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Microbial control of arthropod-borne disease
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Arthropods harbor a diverse array of microbes that profoundly influence many aspects of host biology, including 
vector competence. Additionally, symbionts can be engineered to produce molecules that inhibit pathogens. Due to 
their intimate association with the host, microbes have developed strategies that facilitate their transmission, either 
horizontally or vertically, to conspecifics. These attributes make microbes attractive agents for applied strategies to 
control arthropod-borne disease. Here we discuss the recent advances in microbial control approaches to reduce the 
burden of pathogens such as Zika, Dengue and Chikungunya viruses, and Trypanosome and Plasmodium parasites. 
We also highlight where further investigation is warranted.
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Vector-borne diseases (VBD) are responsible for in-
ordinate mortality, morbidity and economic loss world-
wide. One of the most important groups of pathogen-
transmitting vectors are the mosquitoes, including 
species within the Anopheles, Aedes and Culex genera. 
Particularly well studied are the Anopheles mosquitoes 
that vector Plasmodium parasites that cause malaria in 
humans. While five Plasmodium parasites cause ma-
laria, Plasmodium falciparum is the major cause of this 
disease in sub-Saharan Africa (Snow et al. 2005). Ae-
des mosquitoes are notorious for vectoring arthropod-
borne viruses (arboviruses) including flaviviruses such 
as Dengue virus (DENV), Yellow fever virus (YFV) 
and Zika virus (ZIKV), and also the Alphavirus, Chi-
kungunya virus (CHIKV) (Bhatt et al. 2013, Weaver & 
Lecuit 2015, Weaver et al. 2016). Culex mosquitoes are 
known vectors of West Nile virus (WNV) and other en-
cephalitic viruses, as well as filarial nematodes. Other 
than mosquitoes, Phlebotominae and Simuliidae flies 
are responsible for transmitting pathogens that cause 
Leishmaniasis, Onchocerciasis, as well as other neglect-
ed tropical diseases. In Africa, several species of tsetse 
flies vector Trypanosomes that cause sleeping sickness 
in humans and nagana in livestock. Further vectors in-
clude Triatomine bugs that transmit Trypanosomes that 
cause Chagas disease, which infects an estimated 6 mil-
lion people in Latin America (Bern 2015). Ticks also 
transmit a variety of pathogens including viral, bacte-
rial and protozoan parasites (Dantas-Torres et al. 2012). 

While traditional and contemporary control strategies 
have made great progress to control malaria and other 
neglected tropical diseases, the incidence of other dis-
eases has been on the rise. Current disease prevention 
strategies often rely on vector control as effective vac-
cines are not available for many pathogens, however vec-
tor control strategies are becoming ineffective, mainly 
due to insecticide resistance emerging in many vec-
tors (Naqqash et al. 2016, Ranson & Lissenden 2016). 
Taken together, novel strategies for control of VBD are 
urgently required. The current global ZIKV pandemic, 
and the reemergence of YFV in Africa and Leishmania 
in the Middle East stress this need for novel control tools 
against emerging and re-emerging pathogens (Al-Salem 
et al. 2016, Barrett 2016, Weaver et al. 2016). To this end, 
microbial-based intervention strategies are gaining con-
siderable traction as a novel means to control VBD. In 
this review we highlight the recent advances in the use 
of symbionts to suppress pathogens in their vectors by 
drawing upon examples of viral, bacterial and fungal 
symbiosis in various vector species. Most studies have 
focused on mosquito vectors but where possible we in-
clude examples from other vector systems.

The vector microbiome - The advent of High 
Throughput Sequencing (HTS) technologies has ex-
panded our understanding of the composition of the 
microbiome of many vector species. The microbiome 
is composed of viruses, bacteria, fungi and protozoa, 
however pathogens that vectors transmit can also be 
considered as constituents of the microbiome. Microbial 
association with the host can be facultative or obligate, 
and the nature of these host-microbe interactions, which 
range across a spectrum from parasitic to mutualistic, is 
likely fluid and depends on factors such as the host and 
environment (Casadevall et al. 2011). Microbes can have 
an intracellular or extracellular lifestyle, and possibly 
transition between both. Microbiota can also preferen-
tially reside in specific host organs and tissue including 



Microbial control of vectors • Miguel A Saldaña et al.82

the midgut (the lumen or gut epithelia), fat body, salivary 
glands, ovaries and testes (Sharma et al. 2014, Segata et 
al. 2016, Tchioffo et al. 2016). In several of these tissues, 
the microbe has the opportunity to directly interact with 
invading pathogens.

Our most comprehensive understanding of vector mi-
crobiomes is derived from mosquitoes. Studies utilising 
HTS have revealed that the microbiome is often domi-
nated by relatively few taxa, can be highly variable, and 
that this variation is influenced by factors such as host 
life stage, host sex, the sampling technique, and the biotic 
and abiotic environment (Boissière et al. 2012, Osei-Poku 
et al. 2012, Coon et al. 2014, Gimonneau et al. 2014, Du-
guma et al. 2015, Buck et al. 2016, Segata et al. 2016). 
HTS techniques are currently most effective in examining 
the bacterial microbiome, and such work suggests mos-
quitoes have a microbiota comprised of bacteria within 
the phyla Proteobacteria, Bacteriodetes and Actinobac-
teria, encompassing taxa such as Serratia, Pseudomonas, 
Aeromonas, Elizabethkingia, Enterobacter, and Acinto-
bacter (Boissière et al. 2012, Osei-Poku et al. 2012, Coon 
et al. 2014, Gimonneau et al. 2014, Hughes et al. 2014a, 
Duguma et al. 2015, Buck et al. 2016, David et al. 2016, 
Segata et al. 2016). Similar to mosquitoes, ticks have been 
found to have diverse and complex microbiomes, with the 
microbial composition influenced by life history traits and 
diet (Menchaca et al. 2013). The microbiome of lone star 
tick, Amblyomma americanum, is composed of the patho-
gens Anoplasma and Ehrlichia as well as other symbiotic 
bacteria within the phyla Proteobacteria, Bacteroidetes 
and Firmicutes (Jasinskas et al. 2007, Fryxell & DeBruyn 
2016). Microbiome analysis of the Rocky mountain wood 
tick, Dermacentor andersoni identified four prominent 
genera of bacteria: Rickettsia, Francisella, Arsenophonus 
and Acinetobacter (Clayton et al. 2015). In tsetse flies, 
three vertically transmitted bacterial symbionts, Wiggles-
worthia, Sodalis, and Wolbachia are often present in the 
host, in addition to other environmentally acquired com-
mensal bacteria (Wang et al. 2013b).

