Fatty Acid Composition of the Aerial Parts of Some Centaurea Species in Elazığ, Turkey

Tugce Erdogan¹*, Tuba Gonenc¹, Ugur Cakilcioglu² and Bijen Kivcak¹

¹Department of Pharmacognosy, Faculty of Pharmacy, Ege University, Bornova, Izmir, ²Department of Food Technology, Pertek Sakine Genç Vocational High School, Tunceli University, Pertek, Tunceli, Turkey

*For correspondence: Email: tugce.fafal@ege.edu.tr; Tel: +90 232 311 3965; Fax: +90 232 388 5258

Received: 10 February 2014 Revised accepted: 15 March 2014

Abstract

Purpose: To evaluate the fatty acid composition of six Centaurea species, viz, Centaurea behen, C. saligna, C. depressa, C. urvillei subsp. urvillei, C. urvillei subsp. hayekiana and C. aggregata subsp. aggregata, from Elazığ, Turkey.

Methods: Fatty acid methyl esters (FAMEs) of the oil extracts of four Centaurea species were prepared. The fatty acid compositions of Centaurea species were analyzed by gas chromatography (GC).

Results: Saturated fatty acids (SFAs) in Centaurea species and subspecies ranged from 24.61 - 50.92% of their total fatty acid content, while monounsaturated fatty acids (MUFAs) were in the range of 3.40 - 37.96% and polyunsaturated fatty acids (PUFAs) 12.21 - 20.57%. Palmitic acid C 16:0, oleic acid C 18:1 ω9 and linoleic acid C 18:1 ω3 were the major fatty acids in all the species. Oleic acid was the main constituent of C. urvillei subps. urvillei and C. agrregata subsp. aggregata with a content of 26.92 and 50.92%, respectively.

Conclusion: The oil extracted from Centaurea species is a good source of essential fatty acids.

Keywords: Centaurea, Fatty acid, Palmitic acid, Oleic acid, Linoleic acid

INTRODUCTION

Centaurea genus, 114 of which are endemic, is represented with 192 taxa in Turkey [1-3]. It is known as “peygamber çiçeği, zerdali dikeni, coban kaldırın, timur diken” in Turkey [3,4]. Many species of this genus have traditionally been used for their anti-rheumatic, diuretic, choleric, stomachic, astringent, cytotoxic, antibacterial, antipyretic and tonic properties [4-6]. Flavonoids, steroids, volatile constituents, sesquiterpene lactones and fatty acids have been previously isolated from plants belonging to the genus [7-11]. Fatty acid, either saturated or unsaturated, is a carboxylic acid with a long aliphatic chain. Most naturally occurring fatty acids have an even numbered chain of carbon atoms ranging from 4 to 28. Fatty acids that have carbon–carbon double bonds are known as unsaturated fatty acids whereas acids without double bonds are known as saturated fatty acids. They differ in chain length as well [12]. The fatty acid profiles of some plants from Turkey have previously been reported [13,14].

However there have been no reports on the fatty acid composition of Centaurea behen L. C. saligna (C. Koch.) Wagenitz, and C. aggregata Fish & Mey. Ex. DC. aggregata. In addition to the foregoing species, the fatty acid composition of C. urvillei DC. subsp. urvillei DC., C. urvillei DC. subsp. hayekiana Wagenitz. and C. depressa...
Bieb which were previously investigated [15] were also comparatively analyzed in the present study. Therefore this study was designed to evaluate the fatty acid compositions of six Centaurea species, one of which (C. saligna) is endemic for Turkey.

EXPERIMENTAL

Plant materials

The aerial parts of Centaurea behen, C. saligna, C. depressa, C. urvillei subsp. urvillei, C. urvillei subsp. hayekiana and C. aggregata subsp. aggregata, were collected in July 2011 from Elazığ, Turkey. The plants were identified by Ugur Cakılcıoğlu (Elazığ Directorate of National Education, Elazığ, Turkey). Voucher specimens (nos. 1469, 1466, 1462, 1460, 1463, and 1458, respectively) were deposited in the Herbarium of Faculty of Pharmacy, Department of Pharmacognosy, Ege University, Izmir, Turkey.

Extraction of oil

The oil in the dried and powdered aerial parts (40 g) was extracted by Soxhlet extractor using petroleum ether (400 ml) at 60°C for 6 h. The solvent was evaporated in a rotary evaporator, and the oil obtained was esterified to determine fatty acid composition. The fatty acids in the total lipid were esterified into methyl esters by saponification with 0.5N methanolic NaOH and transesterified with 14% v/v boron trifluoride (BF₃) in methanol at 100°C for 5 min [16].

Preparation of fatty acid methyl esters (FAMEs)

The fatty acids in the total lipid were esterified into methyl esters by saponification with 0.5N methanolic NaOH and transesterified with 14% v/v BF₃ in methanol at 100°C for 5 min [17].

