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Candida species are fungal pathogens that can cause 
a wide range of superficial and deep mycoses, collective-
ly known as candidiasis, that are commonly observed in 
immunocompromised patients. Candidaemia is the most 
clinically important Candida infection, both because is 
the most frequent yeast infection in hospitalised patients 
and because this infection results in significant mortal-
ity. The incidence has risen over the past decades as the 
number of immunocompromised patients has increased 
(Pfaller & Diekema 2002, Falagas et al. 2010) and cur-
rently, candidaemia is the fourth most common noso-
comial bloodstream infection in the United States of 
America (USA) (Pfaller et al. 1998, Edmond et al. 1999, 
Wisplinghoff et al. 2004).

Although Candida albicans remains the most fre-
quently isolated species in human infection, more than 
50% of candidaemias are due to infection with other 
Candida species (Price et al. 1994, Nguyen et al. 1996, 
Abi-Said et al. 1997, Trick et al. 2002, Hajjeh et al. 2004, 
Wisplinghoff et al. 2004). For example, in Argentina, C. 
albicans (38.4%), Candida parapsilosis (26%), Candida 

tropicalis (15.4%) and Candida glabrata (4.3%) are fre-
quently isolated species (Cordoba et al. 2011).

The proper identification of Candida species is in-
creasingly necessary, not only because the distribution 
of Candida species has changed, but also because these 
species differ in their susceptibility to antifungal agents 
(Pfaller & Diekema 2002, Ellepola & Morrison 2005). 
Accurate and rapid identification can facilitate the suc-
cessful early resolution of infections and the subsequent 
reduction of morbidity and mortality (Pincus et al. 2007). 
The classical identification of fungi has been based on 
the morphological and physiological features of the sex-
ual and/or asexual state. Because most medically impor-
tant yeast species lack a sexual state and/or distinctive 
asexual morphological features, the correct identification 
of these species is often difficult and inconclusive when 
based solely on physiological traits. These morphological 
and physiological characteristics are often unstable, vari-
able and subjective (Latouche et al. 1997). Furthermore, 
genetically diverse yeast species can yield similar pheno-
typic profiles, resulting in poor discrimination between 
unrelated yeast species (Sullivan et al. 1996). In this con-
text, genotypic identification may be preferable as this 
method is faster and more accurate (Pincus et al. 2007).

The ribosomal RNA (rDNA) gene complex is large-
ly used as a target in many polymerase chain reaction 
(PCR)-based assays because the complex is present 
in all microorganisms, occurs as tandem repeats of as 
many as 100-200 copies and contains highly conserved 
domains separated by variable domains, thus enabling 
the design of universal PCR primers for fungi (White et 
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al. 1990, Kurtzman & Fell 1998, Iwen et al. 2002, Pincus 
et al. 2007). Moreover, nucleotide-sequence heterogene-
ity within this complex may be used to phylogenetically 
classify microorganisms, including yeast species (Kurtz-
man & Robnett 1998, Fell et al. 2000, Iwen et al. 2002).

The taxonomy of yeast and other fungal species has 
profoundly changed since the advent of DNA sequencing 
for the classification of microorganisms. Single gene se-
quences, such as those from the D1/D2 region of 26S rDNA 
or from the internal transcribed space (ITS) regions, are 
commonly used to identify yeast species (Kurtzman 2006, 
2010). Recently, the sequence of the ITS region has been 
proposed to be a primary fungal barcode marker by the 
Consortium for the Barcode of Life (Schoch et al. 2012).

At present, the rDNA sequences of nearly all clini-
cally relevant yeast species are available in public data-
bases, such as GenBank (ncbi.nlm.nih.gov/genbank/) or 
the Centraalbureau voor Schimmelcultures (CBS) Yeast 
Database (cbs.knaw.nl), making it possible to genetical-
ly identify one unknown yeast isolate by comparing its 
rDNA sequences with those sequences in the database.

The aim of the current study was to compare a clas-
sical phenotypic method with rDNA sequencing for the 
identification of medically relevant Candida species. 
ITS sequences were also used to evaluate the genetic re-
lationships between the samples analysed.