There are few studies investigating the fungal micro-
biome (mycobiome) of vector species. Most approach-
es that do explore the diversity of fungal microbes in 
insects exploit culture-based methods (Ignatova et al. 
1996, Marti et al. 2006, Gusmão et al. 2010). A yeast 
strain, Wickerhamomyces anomalus, was found in both 
the midgut and reproductive system of the Asian malaria 
vector, Anopheles stephensi (Ricci et al. 2011), and six 
different fungal species have been found in the midgut 
of sandfly vectors (Akhoundi et al. 2012). However, 
recently, HTS was used to examine the mycobiome of 
Aedes triseriatus and Aedes japonicus (Muturi et al. 
2016a). This study found twenty-one distinct fungal 
OTUs, 15 of which were shared between Ae. triseriatus 
and Ae. japonicus (Muturi et al. 2016a). The majority of 
fungal taxa in these Aedes species were from the Asco-
mycota phylum (Muturi et al. 2016a). Similarly, the Ae. 
albopictus mycobiome is dominated by fungi within the 
Ascomycota in addition to other taxa within phylum Ba-
sidiomycota (Muturi et al. 2016b). While the role of the 
mycobiome in regulating vector competence is poorly 
understood, it is likely that fungi and yeast can have a 

similar impact on pathogen transmission as bacteria, as 
fungi produce antimicrobial molecules and influence 
host immunity (Lemaitre et al. 1996, Martin et al. 2015, 
Wang et al. 2015, Angleró-Rodríguez et al. 2016). For 
instance, it was recently reported that Penicillium chrys-
ogenum increases the intensity of Plasmodium infection 
in Anopheles mosquitoes by suppressing mosquito im-
munity (Angleró-Rodríguez et al. 2016).

Characterisation of the viral microbiome (virome) of 
disease vectors is now also gaining attention. Metage-
nomic sequencing of mosquitoes revealed the presence of 
several species of plant, animal and bacterial viruses in 
the mosquito virome (Ng et al. 2011, Chandler et al. 2015). 
Similar studies in ticks also identified several viral fami-
lies, including previously unknown viruses (Tokarz et al. 
2014, Xia et al. 2015, Sakamoto et al. 2016). The effect on 
the host of many of these viruses is yet to be elucidated. In 
contrast, we know that tsetse flies harbor a salivary gland 
hypertrophy virus (SGHV), which is a rod-shaped, envel-
oped DNA virus that is transmitted both horizontally and 
vertically, and can become pathogenic, causing hyper-
trophy of the salivary glands and reduced fecundity and 
lifespan (Wang et al. 2013b). Interestingly, it appears that 
there is an interaction of SGHV with microbial symbionts 
residing in the fly, as aposymbiotic flies have reduced vi-
ral loads (Boucias et al. 2013, Wang et al. 2013a).

Complex host-microbe interactions dictate microbi-
ome and host homeostasis of arthropods. While the fac-
tors that shape the composition of the microbiome are 
still under investigation in most systems, it is clear that 
environmental conditions (Zouache et al. 2010, Wang 
et al. 2011, Minard et al. 2013), and host genetics (Ku-
mar et al. 2010, Oliveira et al. 2011, Stathopoulos et al. 
2014, Soares et al. 2015, Pang et al. 2016) are important. 
For instance, silencing of an antimicrobial peptide in 
Triatoma infestans elevated bacterial load in the mid-
gut which subsequently reduces Trypanosoma cruzi 
parasites, indicating that host control of the microbi-
ome can influence pathogen dynamics (Buarque et al. 
2016). Bacterial genetics also appears to be an important 
determinant of gut colonisation (Maltz et al. 2012, Pei 
et al. 2015), however like much of the work examining 
bacterial genetic factors that influence persistence in the 
mammalian gut, this area of study is in its infancy in 
arthropods. While we have a limited understanding of 
the factors that regulate homeostasis in vectors, insights 
can be drawn from model insects where these processes 
have been examined in more detail (Buchon et al. 2013, 
Erkosar et al. 2013, Broderick 2016). In insects, micro-
bial interactions are known to influence many diverse 
phenotypes and processes including host nutrition, re-
production, immunity, behavior, survival and evolution 
(Engel & Moran 2013, Lewis & Lizé 2015, Shropshire 
& Bordenstein 2016, van Tol & Dimopoulos 2016). In 
arthropod vectors, these phenotypes can have important 
implications for vectorial capacity. Additionally, mem-
bers of the microbiome can themselves modulate vector 
competence for a variety of pathogens, either by direct 
interactions with the pathogen or indirectly mediated by 
the host (Dennison et al. 2014, Hegde et al. 2015). While 
the influence of the microbiome on vector competence is 
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likely multifaceted and complex, interplay between the 
microbiota and host immunity is one process that can 
alter pathogen levels (Xi et al. 2008, Dong et al. 2009, 
Carissimo et al. 2015). Given these interactions, it is 
unsurprising that these interactions can also be recip-
rocated, whereby pathogen infection, which stimulates 
host immunity, can alter the microbiome (Xi et al. 2008, 
Ramirez et al. 2012, Zouache et al. 2012, Vieira et al. 
2015, Zink et al. 2015, Muturi et al. 2016a). This high-
lights the intricate dynamism between the host and the 
microbiome, which in part, is shaped by host immunity. 
From an applied perspective, these microbe-mediated 
alterations in vector competence can be harnessed for 
novel microbial pathogen control strategies.

