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ABSTRACT

Diabetes mellitus is a group of syndromes characterized by hyperglycemia, altered metabolism of
lipids, carbohydrates and protein and an increased risk of complication of vascular diseases. Type
2 diabetes mellitus is characterized by derangement of insulin secretion and an inability of the
peripheral tissues to respond to insulin. In spite of the availability of many animal models for Type
2 diabetes mellitus including genetic and chemically induced, none of them simulate human Type
2 diabetes mellitus. An attempt has been made in the present review, to evaluate the neonatal
streptozotocin-induced rat (n-STZ rats) model of Type 2 diabetes mellitus, for its potential advan-
tages as a suitable model over the others. The n-STZ model (with alteration of dose and day of STZ
injection) exhibits various stages of Type 2 diabetes mellitus such as impaired glucose tolerance,
and mild, moderate and severe glycemia. The {3 cells in n-STZ rats bear a resemblance to insulin
secretory characteristics found in patients with Type 2 diabetes mellitus. Thus the n-STZ model can
be considered as one of the suitable animal models of Type 2 diabetes mellitus.
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Diabetes mellitus, a metabolic disorder, is characterized
by hyperglycemia, altered metabolism of lipids, carbohydrates
and proteins with an increased risk of complication of vascu-
lar diseases.!? The minimum defining characteristic feature
to identify diabetes mellitus is chronic and substantiated el-
evation of circulating glucose concentration.?® Diabetes
mellitus may present as a relatively sudden, potentially lethal
metabolic catastrophe or it can be associated with few if any,
symptoms or signs and may escape detection for many years.
These extremes of clinical manifestations constitute the basis
for subdividing diabetes mellitus into the insulin dependent
(IDDM) and the non insulin dependent (NIDDM) types.

In the recent past the term IDDM has been replaced by
Type 1 diabetes mellitus. Type 1 diabetic patients have (3 cell
destruction, which is usually immune-mediated; the majority
of the patients develop absolute insulin deficiency and are ke-
tosis prone. The term NIDDM has been replaced by Type 2
diabetes mellitus, which encompasses the most prevalent form
of the disease. Most patients in Type 2 diabetes mellitus ex-
hibit insulin resistance and ultimately develop concomitant
insulin secretory defect.?

Type 1 diabetes mellitus results from a severe absolute
lack of insulin, caused by reduction in the 3 cell mass. The
three interlocking mechanisms responsible for the islet cell
destruction are genetic susceptibility, acute auto immunity and
environmental insult.'?

Type 2 diabetes mellitus identifies patients who do not
require insulin treatment to remain alive. The two metabolic
defects characterizing Type 2 diabetes mellitus are 1. derange-
ment of insulin secretion that is delayed or is insufficient rela-
tive to glucose load and 2. inability of peripheral tissues to
respond to insulin — called insulin resistance. Though the pri-
macy of one or the other of these defects is a matter of de-
bate, most of the patients have relative or absolute deficiency
of insulin.'

Animal models of Type 2 diabetes mellitus
1. Genetic and spontaneous models
Spontaneous animal models of Type 2 diabetes mellitus

are highly heterogeneous. At one end of the spectrum there is
a mild hyperglycemia associated with obesity and

Indian J Pharmacol |August 2004 | Vol 36 | Issue 4 | 217-221 217



Arulmozhi SK, et al.

hyperinsulinemia. At the other extreme, animal models of Type
2 diabetes mellitus can develop a severe form of diabetes
mellitus with extensive  cell degeneration, occasionally re-
sulting in ketosis and the requirement of exogenous insulin to
sustain life.!

Sand rat (Psammomys obesus) is a model of nutritionally-
induced Type 2 diabetes mellitus. Psammomys is prone to
developing hyperinsulinemia, hyperglycemia and obesity when
transferred to a high-energy diet, also primary insulin resist-
ance is a species characterization of Psammomys. However,
the potential to become diabetic decreases with age. In
Psammomys of ages 1-12 months, maintained on a low-en-
ergy diet from weaning and transferred at different ages to a
high-energy diet,? the sensitivity to the development of diabe-
tes mellitus increases from weaning to a peak of about 5
months of age and decreases thereafter.