MATERIALS AND METHODS

Reference strains (RSs) and isolates - Eighteen RSs, 
which our laboratory commonly uses for identification 
and/or susceptibility testing, and 89 additional isolates 
(Supplementary data) were included in the study. The RS 
were obtained from the American Type Culture Collec-
tion, USA, the culture collection of the Carlos III Institute 
of Health, Spain, and the culture collection of the De-
partment of Mycology of the National Institute of Infec-
tious Diseases Dr Carlos G Malbrán, Argentina. Based 
on their phenotypic identification, isolates were selected 
from those received at the yeast identification laboratory 
from January 2009-December 2010. A total of 69 isolates 
of Candida species frequently isolated from patient in 
Argentina were included in the study (Rodero et al. 2005, 
Cordoba et al. 2011), as well as isolates with known resis-
tance to common antifungal drugs. Also included were 
20 isolates with ambiguous or inconclusive phenotypic 
identification, hereafter referred to as “not identified”.

Phenotypic identification - The phenotypic identifi-
cation was performed using standard methods (Kurtz-
man & Fell 1998), including an assessment of growth 
on 19 carbon and two nitrogen sources by the auxano-
graphic method, the fermentation of six carbohydrates, 
growth at 35ºC and 37ºC, urea hydrolysis and morpho-
logical features. Discrimination between C. albicans 
and Candida dubliniensis was achieved using the agar 
tobacco test (Bosco-Borgeat et al. 2011).

DNA extraction - DNA extraction was performed ac-
cording to the method reported by Möller et al. (1992), 
modified as previously described (Bosco-Borgeat et al. 
2011). The DNA was preserved at -20ºC until use.

ITS amplification - The ITS1 (5′-TCCGTAGGTGAA- 
CCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGAT- 
ATGC-3′) primers were used (White et al. 1990). The 
reactions were performed in a volume of 100 µL con-
taining 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 2 mM 
Mg2Cl2, 5.2% DMSO, 0.2 mM each of dATP, dCTP, 
dGTP and dTTP (Fermentas International, Inc), 0.1 µM 
each of the primers ITS1 and ITS4, 1 U Taq DNA poly-
merase (Invitrogen-Life Technologies, Brazil) and 30 ng 
of DNA. All of the amplifications were performed in an 
iCycler (Bio-Rad Laboratories, Inc) using the follow-
ing parameters: 95ºC for 7 min, followed by 40 cycles 
at 95ºC for 1 min, 54ºC for 2 min, 72ºC for 1 min and a 
final extension at 72ºC for 10 min.

Amplification of D1/D2 region of 26S rDNA - The NL1 
(5′-GCATATCAATAAGCGGAGGAAAAG-3′) and NL4 
(5′-GGTCCGTGTTTCAAGACGG-3′) primers were used 
(White et al. 1990). The reactions were performed in a 
volume of 100 µL containing 20 mM Tris-HCl (pH 8.4), 
50 mM KCl, 2.5 mM Mg2Cl, 5% DMSO, 0.2 mM each of 
dATP, dCTP, dGTP and dTTP, 0.1 µM each of the prim-
ers NL1 and NL4, 1 U Taq DNA polymerase and 30 ng 
of DNA. All of the amplifications were performed in an 
iCycler using the following parameters: 95ºC for 7 min, 
followed by 40 cycles at 95ºC for 1 min, 53ºC for 2 min, 
72ºC for 1 min and a final extension at 72ºC for 10 min.

Agarose gel electrophoresis - The PCR products 
were electrophoresed on 1.5% agarose gels in 40 mM 
Tris-Acetate and 1 mM EDTA buffer (1X TAE) for 1 h 
at 100 V, stained with ethidium bromide (10 µg/mL) and 
then visualised under ultraviolet (UV) light and photo-
documented using an LAS 3000 version 2.1 (Fuji Photo 
Film Co, Ltd). A GeneRuler 100 bp DNA Ladder (Fer-
mentas Internationa, Inc) was used.

Purification of PCR products - The PCR products 
were purified using a PureLink PCR Purification Kit 
(Invitrogen). The products were then electrophoresed on 
1.5% agarose gels in 1X TAE for 1 h at 100 V, stained 
with ethidium bromide (10 µg/mL) and visualised under 
UV light. A ready-to-use MassRuler Express DNA Lad-
der, LR Reverse (Fermentas), was used.