Innate anti-pathogen activity of microbes - Wolba-
chia - The most extensively developed microbial strat-
egy to alter the vector competence of mosquitoes utilises 
Wolbachia. Wolbachia is a common bacterial endosym-
biont that infects approximately 60% of insects (Hil-
genboecker et al. 2008). It has been extensively studied 
for its ability to manipulate the reproduction of its host, 
which enables the bacterium to spread through insect 
populations (Werren et al. 2008). Cytoplasmic incom-
patibility (CI) is one of the most widespread reproduc-
tive mechanisms Wolbachia employs. CI occurs when 
an infected male mates with a female that is uninfected, 
or infected with an incompatible strain of Wolbachia. 
These crosses result in embryonic lethality and provide 
a fitness advantage to the infected female counterparts 
in the population, facilitating Wolbachia’s spread within 
insect populations (Werren et al. 2008). Wolbachia-me-
diated CI is being exploited as a population suppression 
tool termed incompatible insect technique (IIT) (re-
viewed in Bourtzis et al. 2014), and has been deployed 
to suppress Aedes mosquito populations (O’Connor et al. 
2012). However, after it became evident that the antiviral 
properties of Wolbachia, which were first discovered in 
Drosophila (Hedges et al. 2008, Teixeira et al. 2008) also 
occurred in mosquitoes against a broad range of patho-
gens (Kambris et al. 2009, Moreira et al. 2009, Hughes et 
al. 2011b), the use of this bacteria for population replace-
ment control strategies has been explored with vigor. 
The ability of the bacterium to confer pathogen interfer-
ence, and to rapidly invade populations due to a high 
vertical transmission rate and the induction of CI, make 
Wolbachia an attractive agent for applied control.

Wolbachia can interfere with the development of 
diverse pathogens transmitted by mosquitoes. The anti-
pathogen phenotype is particularly noticeable when a 
strain of Wolbachia is artificially transferred (transin-
fected) into a vector creating a novel strain-host com-
bination (Hughes & Rasgon 2014). Most attention has 
focused on Ae. aegypti, which is generally thought to 
be naturally uninfected by Wolbachia, however, intrigu-
ingly, an infection was recently reported in mosquitoes 
collected in Florida, USA (Coon et al. 2016). Two strains 
of Wolbachia were found in these mosquitoes, which 
were phylogenetically related to the wAlbA and wAlbB 
strains in Ae. albopictus (Coon et al. 2016). Transinfect-
ed Ae. aegypti have reduced vector competence to sever-
al important arboviruses such as DENV (Moreira et al. 
2009, Walker et al. 2011, Joubert et al. 2016), YFV (Hurk 

et al. 2012), CHIKV (Moreira et al. 2009, Aliota et al. 
2016b) and ZIKV (Aliota et al. 2016a, Dutra et al. 2016). 
Wolbachia infected Ae. aegypti are also less competent 
vectors for filarial nematodes (Kambris et al. 2009) and 
Plasmodium parasites (Moreira et al. 2009). In addition 
to arbovirus control approaches in Aedes mosquitoes, 
Wolbachia-based strategies are also under investigation 
to inhibit Japanese encephalitis virus (JEV) vectored by 
Culex tritaeniorhynchus (Jeffries & Walker 2015).

Antiviral activity is also seen when novel strains are 
transinfected into Ae. albopictus (Blagrove et al. 2011), 
which is naturally infected with two strains of Wolba-
chia, wAlbA and wAlbB. Here, these resident strains 
were removed by antibiotic treatment before introduc-
tion of the novel wMel strain from Drosophila. These 
wMel-infected Ae. albopictus have decreased vector 
competence for DENV compared to an uninfected line 
and the naturally double infected mosquitoes (Blagrove 
et al. 2011). The effect of natural Wolbachia infections 
on pathogen dynamics is more difficult to assess, as un-
infected individuals need to be identified, or the infec-
tion cleared with antibiotic treatment, for comparison. 
Antibiotic treatment can also have confounding effects 
such as altering the microbiome (Hughes et al. 2014a) or 
affecting mitochondria (Ballard & Melvin 2007). With 
these caveats in mind, native Wolbachia infections have 
been shown to reduce WNV in Cx. quinquefasciatus 
(Glaser & Meola 2010) and DENV and CHIKV in Ae. al-
bopictus (Mousson et al. 2010, 2012), but it is important 
to note that these naturally infected mosquitoes are still 
competent vectors. Conversely, the native Wolbachia in-
fection in Culex pipiens has been shown to exacerbate 
Plasmodium titer compared to their uninfected coun-
terparts (Zélé et al. 2014), and Wolbachia also protects 
the vector against the deleterious fitness effects of the 
parasite, thus extending host lifespan, which has impli-
cations for pathogen transmission (Zélé et al. 2012).

