence of SLA, but the mice were unable 
to clear the infection. This study is the first to document 
NO production by P. yucatanicus mice infected experi-
mentally with a low or high dose of L. (L.) mexicana 
promastigotes.

As expected, none of the P. yucatanicus mice inocu-
lated with 1 x 102 (low dose) L. (L.) mexicana promas-
tigotes exhibited symptoms of the disease by the end of 
the study. However, the PCR was positive for 54.4% of P. 
yucatanicus mice inoculated with the low dose of L. (L.) 
mexicana promastigotes. The criteria for subclinical in-
fection in humans include living in an area endemic for 
cutaneous leishmaniasis, the absence of CL symptoms 
or a scar and a positive Montenegro skin test (González 
& Biagi 1968). The detection of Leishmania genus and 
subgenus kDNA by PCR must be added as a criterion for 
wild rodent or mouse models of subclinical leishmaniasis 
infection. Because P. yucatanicus is a primary reservoir 
of L. (L.) mexicana, the identification of parasite kDNA 
in subclinically infected animals was expected.

In contrast, 92.3% of P. yucatanicus mice inoculated 
with 2.5 x 106 promastigotes developed clinical infections, 
with lesions similar to those found in human CL patients 
infected with the same parasite species (Andrade-Narváez 
et al. 2001). This high disease rate was most likely due to 
the low temperature (22ºC). Parasite multiplication in P. 
yucatanicus was correlated with lower ambient tempera-
ture in the animal care facility in a two-year study of the 
persistence of L. (L.) mexicana in naturally infected ro-
dents (Van Wynsberghe et al. 2000).

In laboratory studies, the control of L. (L.) major in-
fection has been demonstrated to be mediated by high 
NO levels in a resistant M. musculus strain (C57BL/6). 
Moreover, the enhancer effect of autologous lympho-
cytes on macrophage NO production has already been 
demonstrated in dogs (Canis familiaris). The exposure of 
Leishmania (Leishmania) infantum-infected macrophag-
es to autologous lymphocytes from dogs immunised with 
purified secreted antigens of L. (L.) infantum promastig-
otes resulted in a significant leishmanicidal effect due 
to the activation of macrophages by interferon (IFN)-γ 
(Lemesre et al. 2005). Furthermore, an enhanced NO-
mediated antileishmanial activity of canine macrophages 
in response to higher IFN-γ production by T-cells was 
demonstrated in co-cultures (Holzmuller et al. 2005).

In contrast, in susceptible animals (BALB/c), the ex-
acerbation of infection is associated with the production 
of NO inhibitory cytokines (Trinchieri 1995, Locksley et 
al. 1999, Aguilar-Torrentera & Carlier 2001, Rogers et al. 
2002, Sacks & Noben-Trauth 2002, Lang et al. 2003). CL 
studies that consider only the traditional model in which 
M. musculus mice are infected with L. major cannot ad-
dress the interesting immunobiological characteristics 
associated with the variation among Leishmania spp. In 
fact, Leishmania (Leishmania) amazonensis and L. (L.) 
mexicana are associated with disease patterns that differ 
greatly from that of L. (L.) major in the mouse model. 
For example, the lesions of C57BL/6 or C3H mice infect-
ed with L. (L.) major heal, whereas these same mouse 
strains develop chronic disease when infected with ei-

ther L. (L.) amazonensis or L. (L.) mexicana (Aguilar-
Torrentera 2002, Pinheiro & Rossi-Bergmann 2007). 

Nevertheless, NO has been considered a potent cyto-
toxin involved in the killing of Leishmania parasites and 
is therefore a key molecule in CL control (Fang 1997, 
Stenger et al. 1994, Bogdan et al. 2000).

Therefore, we focused on NO production by the en-
demic CL reservoir P. yucatanicus infected with L. (L.) 
mexicana from Yucatan Peninsula. In our in vitro exper-
iments, autologous lymphocytes enhanced the NO pro-
duction of macrophages collected from P. yucatanicus 
mice infected with either 1 x 102 or 2.5 x 106 promastig-
otes. This finding may be due to the release of specific 
cytokines, such as IFN-γ and tumour necrosis factor 
alpha from lymphocytes. These cytokines exert an ac-
tivating effect on Leishmania-infected macrophages and 
regulate NO production, as already demonstrated in the 
traditional mouse model.

Laboratory studies using natural hosts as experimen-
tal models could provide a better understanding of the 
dynamics of infection, especially concerning the ability 
of the immune system to address the infection. However, 
experiments using wild rodents are limited, primarily 
due to the difficulty of managing wild mammals in cap-
tivity and the absence of reagents of defined specificity 
available to carry out these studies.

The experimental infection of Thrichomys laurentius 
with Leishmania species from different complexes, L. 
mexicana and Leishmania donovani, demonstrated the 
ability of both Leishmania species to invade and main-
tain themselves in the viscera and skin of T. laurentius 
and no rodent displayed any lesion, histological changes 
or clinical evidence of infection. Nevertheless, the im-
mune response and the dynamics of infection in this wild 
Leishmania reservoir are unknown (Roque et al. 2010).

The lack of a difference in the amount of NO pro-
duced by P. yucatanicus mice with clinical or subclini-
cal infections indicates that as a primary reservoir of 
L. (L.) mexicana, this deer mouse maintains circulating 
parasites, even when subclinically infected. Leishmania 
is an obligate intracellular parasite of macrophages and 
even in humans, parasite persistence is well known (Fa-
gundes et al. 2007, Colomba et al. 2009). Further inves-
tigation is needed to elucidate the role of the lymphop-
roliferative response and cytokines in the establishment 
of subclinical and clinical L. (L.) mexicana infections in 
P. yucatanicus mice.

Finally, the results obtained support the use of P. yu-
catanicus as a novel experimental animal model to study 
CL caused by L. (L.) mexicana in subclinically and clini-
cally infected mice. However, to reach this goal, it is nec-
essary to study the expression kinetics of immune genes 
in P. yucatanicus mice infected with L. (L.) mexicana.
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