DNA sequencing and editing - The PCR products 
were sequenced in the forward and reverse directions 
using the initial amplification primers and an automat-
ed DNA sequencer (Genetic Analyzer 3500, Applied 
Biosystems). The sequences were edited and the con-
sensus sequences were obtained using BioEdit version 
7.0.0 (Hall 1999). All of the sequences were deposited 
in the GenBank database; the GenBank accessions are 
listed in Supplementary data.

Genotypic identification by sequence similar-
ity - Sequence similarity was obtained using either the 
BLASTN tool of the National Center for Biotechnology 
Information (NCBI) website (ncbi.nlm.nih.gov/BLAST/) 
(Library of Medicine, Bethesda, MD, USA) or the pair-
wise sequence alignment tool of the Fungal Biodiversity 
Centre on the CBS website (cbs.knaw.nl/collections/Bio-
loMICSSequences.aspx) (The Netherlands).
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The identity of each isolate was determined based 
on the sequence similarity of the ITS regions, specifi-
cally using those results with > 97% similarity (Nils-
son et al. 2008) and 99% coverage. When the similarity 
of the sequences of the ITS regions was < 97%, the 
D1/D2 region of the 26S rDNA was sequenced using 
those results with 99% similarity (Kurtzman 2006) and  
99% coverage.

Phylogenetic analyses - All of the sequences of the 
ITS regions were aligned using the CLUSTALW pro-
gram (Thompson et al. 1994) and a phylogenetic tree was 
constructed using MEGA version 4.0.2 software (Tamu-
ra et al. 2007). The neighbour-joining algorithm and the 
number-of-differences model were implemented. All of 
the gaps were excluded from the analysis and branch sup-
port was ascertained using 2,000 bootstrap replicates.

RESULTS

Genotypic identification by sequence similarity - 
Supplementary data lists all of the identification results. 
The PCR using the primers ITS1 and ITS4 successfully 
amplified the ITS regions of all of the RS and isolates 
(data not shown). However, of the total 18 RS and 89 
isolates, three RS and nine isolates yielded illegible se-
quences for their ITS regions for three replicates. Of the 
80 isolates with legible sequences, 78 isolates had ≥ 97% 
similarity with the sequences deposited in the public da-
tabases. For the remaining two isolates and all three RS 
and nine isolates with illegible sequences for their ITS 
regions, sequencing of the D1/D2 region was performed. 
All of these RS and isolates yielded legible sequences and 
were 99% similar to the sequences deposited in the pub-
lic databases.

In total, 15 RS and 78 isolates were genotypically iden-
tified by sequencing the ITS regions alone. The remaining 
three RS and 11 isolates required sequencing of the D1/D2 
region for identification. Two special cases, listed below, 
are comprised by the cases described in this paragraph.

Isolate 113940, which was not identified phenotypi-
cally, exhibited 94% similarity to Candida magnoliae 
SL040806 (AM408497.1, GenBank) using the BLASTN 
program and 99.7% similarity to Candida sorbosivorans 
CBS10293 (CBS website) for the ITS sequences. How-
ever, this isolate had 99% similarity to C. sorbosivorans 
CBS2250 (AY521567.1, GenBank) and 98% similarity 
to C. magnoliae ESAB9 (AJ749827.1, GenBank) using 
the BLASTN program and 100% similarity to C. sorbo-
sivorans CBS8768, CBS8824 and CBS10296 and 98.8% 
similarity to C. magnoliae CBS2800 (CBS website) for 
the D1/D2 sequence. This isolate was thus identified as 
C. sorbosivorans.

Isolate 103840, which was not identified phenotypi-
cally, had 94% and 99% similarity to Candida pseudo-
rugosa XH1164 (DQ234792.1 and DQ234791.1, Gen-
Bank) for the ITS and D1/D2 regions, respectively. This 
isolate was identified as a Candida species closely re-
lated to C. pseudorugosa.