The development of Wolbachia control strategies for 
human malaria appears more complex compared to ar-
boviral pathogens. Aside from the propensity of Wolba-
chia to increase Plasmodium titer in some circumstances 
(Hughes et al. 2012, Baton et al. 2013, Murdock et al. 
2014), which may be an artifact due to the method of 
infection or artificial nature of some tripartite combina-
tions used in laboratory studies (reviewed in Hughes et 
al. 2014b), there are challenges with stably transinfecting 
Anopheles mosquitoes. To overcome these issues, tran-
sient infection was used to rapidly asses the effect of Wol-
bachia on Plasmodium, and this technique found that the 
wMelPop and wAlbB Wolbachia strains blocked P. fal-
ciparum (Hughes et al. 2011b). The wMelPop strain has 
also been shown to interfere with Plasmodium berghei, a 
murine malaria model (Kambris et al. 2010). In ground-
breaking work from Bian et al. (2013) An. stephensi was 
stably infected with the wAlbB strain of Wolbachia. 
These novel infections induced CI in An. stephensi and 
substantially blocked P. falciparum (Bian et al. 2013), of-
fering promise for the use of this bacterium in malaria 
control approaches. However, the infection also exerted 
a considerable fitness cost on the mosquito (Bian et al. 
2013, Joshi et al. 2014), which would need to be overcome 
for Wolbachia to spread in field populations.
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Recently, natural Wolbachia infections in some 
Anopheles populations have been discovered (Baldini et 
al. 2014, Buck et al. 2016, Shaw et al. 2016). These studies, 
in addition to the transinfection of An. stephensi (Bian 
et al. 2013), have overturned the dogma that Anopheles 
mosquitoes were recalcitrant to Wolbachia infection and 
were naturally uninfected across their range. The native 
infections were shown to affect host fitness and reduce 
Plasmodium loads compared to uninfected conspecifics 
(Shaw et al. 2016). More work is required to determine 
if these natural infections can be exploited for Plasmo-
dium control or if the resident strains would complicate 
the spread of more useful transinfected strains (Jeffries 
& Walker 2016). Similarly, the recently discovered natu-
ral infections in Ae. aegypti could have implications for 
implementation of Wolbachia-based strategies (Coon et 
al. 2016). Other bacterial symbionts that are known to 
manipulate insect reproduction (Duron et al. 2008), in a 
similar fashion to Wolbachia such as Spiroplasma (Tere-
nius et al. 2008, Segata et al. 2016), and bacteria related 
to Arsenophonus (Briones et al. 2008) have been found 
in mosquitoes, but their effect on host reproduction and 
vector competence remains to be elucidated.

Gut associated microbes - Bacteria that reside pre-
dominately within the midgut of vectors can have pro-
found anti-pathogenic effects that could be exploited in 
novel vector control strategies. Early studies examined 
the interaction between microbes and pathogens in 
Anopheles-Plasmodium and Triatomine-Trypanosome 
systems (Beier et al. 1994, Straif et al. 1998, Eichler & 
Schaub 2002). Today, most research in this area focuses 
on Aedes and Anopheles mosquitoes and the influence 
of the microbiome on arboviruses and Plasmodium para-
sites, respectively. Research that investigates the influ-
ence of gut microbes on pathogen dynamics is usually 
undertaken by perturbing the microbiome by antibiotic 
treatment or through administration of cultured bacte-
ria to the vector. Alternative approaches included using 
antibodies raised against the microbiota to manipulate 
the microbiome, or rearing gnotobiotic lines (Noden et 
al. 2011, Coon et al. 2014). Antibiotic treatment has been 
shown to increase the titer of DENV in Ae. aegypti, JEV 
in Culex bitaeniorhynchus, T. cruzi in Rhodnius prolixus 
and Plasmodium in Anopheles mosquitoes (Mourya & 
Soman 1985, Xi et al. 2008, Dong et al. 2009, Kumar et 
al. 2010, Rodrigues et al. 2010, Castro et al. 2012). These 
findings suggesting that the microbiota is antagonistic 
to invading pathogens. Re-infection of bacterial taxa 
into the vector enables the anti-pathogenic properties of 
specific microbes to be identified. Using this approach, 
isolates of Enterobacter, Acinetobacter, Pantoea, Pseu-
domonas, Serratia and Elizabethkingia have been shown 
to inhibit Plasmodium (Cirimotich et al. 2011, Bahia et al. 
2014, Ramirez et al. 2014). The Enterobacter Esp_Z iso-
late was shown to produce reactive oxygen species (ROS) 
that inhibited the malaria parasite (Cirimotich et al. 
2011), while other bacterial taxa may have distinct modes 
of action against Plasmodium (Bahia et al. 2014). Intrigu-
ingly, a specific strain of Serratia that has enhanced mo-
tility suppresses Plasmodium compared to a non-motile 
strain, providing insights into the mechanism behind the 

interference phenotype and highlighting the importance 
of bacterial inter-strain variation on vector competence 
(Bando et al. 2013). In other work, Enterobacter, Proteus 
and Paenibacillus species have been shown to inhibit 
La Crosse virus (LACV) and DENV (Joyce et al. 2011, 
Ramirez et al. 2012). Strikingly, a Chromobacterium iso-
late has both anti-Plasmodium and anti-viral properties, 
and reduces the survival of larvae and adult mosquitoes, 
possibly linked to the secretion of metabolites such as 
cyanide (Ramirez et al. 2014). Secreted molecules that 
have anti-pathogen and entomopathogenic activity could 
be harnessed for novel biotechnology applications. Such 
products could be used against the vector or the patho-
gens they transmit, or alternatively, exploited as novel 
pharmaceuticals for use in humans or livestock.