The fatty Zucker (Zucker diabetic fatty (ZDF) rat has been
valued as a model of obesity, as the characteristics of the model
are described as hyperglycemia, early hyperinsulinemia, fast-
ing hyperglycemia, abnormal glucose tolerance,
hyperlipidemia, mild hypertension. The ZDF rat carries the Lep®
or Ob-R™ mutation, which is typically referred to as just fa.*

The JCR: LA-Cp rat is a rodent model possessing insulin
resistance, obesity, hypertriglyceridemia, including end stage
cardiovascular diseases. This genetic model possesses the
autosomal recessive gene called cp (corpulent), however, the
elements that lead to the cardiovascular disease in this model
are unknown.®

Metabolic syndrome X consists of insulin resistance as a
primary defect associated with compensatory
hyperinsulinemia, impaired glucose tolerance, dyslipidemia and
hypertension.® The obese spontaneously hypertensive rat
(SHORB) is considered as a model of metabolic syndrome X.
The obese phenotype results from a mutation of leptin receptor
designated fa*. SHORB is a useful model to understand the
interaction of the various metabolic abnormalities that make
up syndrome X.”

The obesity mutations in the mouse ob (obese) and db (dia-
betic) are mutation in the leptin structural gene (ob) and mu-
tation in the leptin receptor gene (db). The obese hyperglycemic
syndrome displayed by these mice shows various similarities
to the metabolic abnormalities present in syndrome X and Type
2 diabetes mellitus. Insulin resistance, inappropriate
hyperglycemia, impaired glucose tolerance as well as increased
insulin secretion finally leading to  cell exhaustion are seen
in these models. However age, gender, and maintenance con-
ditions are reported to affect the phenotype of these mice.?

The spontaneously diabetic KK mice are reported to have
moderate obesity, polyphagia, polyurea, persitent glycosuria,
glucose intolerance, moderate hyperglycemia, hyperlipidemia,
insulin resistance of peripheral tissues and hyperinsulinemia.
The diabetic characteristics of KK mice and the variant KKAY
are reverted to normal after 40 weeks of age.’

The OLETF (Otsuka — Long - Evans — Tokoshima — Fatty)
rat is a spontaneously diabetic rat with characteristic features
of late onset hyperglycemia (after 18 weeks of age), a chronic
disease state, increased urinary protein excretion, higher
glomerular filtratin rate, increased kidney weight etc. Thus the
clinical and pathological features of the disease state in OLTEF
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rats resemble those of human renal complications in human
Type 2 diabetes mellitus.'*

The Cohen diabetic rat is an exceptional, genetically de-
rived, diet-induced Type 2 diabetes mellitus model that ex-
presses genetic susceptibility to a carbohydrate-rich diet, a
central feature of Type 2 diabetes mellitus in humans. A ma-
jor drawback of this model is that it had never been system-
atically characterized in terms of phenotype or genotype, re-
sulting in only limited recognition of its value and potential
contribution to diabetes research.!!

2. Experimentally-induced models

Experimental Type 2 diabetes mellitus can be induced by:
1. Chemical destruction or surgical removal of part of the 3
cell mass, 2. Lesioning the ventromedial hypothalamus, 3.
Feeding with high-fat and high-sugar diets 4. Malnutrition in
utero, 5. High doses of counter-regulating hormones, particu-
larly glucocorticoids and, 6. Prolonged cell exposure to
hyperinsulinemia.!?

Type 2 diabetes mellitus induced by streptozotocin (STZ):
Streptozotocin is a deoxy-s [((methyl-nitrosoamino) carbonyl)-
amino]-D gluco pyranose molecule that produces a selective
toxic effect on B cells and induces diabetes mellitus in most
laboratory animals.'>!® High doses of B cell toxins like
streptozotocin and alloxan induce insulin deficiency and Type
1 diabetes mellitus with ketosis. However, doses calculated to
cause a partial destruction of 3 cell mass can be used to pro-
duce a mild insulin deficient state of Type 2 diabetes mellitus,
without a tendency to cause ketosis.'* The dosage is difficult
to judge to create stable Type 2 diabetes mellitus without ei-
ther gradual recovery or deterioration into Type 1 diabetes
mellitus. Streptozotocin is preferred because it has more spe-
cific B cell cytotoxicity, but the sensitivity of this agent varies
with species, strain, sex and nutritional state and there are
batch differences in activity.”> The Okamoto rat model is a
model for B cell damage and the prevention of the damage
was based on results obtained in rodents with STZ and al-
loxan-induced diabetes mellitus.!® Recently, a newer rat model
of STZ diabetes mellitus has been reported using suitable doses
of nicotinamide against the -cytotoxic effect of STZ. The dia-
betic syndrome developed in adult rats by injecting nicotina-
mide and STZ, reported to exhibit comparable features with
human Type 2 diabetes mellitus. The literature reveals that
sulfonylureas and sodium tungstate are effective in this model.
The nicotinamide-STZ model is further validated in mini pigs,
in which the glucagon-like peptide-1 derivative NN 2211 has
been reported to be effective. However, the optimal dose of
nicotinamide to cause a stable hyperglycemia is a major con-
cern with this model.!™-!