Fatty acid analysis

The fatty acid methyl esters (FAMEs) were analyzed on a Hewlett Packard Agilent 6890 N gas chromatograph (GC), equipped with a flame ionization detector (FID) and fitted to a Supelco SP-2380 fused silica capillary column (60 m, 0.25 mm i.d. and 0.2 µm). Injector and detector temperatures were set at 250 and 260°C, respectively. The oven was programmed at an initial temperature of 140°C and an initial time of 5 min. Thereafter, the temperature was increased up to 240°C at a rate of 3°C/min⁻¹. Total run time was 41.33 min. Helium was used as the carrier gas (1 ml min⁻¹). Identification of fatty acids was carried out by comparing sample FAME peak relative retention times. The results were expressed as flame ionisation detector (FID) response area in relative percentages. Each reported result is given as the mean of three GC determinations presented as mean ± standard deviation (SD).

RESULTS

Twenty one fatty acids were identified in the six Centaurea species and subspecies. The fatty acid composition of the plant is shown in Table 1.

The major fatty acids with 16 and 18 carbons were determined to be palmitic, oleic and linoleic acids. Saturated fatty acids (SFAs) of Centaurea of all the species/ ranged from 24.61 - 50.92% of the total fatty acids, while monounsaturated fatty acids (MUFAs) were in the range 3.40 - 37.96%, polyunsaturated fatty acids (PUFAs) were in the range 12.21 - 20.57%. Except for C. saligna and C. urvillei subsp. hayekiana, palmitic acid was identified as the major component of the Centaurea species. Oleic acid, with 26.92 and 50.92 %, was the main constituent of C. urvillei subs. urvillei and C. aggregata subsp. aggregata, respectively.

DISCUSSION

Saturated fatty acids (SFAs) were detected in C. aggregata subsp. aggregata with 50.92% while C. urvillei subsp. hayekiana showed the lowest saturated fatty acid content with 24.61%. Yildirim et al previously reported palmitic acid as the main fatty acid component of some Centaurea species [17] thus showing good agreement with the results of the present study. Palmitic acid was the main SFA and ranged between 16.61 and 37.75%. In agreement with the present results, palmitic acid has previously been shown to demonstrate the highest proportion in the SFAs of some Centaurea plants [15,17-20].

PUFAs ranged from 12.21 to 20.57% while linoleic acid content ranged from 0.41 to 17.40%. The fatty acid composition of some Centaurea oils which was previously determined, indicate that linoleic acid content was 11.69 and 55.27% in C. rigida and C. kotschyi var. kotschyi, respectively [15,18].

Oleic acid was the most dominant MUFA in all Centaurea species except for C. depressa. The level of oleic acid reached 25.12% in C. urvillei subsp. hayekiana. In a previous study, oleic acid was reported to be the main constituent of...

Table 1: Fatty acid composition (%) of Centaurea species (n = 3)