In addition to studies on arboviruses and malaria, 
bacterial microbes can alter pathogens in other vector 
species. Serratia, which is a dominant component of the 
gut microbiome of Triatomine bugs, appears to be an im-
portant determinant of Trypanosome infection (Azam-
buja et al. 2004, da Mota et al. 2012). The trypanocidal 
activity of Serratia could be related to prodigiosin pro-
duction, which affects the mitochondrial activity of the 
parasite, and the ability of this bacterium to attach to the 
parasite (Castro et al. 2007, Genes et al. 2011). Studies in 
sandflies imply that microbes reduce Leishmania para-
site load (Schlein et al. 1985) while tsetse flies cured of 
their symbionts were more susceptible to Trypanosome 
infection (Wang et al. 2009, Weiss et al. 2013). In ticks, 
both positive and negative interactions between symbi-
onts and pathogens have been observed. Rickettsia bellii 
is negatively correlated with Anaplasma marginale in-
fection, and reductions in a Francisella symbiont leads 
to a lower titer of the pathogenic Francisella novicida 
(Gall et al. 2016). Perturbing the microbiome of Ixodes 
scapularis altered the peritrophic matrix of the arach-
nid and subsequently led to a reduction in the spirochete, 
Borrelia burgdorferi (Narasimhan et al. 2014).

Pathogen enhancement mediated by microbes has also 
been documented in mosquitoes. Suppression of the mid-
gut microbiota by antibiotic treatment in Anopheles mos-
quitoes decreased O’nyong nyong virus (ONNV) infec-
tions (Carissimo et al. 2015), indicating that constituents 
of the microbiota are required for pathogen infection. Re-
infection of live, but not heat-killed bacteria, into antibiotic 
treated mosquitoes reverted viral titers to levels comparable 
to untreated controls (Carissimo et al. 2015). These effects 
are in contrast to what is observed with Plasmodium which 
increase in titer after antibiotic treatment of mosquitoes 
(Dong et al. 2009, Kumar et al. 2010, Rodrigues et al. 2010). 
A similar pathogen enhancement effect was seen in Ae. ae-
gypti re-infected with Serratia odorifera, which increases 
both DENV and CHIKV infections (Apte-Deshpande et al. 
2012, 2014). The ability of bacterial taxa to both enhance 
and suppress pathogens in insects suggests complex in-
terplay between the host, the microbiome and the patho-
gen, dictates vector competence. Furthermore, specific 
vector-pathogen-microbe combinations may have unique 
outcomes, which means intervention strategies need to be 
scrutinised thoroughly before implementation.
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While studies examining the role of the bacterial 
microbiome on arthropod biology are expanding and 
providing insights into alternative approaches to control 
arthropod-borne disease, we have a very limited knowl-
edge on the role of the virome or mycobiome on vector 
biology and vector competence. The yeast W. anomalus 
produces a toxin that has in vitro antiplasmodial activ-
ity (Valzano et al. 2016). Studies investigating the en-
tomopathogenic fungi Beauveria bassiana indicate this 
fungal pathogen suppresses DENV titer in Ae. aegypti 
through activation of the Toll and Jak-Stat immune path-
ways (Dong et al. 2012). This antiviral property further 
supports the use of this microbe for novel microbial 
biopesticide applications. Recently it has become evident 
that mosquitoes are naturally infected with insect-spe-
cific viruses (ISV). These viruses, which are phyloge-
netically diverse, infect mosquitoes but do not replicate 
within vertebrate cells (Blitvich & Firth 2015, Bolling 
et al. 2015, Vasilakis & Tesh 2015). Interestingly, it ap-
pears that ISV can suppress arboviruses in mosquitoes, 
likely due to a process known as superinfection exclu-
sion (Newman et al. 2011, Bolling et al. 2012, Crockett 
et al. 2012, Kenney et al. 2014, Kuwata et al. 2015, Hall-
Mendelin et al. 2016). Most studies have used in vitro 
systems and focused on insect-specific flaviviruses al-
though an insect-specific alphavirus has been shown to 
alter Sindbis virus titer in vivo (Nasar et al. 2015). These 
findings have raised the possibility that fungi and ISV 
could be used in applied control strategies but before 
this can be achieved, a more thorough understanding of 
the biology of these microbes is required. Studies should 
focus on examining the ecological range and infection 
frequency of these microbes in natural mosquito popula-
tions, understanding the nature of their association with 
the host and other microbes, and investigate the mecha-
nisms in which they are acquired and transmitted.

Engineering microbes to convey anti-pathogen ac-
tivity - Microbes that reside within the gut of vectors 
can be engineered to secrete anti-pathogen molecules, 
an approach known as paratransgenesis. Paratransgenic 
studies were initially pioneered in Triatomine bugs for 
control of Chagas disease (Durvasula et al. 1997, Beard 
et al. 2002). Here, the symbiotic bacterium Rhodococcus 
rhodnii was genetically manipulated to express antimi-
crobial peptides that were antagonistic to T. cruzi, the 
parasitic protozoan that causes Chagas disease. Expres-
sion of cecropin A eliminated or reduced the number of 
T. cruzi within R. prolixus (Durvasula et al. 1997). Inge-
niously, the copraphagic tendencies, or probing of fecal 
droplets, of the insect were exploited to deliver the trans-
genic symbiont to the vector. An artificial mimic of R. 
prolixus feces spiked with transgenic R. rhodnii, which 
was probed by nymphs, facilitated symbiont acquisition 
(Durvasula et al. 1997). In field trials, around half of the 
nymphs exposed to the mimic were infected throughout 
their development (Durvasula et al. 1999).