Comparison of phenotypic and genotypic identifica-
tion - Table shows the concordance values obtained for the 
phenotypic and genotypic identifications. By comparing 

these methods, all of the RS and isolates phenotypically 
identified as C. albicans, C. dubliniensis, C. tropicalis, 
C. glabrata, Candida haemulonii, Candida kefyr, Can-
dida krusei, Candida lusitaniae, Candida pelliculosa and 
Candida guilliermondii var. membranifaciens demon-
strated 100% concordance with their genotypic identifi-
cations. In contrast, the phenotypic identification did not 
agree with the genotypic identification in seven cases: 
four C. guilliermondii were misidentified as Candida fa-
mata (isolates 113934-37), isolate 113891 (C. haemulonii 
var. vulnera) was misidentified as C. guilliermondii, iso-
late 113933 (Candida fermentati) was misidentified as C. 
guilliermondii and isolate 113916 (Candida orthopsilosis) 
was misidentified as C. parapsilosis.

All of the isolates with ambiguous or inconclusive 
phenotypic identification (that is, not identified) were 
genotypically identified by sequencing one or both of 
the target regions.

Phylogenetic analyses - The phylogenetic tree for the 
ITS sequences (Figure) exhibits different clusters that 
are composed of isolates belonging to the same species. 
One exception was the C. fermentati isolate (113933), 
which clustered in the C. guilliermondii group. These 
species have only a three-nucleotide difference in their 
ITS sequences (data not shown). A low-level sequence 
divergence was observed among the isolates in each 
cluster, although intraspecies diversity was observed for 
C. famata, C. haemulonii and C. lusitaniae. An analysis 
of the C. haemulonii cluster showed that C. haemulonii 
var. vulnera (isolate 113891) was included in a separate 
branch. When analysing the C. lusitaniae cluster, the 
level of sequence diversity may be compared with the 
interspecies divergence observed between C. albicans 
and C. dubliniensis or between C. parapsilosis and C. 
orthopsilosis, for example (Figure).

Certain species formed well-supported clades (boot-
strap > 70) (Group A: C. albicans, C. dubliniensis, C. 
tropicalis, C. parapsilosis and C. orthopsilosis; Group 
B: C. famata, C. guilliermondii and C. fermentati; Group 
C: C. pseudorugosa and Candida rugosa; Group F: C. 
haemulonii and C. lusitaniae).

DISCUSSION

The advent of DNA sequencing has yielded many new 
tools for fungal identification that are used by taxono-
mists and non-taxonomists alike. However, certain factors 
should be considered when performing genotypic identi-
fication using rDNA sequencing. First, rDNA consists of 
tandem repeats, with as many as 100-200 copies (Kurtz-
man & Fell 1998). Individual copies typically evolve 
nearly in unison, meaning that each gene copy shares the 
same set of mutations with the other copies. This unifor-
mity arises from sequence homogenisation mechanisms 
that are collectively referred to as concerted evolution 
(Alvarez & Wendel 2003). However, these mechanisms 
may be out of pace with variation-generating processes. 
It thus cannot be assumed that only one sequence type 
exists (Alvarez & Wendel 2003). In our study, 12 speci-
mens yielded an illegible ITS chromatogram, presumably 
because these specimens contained more than one type of 
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TABLE
Concordance between phenotypic and genotypic identification of Candida spp isolates

Phenotypic identificationa

(n)

Genotypic identification by sequencing

Concordance 
% (n/n)

Internal transcribed space regions
(n)

D1/D2 region
(n)

Candida albicans (10) C. albicans (10) ND 100 (10/10)
Candida dubliniensis (5) C. dubliniensis (5) ND 100 (5/5)
Candida parapsilosis (14) C. parapsilosis (13) ND 92.86 (13/14)

-C. orthopsilosis (1) ND
Candida tropicalis (7) C. tropicalis (4) ND 100 (7/7)

-IS (3) C. tropicalis (3)
Candida glabrata (5) C. glabrata (4) ND 100 (5/5)

-IS (1) C. glabrata (1)
Candida haemulonii (2) C. haemulonii (2) ND 100 (2/2)
Candida kefyr (3) C. kefyr (3) ND 100 (3/3)
Candida krusei (4) C. krusei (3) ND 100 (4/4)

-IS (1) C. krusei(1)
Candida lusitaniae (2) C. lusitaniae (2) ND 100 (2/2)
Candida pelliculosa (5) C. pelliculosa (4) ND 100 (5/5)