Suggested mechanism of STZ: Although the exact mecha-
nism of its toxicity is still a matter of debate, one proposed
site of action of STZ is at nuclear DNA. During the decomposi-
tion of STZ, highly reactive carbonium ions are formed, which
cause alkylation of DNA bases!'® and also STZ may damage the
3 cell membrane and break the DNA strand which leads to the
activation of poly (ADP-ribose) synthetase and NAD depletion,
which ultimately leads to cell death (Figure 1).!415

Neonatal STZ-induced rat (n-STZ) model of Type 2 diabe-
tes mellitus: The diabetic syndrome in this model is generated
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Figure 1: Proposed mechanism of action of STZ in 3 cell. PARP -
poly (ADP-ribose) polymerase (see text for details)

by injecting Wistar rats on the day of their birth (nO=birth)
intravenously (sapheneous vein) or intraperitoneally with 100
mg/kg of STZ." Also, the n-STZ rat model is developed by
varying the day of the STZ injection after the birth, such as 2"
day or 5" day of the birth, and these are alternatively called
n2-STZ and n5-STZ models respectively.??

The n0-STZ model: The rats treated with STZ on the day of
birth, exhibit insulin deficient acute diabetes mellitus 3-5 days
after birth. They showed high plasma glucose and about 93%
decrease in plasma insulin and high plasma glucagon content.
The hyperglycemia observed in the neonates following STZ is
only transient.?*? It is reported that the neonatal rats are re-
sistant to STZ.'®?26 The plasma glucose and insulin values
are no longer significantly different from those of controls. It
was found that only by 8 weeks of age and thereafter n0-STZ
rats showed mild hyperglycemia.?

Other n-STZ models: As discussed, the n2-STZ and nb-
STZ models are developed by 80 mg/kg, i.p. STZ injection on
the 2" day and 5" day of the birth respectively.?** An inter-
esting variant of the model has been reported: Sprague-Dawley
pups were injected intraperitoneally on the 2" day after birth
with 90 mg/kg STZ and on 1.5 days after birth with 120 mg/kg
STZ.?** By 6 weeks of age these animals showed basal
hyperglycemia and abnormal glucose tolerance.?-%”

The n0-STZ and n2-STZ Wistar models are found almost
similar with respect to growth, basal plasma glucose, insulin
levels, lack of insulin release in response to glucose in vivo,
glucose intolerance and depletion of pancreatic insulin stores.*”
2 The nb-STZ Wistar model showed an unaltered basal
hyperglycemia, glucose intolerance, raised glycosylated
hemoglobin, a strong reduction of the pancreatic insulin stores,
decreased (50%) basal insulin levels and lack of plasma insu-
lin response to glucose in vivo. The development and progres-
sion of hyperglycemia found in the n5-STZ Wistar models dem-
onstrated many similarities to those of the n2-STZ Sprague-
Dawley model.?627