After these seminal studies, Beard et al. (2002) de-
tailed the requirements for successful paratransgenic 
strategies. These include: that a symbiotic relationship 
occur between the microbe and the host; that the mi-
crobe be readily culturable and transformable; transfor-

mation should not alter the symbiotic relationship with 
the host, alter microbial fitness compared to wild type 
conspecifics or make the microbe pathogenic; that the 
effector gene product should be secreted to interact with 
the pathogen; and that there must be an efficient way to 
deliver the microbe into the vector population.

Paratransgenesis is also being explored in other vector 
species, particularly Anopheles mosquitoes for the control 
of malaria, using bacterial microbes as delivery vehicles. 
Earlier studies investigated engineering effector protein 
secretion systems from Pantoea agglomerans, which was 
isolated from Anopheles mosquitoes (Riehle et al. 2007, 
Bisi & Lampe 2011). Importantly, transgenic bacteria ad-
ministered to mosquitoes in sugar meals were seen to rap-
idly proliferate following a blood meal and had minimal 
impact on life history traits of the mosquito (Wang et al. 
2012). The secretion of several effector proteins antagonis-
tic to Plasmodium using the HlyA secretion system from P. 
agglomerans was shown to significantly reduce the inten-
sity of P. falciparum in the mosquito gut (Wang et al. 2012). 
The mode of action and the targets of the anti-Plasmodium 
effector molecules has been comprehensively reviewed 
(Wang & Jacobs-Lorena 2013). Asaia is another candidate 
for paratransgenic control of malaria. This bacterium is im-
portant for larval development of Anopheles mosquitoes, 
is genetically tractable, appears to be easily acquired by 
mosquitoes and is vertically inherited to progeny (Favia 
et al. 2007, Chouaia et al. 2012). Secretion of the effector 
proteins, Scorpine and the anti-Pbs21 scFv-Shiva1 toxin fu-
sion protein, from Asaia reduced oocyst intensity of P. ber-
ghei in the midgut compared to control bacteria (Bongio & 
Lampe 2015). Elizabethkingia is another dominant member 
of the mosquito microbiome that is transstadially transmit-
ted. This bacterium has been genetically altered and re-
infected into Anopheles and Aedes mosquitoes (Chen et al. 
2015a), however the use of this microbe in paratransgenic 
control approaches may need to be reconsidered since it is 
potentially a human pathogen (Frank et al. 2013) and given 
its natural resistance to several antibiotics. Genomic and 
further epidemiological analysis may clarify if strains pres-
ent in mosquitoes are the source of infection in humans 
(Kukutla et al. 2014, Teo et al. 2015, Garay et al. 2016).

Paratransgenic approaches are also being developed 
for the control of Trypanosomes vectored by tsetse flies. 
The symbiont Sodalis glossinidius has been manipu-
lated to release anti-trypanosome nanobodies (antigen-
binding molecules) in the fly gut (de Vooght et al. 2012, 
2014). Strategies have proposed to couple paratransgenic 
Sodalis with Wolbachia, and exploit Wolbachia’s CI-me-
diated drive to spread the transgenic symbiont through 
the population. Modeling suggests that if Wolbachia-
induced mortality is low and the anti-trypanosome 
molecule is effective, the incidence of disease could be 
successfully reduced (Medlock et al. 2013). Preliminary 
experiments such as the identification and culturing of 
microbes have been accomplished for paratransgenesis 
strategies in Phlebotomus argentipes sand flies for con-
trol of Leishmania (Hillesland et al. 2008).

In comparison to bacterial paratransgenic approach-
es, there are few examples of the use of viral or fungal 
symbionts for paratransgenic control. While fungal para-
transgenic studies are limited in medical vector species, 



Microbial control of vectors • Miguel A Saldaña et al.86

approaches are also being investigated to control agri-
cultural pathogens (Hughes et al. 2011a). The identifica-
tion of culturable fungi and yeast associated with vectors 
provides candidate microbes for further investigation 
(Ricci et al. 2010, 2011, Martin et al. 2015, Steyn et al. 
2015). In a subtle variation on the paratransgenic theme, 
the fungal insect pathogen Metarhizium anisopliae has 
been manipulated to express effector molecules to in-
hibit Plasmodium in Anopheles mosquitoes (Fang et al. 
2011). Expression of the peptide SM1, a single chain an-
tibody, or the antimicrobial toxin scorpine, significantly 
reduced sporozoites in the salivary gland. Impressively, 
the expression of 8 repeats of SM1 and scorpine as a 
fusion protein reduced Plasmodium intensity by 98% 
(Fang et al. 2011). M. anisopliae is an insect pathogen 
that infects mosquitoes through direct contact with the 
cuticle, which may enhance infection of the vector, but 
its pathogenic nature would likely mean that continual 
release of the microbe would be required.

Viral paratransgenesis research has mainly focused 
on Densoviruses. Aedes DNV (AeDNV), which can be 
pathogenic to the mosquito host (Ledermann et al. 2004), 
has been manipulated to express foreign genes (Afa-
nasiev et al. 1999). Expression of a toxin from AeDNV 
increased the pathogenic effects of the virus compare to 
wild type virus in Ae. albopictus (Gu et al. 2010), offering 
promise for this strategy to be employed as a biopesti-
cide. An Anopheles gambiae DNV (AgDNV) has been 
characterised and used as an expression platform (Ren et 
al. 2008, Suzuki et al. 2014). Unlike AeDNV, AgDNV is 
not pathogenic to the mosquito host and has minimal im-
pact on mosquito survival (Ren et al. 2014). While DNVs 
can be used to express proteins in mosquitoes and the vi-
rus infects relevant organs in the insect to interfere with 
invading pathogens, there are some obstacles that need to 
be overcome before these viruses can be used in the field 
for paratransgenesis. DNVs have small genomes, which 
can limit the size of the inserted transgenes and they of-
ten require wild type virus for effective viral packaging. 
In an elegant approach, recombinant AeDNV were engi-
neered to express microRNAs that target host genes or to 
sequester host miRNA using antisense miRNA sponges 
(Liu et al. 2016). This strategy overcomes some of the 
challenges associated with expressing larger genes from 
these viruses and enables the use of RNAi, rather than 
effector molecules, for vector control.