-IS (1) C. pelliculosa (1)
Candida famata (6) C. famata (2) ND 33.33 (2/6)

-C. guilliermondii (4) ND
Candida guilliermondii (5) C. guilliermondii (3) ND 60 (3/5)

-
-

C. fermentati (1) ND
C. haemulonii var. vulnera (1) C. haemulonii var. vulnera

Candida guilliermondii var. membranifaciens (1) C. guilliermondii var. 
membranifaciens (1)

ND -

Not identified (20) C. lusitaniae (7) ND -
C. guilliermondii (2) ND -

C. lipolytica (2) ND -
C. rugosa (1) ND -
C. famata (1) ND -

C. haemulonii (1) ND -
C. parapsilosis (1) ND -

Candida sp. closely related to  
C. pseudorugosa (1)

Candida sp. closely related 
to C. pseudorugosa (1)

-

C. sorbosivorans (1) C. sorbosivorans (1) -
IS (3) C. viswanathii (3) -

a: number of microorganism from the culture collection of the Department of Mycology of the National Institute of Infectious 
Diseases Dr Carlos G Malbrán, Argentina; ND: not determined; IS: illegible sequence. 

ITS sequence. In such cases, sequencing of the D1/D2 re-
gion was performed, resulting in a legible sequence of that 
domain, likely because the 26S rDNA has evolved slowly 
and is more conserved than the ITS regions.

Second, it is often assumed that fungal intraspecies 
variability in the ITS regions is generally low and rep-
resented by a percentage interval of 0-3% (Ciardo et al. 
2006, Nilsson et al. 2008). In a large study of the se-
quences of the ITS regions available in international se-
quence databases, Nilsson et al. (2008) determined that 

the canonical 3% threshold value for intraspecies varia-
tion is surprisingly accurate for fungi, but this threshold 
is nevertheless refuted by multiple examples from all of 
the fungal phyla. However, the authors calculated that 
the weighted average of the intraspecies ITS variabil-
ity of the kingdom Fungi is 2.51 ± 4.57% (1.96 ± 3.73% 
for Ascomycota), demonstrating the apparent futility of 
identifying a single unifying yet stringent fungus-wide 
cut-off value to demarcate ITS intraspecies variability 
from interspecies variability. In connection with the D1/
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Neighbour joining tree based on the internal transcribed space regions sequences showing the phylogenetic relationship among Candida species 
and isolates. Bootstrap percentages from 2,000 replicates are shown in each node. Scale bar indicates number of differences. The teleomorph 
name correspondent to each anamorph Candida species is included between brackets.
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D2 region of the 26S rDNA sequence, Kurtzman (2006) 
showed that species strains exhibit no more than zero-
three nucleotide differences (0-0.5%) in this domain and 
strains showing six or more noncontiguous substitutions 
(1%) are typically considered separate species. However, 
certain species exhibit an intraspecies variability of > 
1% (Lachance et al. 2003, Tavanti et al. 2005, Vaughan-
Martini et al. 2005, Kurtzman 2006). In the current 
study, isolate 103840 showed < 97% similarity to the se-
quences of the ITS regions in the public databases. Iso-
late 103840 was first reported following a case of blood-
stream infection and was identified as a Candida species 
closely related to C. pseudorugosa (Taverna et al. 2012). 
The present study indicates that this isolate may belong 
to a species that is more polymorphic than other species 
or may be distinct from previously identified strains.

Third, several public databases and bioinformatics 
tools currently greatly aid genotypic identification by 
sequencing. GenBank, the most popular of the public da-
tabases, contains numerous sequences, including those 
of fungal rDNA. The drawbacks of GenBank include the 
presence of certain sequencing and nomenclature errors 
and infrequent nomenclature updates and expert-based 
reclassifications of mislabelled sequences. In this con-
text, other databases comprising well-characterised se-
quences are preferable. For example, the CBS Yeast Da-
tabase contains results for roughly 6,500 strains available 
from the CBS collection, as well as descriptions of up to 
900 yeast species (Pincus et al. 2007). However, Gen-
Bank contains sequences of novel species from around 
the world. As a consequence, in certain cases, it may be 
useful to consult both databases. In our study, the identi-
fication of isolate 103940 as C. sorbosivorans necessitat-
ed such a dual analysis. Notably, although isolate 103940 
C. sorbosivorans was obtained from a blood sample, this 
species had never been reported as a human pathogen. 
Unfortunately, we do not have follow-up information on 
the case, so nothing further can be reported.