The B cell function in n-STZ models

Quantitative and qualitative defects in insulin secretion in
Type 2 diabetes mellitus: Type 2 diabetic subjects display more
subtle changes in the dynamics of insulin secretion, such as
blunting of the first phase insulin secretion and disruption of
the insulin secretory pulses.? The first phase is a very brief
surge of insulin that follows an acute secretagogue challenge
such as an intravenous glucose bolus. It peaks after 2-4 min
and dissipates within 6-10 min. If the challenge is sustained,
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the prolonged second phase starts; the second phase super-
venes and lasts until the glucose is cleared. The first phase is
a more efficient signal than the second, both in enhancing glu-
cose clearance and priming the liver to shut down glucose
production.?* Glucose regulates B cell function in two ways.
It produces a direct release of insulin as a result of enhance-
ment of the concentrations and its pre-stimulus level modu-
lates the response to the islet secretagogues.® It is also sug-
gested that the first phase response to glucose is specifically
abolished in Type 2 diabetes mellitus. The second phase insu-
lin secretion is also attenuated. It is not clear which defect has
a greater impact on glycemia. Insulin, like other hormones, is
secreted in pulses and this appears to be a fundamental sig-
nal for hormone signaling.®**! In normal subjects under fast-
ing conditions, insulin release occurs in regular pulses with a
periodicity of about 13 min.*? But in subjects with Type 2 dia-
betes mellitus insulin secretory profiles are more chaotic®?%
and also the regular 13 min pulses are absent.'

Defects in n-STZ models: Adult nO-STZ rats are character-
ized by a low insulin release in vivo in response to glucose or
amino acids.”® In the insulin secretion studies of the 10-16
week-old n0-STZ rats, there was a complete loss of B cell sen-
sitivity to glucose.? The insulin pulse amplitude was also af-
fected by mild to moderate B cell damage induced by STZ.26-*
The impairment of glucose-induced insulin release in n-STZ
rat is clearly related to a defect in oxidative glycolysis. This
leads to a severe decrease in the mitochondrial oxidative ca-
tabolism of glucose-derived pyruvate. It coincides with a lower
ATP/ADP ratio in simulated islets and their subsequent al-
teration of ionic events rightly coupled to the fuel function of
the hexose in the islet cells.?” It has been found that the n-STZ
rats exhibited an increased amylin-insulin molar ratio. This
has been identified as a major component of amyloid deposits
in the pancreatic islets of patients with Type 2 diabetes
mellitus.3234

Defects in exocrine pancreas in n-STZ rats: After STZ in-
jection, the pups showed an increase in pancreatic weight and
pancreatic protein and DNA content at Day 16 as compared to
the control groups, but not thereafter. After Day 16 of the STZ
treatment, the n-STZ pups showed a transient increase in their
pancreatic lipase and trypsinogen concentration in contrast
to pancreatic amylase. The amylase levels were found low-
ered in STZ pups from Day 18 to Day 42. But the difference
between groups was statistically significant only from Days
18 to 24. Insulin supplementation of STZ pups for fewer days
in the neonatal period restored the pancreatic amylase con-
centration to the control level at Days 18-20. This indicated
that acute STZ administration at birth to neonates affects sub-
sequent exocrine pancreas development, particularly that of
amylase while exogenous insulin attenuated the effect.®

B cell regeneration in n-STZ rats: 1t has been reported that
after the n0-STZ injection, from the postnatal Day 4 onwards,
signs of regeneration are apparent, in that numerous insulin
positive cells are found throughout the acinar parenchyma and
within the duct epithelium, but in 4-month-old animals the
regeneration process was incomplete.'>2*2 The timing of the
STZ injection is the critical factor for the efficiency of the re-
generation process, which coincides with the normal develop-
ment of islet cell mass in the rat.®*
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The n5-STZ rats showed lack of significant re-accumula-
tion of insulin in the pancreas after 2 weeks following the (3
cell insult, but some degree of recovery in the insulin stores
was found in the pancreas of the n2-STZ and n0-STZ rats. It
has been proved that there is some capacity of 3 cell regen-
eration in the neonatal rat pancreas (which is lacking in the
adult rodents) * and the capacity of the (3 cell regeneration in
the Wistar strain decreases quickly during the first postnatal
week and thereafter it is no longer significant.?2¢ It is also
explained that the regeneration of the B cells in the Sprague-
Dawley neonates is less efficient than in the Wistar strain. The
recovery from diabetes mellitus in the Sprague-Dawley n2-
STZ model is due to the partial replenishment of the B cell
mass from the replication of the existing B cells, rather than
neogenesis from undifferentiated precursors.?+%

n-STZ Type 2 diabetes mellitus: Is it reversible?