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>C. behen</th>
<th>C. saligna</th>
<th>C. depressa</th>
<th>C. urvillei subsp. urvillei</th>
<th>C. urvillei subsp. hayekiana</th>
<th>C. aggregata</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 4:0</td>
<td>0.22a</td>
<td>-</td>
<td>0.14</td>
<td>0.56</td>
<td>-</td>
<td>0.28</td>
</tr>
<tr>
<td>C 6:0</td>
<td>0.09</td>
<td>0.22</td>
<td>0.08</td>
<td>0.28</td>
<td>-</td>
<td>0.09</td>
</tr>
<tr>
<td>C 8:0</td>
<td>0.17</td>
<td>0.54</td>
<td>0.13</td>
<td>0.21</td>
<td>0.12</td>
<td>0.26</td>
</tr>
<tr>
<td>C 12:0</td>
<td>1.06</td>
<td>0.40</td>
<td>0.08</td>
<td>1.07</td>
<td>0.86</td>
<td>0.31</td>
</tr>
<tr>
<td>C 13:0</td>
<td>-</td>
<td>-</td>
<td>0.15</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C 14:0</td>
<td>1.05</td>
<td>0.49</td>
<td>1.05</td>
<td>0.63</td>
<td>0.48</td>
<td>1.01</td>
</tr>
<tr>
<td>C 15:0</td>
<td>0.55</td>
<td>-</td>
<td>0.28</td>
<td>0.36</td>
<td>0.23</td>
<td>0.84</td>
</tr>
<tr>
<td>C 16:0</td>
<td>25.86</td>
<td>16.61</td>
<td>22.18</td>
<td>17.56</td>
<td>16.62</td>
<td>37.75</td>
</tr>
<tr>
<td>C 17:0</td>
<td>0.67</td>
<td>0.48</td>
<td>0.25</td>
<td>0.45</td>
<td>0.33</td>
<td>0.81</td>
</tr>
<tr>
<td>C 18:0</td>
<td>4.27</td>
<td>6.05</td>
<td>2.87</td>
<td>4.37</td>
<td>5.40</td>
<td>7.48</td>
</tr>
<tr>
<td>C 21:0</td>
<td>0.35</td>
<td>0.38</td>
<td>0.18</td>
<td>0.17</td>
<td>0.20</td>
<td>0.56</td>
</tr>
<tr>
<td>C 22:0</td>
<td>2.47</td>
<td>1.62</td>
<td>0.84</td>
<td>0.62</td>
<td>-</td>
<td>0.48</td>
</tr>
<tr>
<td>C 23:0</td>
<td>0.77</td>
<td>0.61</td>
<td>0.44</td>
<td>0.64</td>
<td>0.37</td>
<td>1.05</td>
</tr>
<tr>
<td>C 24:0</td>
<td>1.12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\sum)SFA (\text{a})</td>
<td>38.65</td>
<td>26.91</td>
<td>28.67</td>
<td>26.92</td>
<td>24.61</td>
<td>50.92</td>
</tr>
<tr>
<td>C 18:1 (\omega9)</td>
<td>9.72</td>
<td>19.53</td>
<td>7.96</td>
<td>10.71</td>
<td>25.12</td>
<td>3.40</td>
</tr>
<tr>
<td>C 20:1 (\omega9)</td>
<td>0.84</td>
<td>0.53</td>
<td>13.81</td>
<td>0.33</td>
<td>0.37</td>
<td>-</td>
</tr>
<tr>
<td>C 24:1 (\omega9)</td>
<td>0.14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\sum)MUFA (\text{b})</td>
<td>10.70</td>
<td>20.06</td>
<td>21.77</td>
<td>20.71</td>
<td>25.49</td>
<td>3.40</td>
</tr>
<tr>
<td>C 18:2 (\omega6)</td>
<td>8.23</td>
<td>11.52</td>
<td>13.6</td>
<td>12.68</td>
<td>17.40</td>
<td>0.41</td>
</tr>
<tr>
<td>C 18:3 (\omega6)</td>
<td>3.08</td>
<td>2.89</td>
<td>2.24</td>
<td>1.84</td>
<td>1.05</td>
<td>3.78</td>
</tr>
<tr>
<td>C 20:3 (\omega3)</td>
<td>3.62</td>
<td>4.28</td>
<td>3.51</td>
<td>1.78</td>
<td>0.96</td>
<td>5.37</td>
</tr>
<tr>
<td>C 20:5 (\omega3)</td>
<td>1.47</td>
<td>1.88</td>
<td>1.17</td>
<td>1.61</td>
<td>0.83</td>
<td>2.65</td>
</tr>
<tr>
<td>(\sum)PUFA (\text{b})</td>
<td>16.40</td>
<td>20.57</td>
<td>20.52</td>
<td>17.91</td>
<td>20.24</td>
<td>12.21</td>
</tr>
</tbody>
</table>

\(\text{a}\) \(n = 3\); \(\text{b}\) SFA = saturated fatty acids, MUFA = monounsaturated fatty acids, and PUFA = polyunsaturated fatty acids.

C. ptosimopappoides and C. patula oil [18,19]. Recently, oleic acid was claimed to be the major MUFA in the oil of C. kotschyi var. kotschyi, C. pterocaula, C. solstitialis subsp. solstitialis, C. triumfettii, C. urvillei subsp. urvillei and C. virgata collected from Konya, Turkey [15]. Similar to the obtained results, oleic acid was also identified as the major MUFA and linoleic acid identified as the major PUFA in selected Centaurea species [8]. Linoleic acid has been detected in the fatty acids derived from some Asteraceae species [21-23]. Oleic and linoleic acid have the capability to lower blood cholesterol levels. Intake of these fatty acids are promoted by nutritionists and the health professionals [24]. Oleic acid, with the ability of reducing low-density lipoprotein (LDL) levels and possibly increasing high-density lipoprotein (HDL) levels, is known as a monounsaturated fatty acid in normal diet [25]. The lack of dietary essential fatty acids such as linoleic acid has been implicated in the aetiology of diseases including cardiovascular diseases and their progression [26]. Linoleic acid cannot be synthesized by the human body and it is known to be essential for human body [27]. Linolenic acid with protective effect against heart disease has been shown to play a role in the development of the brain and retina [28].

CONCLUSION

PUFAs are beneficial to health and the oils obtained from Centaurea species with high content of PUFAs should be beneficial to human health. Furthermore, this oil may be useful as additives in food and health supplements. The oil of Centaurea species is a good source of essential fatty acids.

ACKNOWLEDGEMENT

The authors would like to thank the authorities of Ege University Faculty of Pharmacy Pharmaceutical Sciences Research Centre (FABAL, Izmir, Turkey) and Ege University Research Fund, Izmir, Turkey (grant no. 13/ECZ/031) for support for this work.

REFERENCES

14. Yıldırım AN, Yıldırım N, Askın MA, Kankaya A. Total oil, fatty acid composition and tocopherol content in kernels of several bitter and sweet apricot (Prunus armenica Batsch) cultivars from Turkey. J Food Agric & Envir 2010; 8(3-4): 196-201.