Based on our comparative analysis of methods of 
phenotypic and genotypic identification, seven isolates 
were found to have been misidentified by phenotypic 
identification. These isolates corresponded to species 
that share a phenotypic profile with other species or that 
are cryptic species (Tavanti et al. 2005, Vaughan-Mar-
tini et al. 2005, Desnos-Ollivier et al. 2008, Cendejas-
Bueno et al. 2012). Additionally, a phylogenetic analysis 
revealed a close relationship between the misidentified 
species, consistent with previous studies (Tavanti et al. 
2005, Vaughan-Martini et al. 2005, Cendejas-Bueno 
et al. 2012, Taverna et al. 2012). The phylogenetic tree 
also indicated four well-supported groups. Group A 
comprised the species most frequently isolated in hu-
mans, all of which have no known teleomorph, but occur 
within the Lodderomyces clade, as proposed by others 
(Kurtzman & Suzuki 2010). Group B was composed of 
members of the Debaryomyces and Meyerozyma genera 
that are difficult to discriminate by phenotypic methods 
(Nishikawa et al. 1999, Vaughan-Martini et al. 2005, 
Desnos-Ollivier et al. 2008, Castanheira et al. 2012). 
Group C was composed of a potentially new Candida 

species closely related to C. pseudorugosa and C. ru-
gosa. Finally, Group D was formed of members of the 
C. haemulonii complex and C. lusitaniae. The high level 
of sequence diversity within the C. haemulonii complex 
has been previously studied, leading to reclassification 
(Cendejas-Bueno et al. 2012). In contrast, the high level 
of sequence diversity of C. lusitaniae is in agreement 
with the unusually polymorphic sequences of the D1/D2 
region in these strains (Lachance et al. 2003). Further 
studies focussing on a reclassification of the C. lusita-
niae complex should be pursued.

The concept of a barcode marker for fungi has been 
discussed in recent years. The ITS regions have demon-
strated the highest probability of successful identifica-
tion for the broadest range of fungi, with the most clearly 
defined barcode gap between interspecies and intraspe-
cies variation and high ITS PCR amplification success 
(Schoch et al. 2012). The possibility of a two-marker 
barcoding system for fungi, as previously adopted for 
plants, is often discussed among mycologists and partic-
ularly those researching ascomycetous yeasts who prefer 
a system combining ITS and 26S rDNA sequences. Ad-
ditionally, the concept of one fungus having one name, 
whether the fungus exhibits sexual reproduction, instead 
of dual fungal nomenclature has been integrated into the 
new International Code of Nomenclature for algae, fungi 
and plants (Taylor 2011).

In the present study, a phylogenetic analysis was 
performed based on a single marker. However, single-
gene analyses do not yield sufficient information to re-
solve the phylogenies. Well-resolved phylogenies often 
include not only rDNA genes, but also protein-coding 
genes (Kurtzman & Robnett 2003, Rokas et al. 2003, 
Diezmann et al. 2004, Suh et al. 2006, Tsui et al. 2008, 
Schoch et al. 2012). Other molecular studies have dem-
onstrated that sequencing multiple genes or portions of 
genes and analysing the resultant data by phylogenetic 
methods is a robust strategy for identifying fungal spe-
cies. This strategy is known as Genealogical Concor-
dance Phylogenetic Species Recognition (Taylor et al. 
2000). However, such a methodology is expensive and 
requires phylogenetic expertise, which may be limiting 
factors in clinical laboratories in which rapid identifica-
tion is required (Balajee et al. 2009).

In conclusion, genotypic identification allowed the ac-
curate identification of species frequently misidentified 
by phenotypic methods, cryptic species and potential new 
species. Yet, phenotypic data should not be disregarded 
and yeast identification should encompass a comprehen-
sive analysis of both phenotypic and genotypic data.
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