Microbes expressing RNAi - A promising alterna-
tive to paratransgenesis has emerged whereby microbes 
are engineered to deliver double stranded (dsRNA) to 
insects. RNAi is a powerful tool to manipulate tran-
scription that has been used extensively to elucidate 
the function of many insect genes. In particular this 
technology has been extremely valuable in identifying 
mosquito pathways and genes that influence pathogen 
dynamics (Xi et al. 2008, Garver et al. 2009, Souza-Neto 
et al. 2009) and other aspects of insect biology useful for 
mosquito control (Isoe et al. 2011, Thailayil et al. 2011, 
Figueira-Mansur et al. 2013). The RNAi pathway is also 
a natural defense strategy used by insects to inhibit 
invading viral pathogens (Keene et al. 2004, Sánchez-
Vargas et al. 2009), and therefore lends itself to develop-

ment for applied pathogen control of arboviruses. This 
approach is very flexible in that potentially any gene in 
the vector could be manipulated. In addition, a vast array 
of interfering molecules can be delivered to the vector 
to manipulate gene expression, including short-hairpin 
RNAs (shRNA), long hairpin RNAs (lhRNA), artificial 
microRNAs (amiRNA) or miRNA sponges. Engineered 
microbes could deliver multiple RNAi molecules, al-
lowing several synergistic intervention strategies to be 
undertaken simultaneously, reducing the risk of evolu-
tion of resistance to a particular intervention approach. 
Theory predicts that viruses will not have the potential 
to evolve to such combinatorial intervention approaches 
(Leonard & Schaffer 2005), and experimental evidence 
shows that polycistronic expression of multiple shRNA 
can effectively inhibit DENV (Xie et al. 2013).

Delivery of RNAi to insects has been achieved with 
viruses, bacteria and yeast. For approaches targeting vec-
tor species, most strategies target host genes that when 
silenced induce mortality. These approaches can be con-
sidered as a novel species-specific insecticide. Other ap-
proaches have targeted genes that are important for re-
production, thereby reducing the fecundity of the insect. 
The use of bacteria for RNAi delivery is more compli-
cated since the RNase III enzyme of the bacterium can 
degrade double stranded RNA (dsRNA). For many years, 
RNase III mutants of Escherichia coli have been used for 
RNAi silencing in the nematode Caenorhabditis elegans 
(Timmons et al. 2001). Similar approaches with RNase 
III mutant E. coli are effective for RNAi delivery to Ae. 
aegypti mosquitoes and R. prolixus bugs (Whyard et al. 
2015, Taracena et al. 2015), while a R. rhodnii RNase III 
mutant was used to express RNAi in R. prolixus (Whit-
ten et al. 2016). In contrast, wild type R. rhodnii bacteria 
were used to deliver RNAi molecules to Reduviid bugs 
that reduced fecundity of the insect (Taracena et al. 2015). 
Similarly, fungi have been used to express RNAi target-
ing several essential host genes to kill agricultural pests 
(Chen et al. 2015b, Murphy et al. 2016). The use of bacte-
rial or fungal microbes as RNAi delivery vehicles appear 
promising for vector control and the next challenges in 
this field will be to use this approach to interfere with 
pathogen development within a vector.

Deployment strategies - Regardless of the nature 
of the anti-pathogenic phenotype, be it innate or engi-
neered, a strategy to disseminate the symbiont effective-
ly through the vector population to have a meaningful 
effect on disease incidence is required. Wolbachia-based 
approaches have a clear advantage in this regard as the 
bacteria can manipulate host reproduction by CI to 
spread, often rapidly, through vector populations. For 
example, Wolbachia was established into Ae. aegypti 
populations in Cairns, Australia, by release of infected 
adults (Hoffmann et al. 2011). Subsequent analysis of the 
infection frequency in mosquito populations two years 
after the release found the bacteria was near fixation at 
the release sites (Hoffmann et al. 2014). Other strategies 
have been proposed for bacteria that do not manipulate 
host reproduction, and these may be self-perpetuating or 
require continual releases depending on the biology of 
the symbiont and host. As mentioned above, one elegant 
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approach used in paratransgenic strategies of Triatomine 
bugs exploits the unique coprophagic probing tenden-
cies of R. prolixus (Durvasula et al. 1997). For readily 
culturable microbes, it has been suggested that dissemi-
nation of the microbe into mosquito populations could 
be achieved by spiking larval pools or by baiting sugar 
feeders (Schlein & Müller 2015). For the former, the mi-
crobe would either need to be transstadially transmitted 
or the adult would need to imbibe the microbe soon after 
emergence from the pupal case. It appears that gut bacte-
ria are cleared during metamorphosis between mosquito 
life stages (Moll et al. 2001), but transstadial transmis-
sion may occur when other tissues like the malpighian 
tubules act as a reservoir for reinfection (Chavshin et al. 
2015). In semi-field cage experiments, both sugar feed-
ing stations and release of infected males was shown 
to be an effective method to perpetuate Asaia through 
Anopheles generations (Mancini et al. 2016). Asaia can 
be horizontally acquired and vertically transmitted, both 
maternally and paternally, which could perpetuate the 
infection (Favia et al. 2007, Damiani et al. 2008). A bet-
ter understanding of the vertical and horizontal trans-
mission of microbes and factors that influence micro-
biome homeostasis and composition is required before 
we can develop effective strategies for microbial release.