It has been reported that after a STZ-induced injury, the
surviving B cells are able to maintain most of their metabolic
functions but fail to maintain an adequate insulin production.?*-
% When the n0-STZ model is included for insulin therapy, the
basal glucose levels are decreased, but the pancreatic insulin
stores are not affected by the insulin therapy, this needs a
minimum of 5 days of insulin therapy.® It is hypothesized that
the chronic hyperglycemia-hypoinsulinemia in the n0-STZ rat
causes abnormal glucose influence on the glucose and arginine-
stimulated insulin release.® In the Sprague-Dawley

n2-STZ model the defects of glucose-induced insulin se-
cretion were not restored by insulin treatment.?%?” It is note-
worthy to recognize that the efforts to restore glucose-induced
first phase insulin release in humans with Type 2 diabetes
mellitus have not been totally successful.?62

Interestingly, insulin therapy corrected the insulin response
to glucose in the n0-STZ rat model, supporting the view that
mild hyperglycemia and hypoinsulinemia contribute to the
defective insulin response to glucose.?

Insulin resistance in n-STZ models

There are evidences that a severe reduction in the B cells
obtained from subjects with Type 2 diabetes mellitus or ani-
mals after STZ injection is associated with no severe insulin
resistance.® It is found that the induction of insulin resistance
in an individual with reasonably normal islet function leads to
modest elevation of the plasma glucose level, whereas in an
individual with impaired islet cell functions it leads to
hyperglycemia.”®

In contrast to the above findings, in 8-week-old n0-STZ
female rats, it was shown that hepatic glucose production
measured in the basal state was higher in the diabetes mellitus
models than in the controls, despite similar peripheral insulin
levels in both groups.? It is found that in white and brown
adipose tissues, an increased responsiveness to insulin ac-
tion is detected when comparing diabetic females to control
females and insulin action was found normal in the skeletal
muscles and diaphragm of the same adult females. The obser-
vations of the hormonal insulin action in the liver and white
and brown adipose tissues indicated that glucose is preferen-
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tially channeled towards the liver and adipose tissue in n0O-
STZ females. The clamp studies in the n5-STZ model showed
that the glucose utilization by the whole body mass induced
by hyperinsulinemia was significantly reduced and the heptatic
glucose production rate was less efficiently suppressed by
submaximal or maximal insulin levels, which indicated that
the insulin resistance is present in vivo at the level of the pe-
ripheral tissues and the liver.?3¢ As discussed, this confirmed
that when (3 cell insult is the primary factor responsible for
the emergence of moderate to severe hyperglycemia in rats,
insulin resistance can develop secondarily®* and a certain
degree of insulin deficiency is necessary to induce insulin re-
sistance. !4

Is n-STZ rat a better model of Type 2 diabetes
mellitus?

By altering the dose and the day of the STZ injection, the
n-STZ models exhibit various stages of Type 2 diabetes
mellitus, such as impaired glucose tolerance, mild, moderate
and severe hyperglycemia. The n-STZ rats exhibit slightly low-
ered plasma insulin levels, slightly elevated plasma glucose
levels and lowered pancreatic insulin content.'* * The 3 cells
in the n-STZ rats bear a resemblance to the insulin secretory
characteristics found in Type 2 diabetic patients (Table 1).2% 4-48

The pattern of insulin release found in the n0-STZ and n2-
STZ rats is qualitatively similar to that of the GK (Goto-
Kakizaki) rat, which is a genetically diabetic non-obese model
of human diabetes mellitus.*

Conclusion

It is understood that no animal model is identical to any
human syndrome; none of the available animal models of Type
2 diabetes mellitus exactly simulate the human Type 2 diabe-
tes mellitus. However, n-STZ rat models have several advan-
tages over the other models as described above and is consid-
ered to be one of the suitable experimental animal models of
Type 2 diabetes mellitus.
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Table 1

Comparison of features/characteristics of human Type 2 diabe-
tes and n-STZ diabetic animals

Parameter Human Type 2 diabetes n-STZ diabetes
Pancreatic insulin ++ +/-
Basal plasma glucose ++ ++
Basal plasma insulin ++ +
Glucose tolerance - -
Insulin tolerance ++ -+
Obesity -/ + -

Diabetic complications + +
‘+ ‘= Present; ‘ - ‘ = Absent
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