Future directions for microbial control of arthropod-
borne disease - Although there is a rich history of in-
sect symbiosis research, many questions are yet to be 
resolved, particularly with regard to vector microbiomes. 
For successful utilisation of microbes for applied control 
approaches several areas need to be addressed. Translat-
ing promising strategies that demonstrate that microbes 
can modulate vector competence in the lab to natural 
populations is a priority. For this to be achieved stud-
ies assessing the diversity of vector-associated microbes 
across diverse ecological niches is required. A related fu-
ture direction is to examine both the host-microbe and 
host-microbe-pathogen tripartite interactions under dif-
fering environmental conditions such as temperature, as 
this variable has been shown to influence vector immuni-
ty and pathogen dynamics (Murdock et al. 2012). While 
a particular control strategy may be successfully imple-
mented under one set of environmental and ecological 
variables, this may not hold true where conditions differ.

Another important area of future research is in un-
derstanding the factors that influence how microbes are 
acquired, maintained, and transmitted by vectors. This 
knowledge is essential for developing effective methods 
to deploy symbionts into a population. Dissemination of 
a symbiont into a vector population may be hindered by 
microbial competition within the host. For example, Wol-
bachia and other bacterial microbes such as Serratia and 
Asaia are antagonistic to one other (Hughes et al. 2014a, 
Rossi et al. 2015, Zink et al. 2015). Additionally, re-intro-
duction of bacterial microbes into mosquitoes via a sugar 
meal was more successful when the native microbiota 
were suppressed by antibiotics, suggesting bacterial inter-
actions in the gut dictate microbial colonisation (Ramirez 
et al. 2014). Cross kingdom interactions between bacteria 
and fungi, both positive and negative, were seen Aedes 
triseriatus and Aedes japonicus (Muturi et al. 2016a). 

Microbial interactions have also be documented in tse-
tse flies and ticks (Boucias et al. 2013, Wang et al. 2013a, 
Fryxell & DeBruyn 2016). As such, the issue of compat-
ibility between microbial strategies could arise. For ex-
ample, a Wolbachia based approach may interfere with 
an ISV strategy, as ISVs have recently been shown to be 
suppressed by Wolbachia antiviral activity (Schnettler et 
al. 2016). Furthermore, paratransgenic approaches using 
Asaia or Serratia may not be compatible with Wolbachia 
applied approaches. While such an occurrence could be 
overcome by assessing the most suitable approach for a 
particular invention, strategies that perpetuate and drive 
through populations may expand geographically and 
therefore preclude the use of another technology else-
where. Furthermore, the compatibility between microbi-
al-based approaches and other contemporary and conven-
tional vector control strategies should be investigated.

Another challenge with using microbes that pos-
sess native anti-pathogenic effects is determining the 
mechanism(s) by which they interfere with pathogens. 
Studies are providing insights into the mechanism(s) 
of pathogen interference of Wolbachia (Pan et al. 2011, 
Caragata et al. 2013, Zhang et al. 2014), gut microbes 
(Azambuja et al. 2004, Cirimotich et al. 2011, Ramirez et 
al. 2014), and fungi (Valzano et al. 2016, Angleró-Rodrí-
guez et al. 2016), however a more comprehensive mecha-
nistic understanding would facilitate attempts to forecast 
the long-term evolutionary response of the pathogen to 
the intervention and assist in determining the most effec-
tive deployment regime for a particular approach. While 
attempts have been made to predict these long-term in-
teractions (Bull & Turelli 2013), there are still unknown 
factors in these systems which makes these evaluations 
difficult. In contrast to this, the mechanism by which 
paratransgenic approaches inhibit pathogens is known as 
the effector molecule or RNAi cassette is engineered into 
the microbe. However, this means that all paratransgenic 
approaches have the unavoidable consequence that the 
microbe is genetically altered in some fashion.

For the ultimate utility of paratransgenic approaches, 
society needs to be receptive to this technology. Demon-
strating the widespread benefits of these approaches by 
completing thorough and transparent research will enable 
societies and governments to make an informed decision 
of the risks and benefits of these novel control strategies. 
Further to this, the adoption of novel approaches to limit 
horizontal transfer of the transgene or the use of microen-
capsulation to contain microbes from environmental ex-
posure will further enhance the safety of this technology 
(Arora et al. 2015, Mandell et al. 2015, Rovner et al. 2015). 
The success of the Wolbachia strategy employed by the 
Eliminate Dengue Campaign can provide a blueprint for 
other microbial-based strategies to address ethical, social 
and logistical hurdles. In particular, this program has re-
ceived wide-spread community acceptance that can be at-
tributed to their comprehensive risk assessments and out-
standing outreach and engagement efforts (McNaughton 
2012, McNaughton & Duong 2014, Murray et al. 2016).

Summary - While conventional vector control strate-
gies have reduced the burden of some VBD, novel strat-
egies are required. Microbial-based strategies are gain-
ing traction as an alternative means to control VBD, as 
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microbes have several desirable properties for applied 
control strategies, particularly the ability to disseminate 
through vector populations. Coupling this with the pro-
pensity of symbiotic microbes to interfere with pathogen 
development in the host or by engineering microbes to 
modulate vector competence vectors, microbial strate-
gies offer great promise for control of important VBDs.
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