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Abstract 

Purpose: To investigate the effect of cucurbitacin B on the expression of SUMO-specific proteases 
(SENP5). 
Methods: Effect of cucurbitacin B (10-50 mg/mL) on viability of U2OS and Saos-2 cells was determined 
in a plate reader by recording absorbance at 570 nm. In Western blot analysis, bicinconinic acid (BCA) 
method was used to determine protein concentration. Flow cytometry was employed to measure DNA 
content. 
Results: Ccucurbitacin B treatment inhibits the expression of SENP5 in U2OS and Saos-2 
osteosarcoma cells in a dose- and time-dependent manner. Significant inhibition (p = 0.005) of SENP5 
expression was observed at 50 mg/ml from day 10, reaching a maximum on day 20. It also induced a 
significant decrease (p = 0.005) in mRNA and protein levels of SENP5. The decrease in mRNA and 
protein levels of SENP5 led to decrease in proliferation of U2OS and Saos-2 cells. The 48 h cell 
cultures containing 50 mg of cucurbitacin B caused induction of apoptosis in 54.72 ± 5.42 % of the total 
cell population in U2OS cells. Similarly, in Saos-2 cells, exposure to 50 mg/mL cucurbitacin B increased 
apoptotic rate from 9.86 ± 8.89 % for 10 mg/mL to 48.54 ± 14.5 % with 50 mg/mL of cucurbitacin B.  
Conclusion: Cucurbitacin B is a potential therapeutic strategy for the treatment of aggressive 
malignancy in osteosarcoma. 
 
Keywords: Cucurbitacin B, Osteosarcoma, SUMO-specific proteases, Cell proliferation, Apoptosis, 
Malignancy 
 

Tropical Journal  of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus, 
International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African 
Index Medicus, JournalSeek, Journal Citation Reports/Science Edition, Directory of Open Access Journals 
(DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts 

 
INTRODUCTION 
 
Cucurbitacin B (Fig 1), an oxygenated triterpene 
is isolated from Trichosanthes kirilowii 
Maximowicz (Cucurbitaceae family). 
Cucurbitacins exhibit cytotoxicity and anti-cancer 
activity [1,2]. Cucurbitacin B exhibits anti-
proliferative effects and acts as a dual inhibitor of 
the activation of both JAK2 and STAT3 in some 
malignancies [3]. Recent, reports demonstrate 
that cucurbitacin B has antiproliferative activity 
against human breast cancer, glioblastoma 

multiforme, and myeloid leukemia cells [4–6]. It 
inhibits growth by cell cycle arrest in G2/M phase 
and increases apoptosis by inhibition of the 
JAK/STAT pathway [7,8].  
  
Osteosarcoma, a common primary bone 
sarcoma has five-year survival rate of ~70 % in 
children and adolescents. Patients with 
osteosarcoma have a poor prognosis, with 
overall survival rates of < 20 % [9]. 
Osteosarcoma is a well-defined clinical entity 
with a characteristic radiographic appearance, 
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histologic features, a relatively consistent 
spectrum of clinical presentations, and 
established standard treatments. These features 
have been the subject of many prior book 
chapters and reviews [10–15].  
 
In SUMOylation a small ubiquitin-like modifier 
(SUMO) protein gets covalently attached to 
lysine in the substrate [16] and initiates a 
cascade of effects in the cell [17]. There are six 
SUMO-specific proteases (SENPs) for the 
removal of SUMO from specific substrates at 
specific subcellular localizations [18]. SENP1 in 
nucleus deSUMOylate HDAC1 to activate 
transcription of multiple genes [19,20], SENP2 in 
nuclear envelope [21-23] regulates transcription, 
and axin and/or –catenin pathways [24,25], a 
truncated form of SENP2 can alter the 
localization of promyelocytic leukemia (PML) 
body proteins in the nucleus [26,27]. The current 
clinical treatment strategies for osteosarcoma are 
inefficient. Therefore, the need for a novel 
molecule with role in the treatment of 
osteosarcoma is highly needed.  
 

 
 
Fig 1: Structure of cucurbitacin B 
 
EXPERIMENTAL  
 
Cell culture 
 
The osteosarcoma cell lines HOS, U2OS, Saos-2 
and MG-63 cell lines were purchased from 
Sigma-Aldrich, USA. Cells were maintained in 
Minimum Essential Medium (MEM) 
supplemented with 10 % Fetal Bovine Serum 
(FBS) and incubated at 37 oC in a humidified 
atmosphere containing 5 % CO2/95 % air. 
 
Tissue samples 
 
We collected normal and osteosarcoma tissues 
from the Jinshan Hospital, Shanghai, China 
immediately after surgery. The samples were 
flash frozen in liquid nitrogen after surgical 
removal and stored at −80 oC. The use of human 
tissues for study purposes was approved by 

each patient and by the local ethics committee of 
the University Medical Centre. 
 
Quantitative polymerase chain reaction (PCR) 
 
Total RNA was isolated from the cells using 
Trizol (Invitrogen, Carlsbad, CA, USA) following 
the manufacturer's instructions. Total RNA was 
used for reverse transcription using DNA 
synthesis kit (Invitrogen).  Primers for PCR were 
designed and PCR amplification of cDNA was 
performed at 35 cycles in a reaction mixture 
containing 10 µM Tris–HCl (pH 8.3), 1.5 µM 
MgCl2, 50 µM KCl, 0.01 % (w/v) gelatin, 200 μM 
dNTP, SNEP5-specific primers (0.5 μM each), 
and 2.0 U of platinum Taq DNA polymerase 
(Invitrogen). For each reaction, two negative 
controls were performed consisting of omission 
of the RT step or omission of the target cDNA. 
The primers used were as follows: The primers 
for β-actin 5′-AGAGCTACGAGCTGCCTGAC-3′ 
and 5′-AGCACTGTGTTGGCGTACAG-3′ and for 
SENP5 5′-GAGGAAAATTCTATGGAGGA-3′ and 
5′-GAGGACAAAGTACTAACATT-3′. 
 
Western blot analysis 
 
The osteosarcoma cells were washed twice in 
PBS. Then, Lysis buffer (50 mM Tris-HCl pH 7.4, 
137 mM NaCl, 10 % glycerol, 100 mM sodium 
vanadate, 1 mM PMSF, 10 mg/ml aprotinin, 10 
mg/mL leupeptin, 1 % NP-40, and 5 mM cocktail) 
(2 mL) was added to the cells. BCA method was 
used to determine protein concentration. The 
proteins were loaded and resolved by 
electrophoresis on a 10 % polyacrylamide gel. 
The semi-dry method was used to transfer 
proteins onto a PVDF membrane which was then 
blocked with 5 % non-fat dry milk overnight. After 
TBST washing, membrane was incubated for 2 h 
with primary antibodies and then washed again 
with TBST before incubation with secondary 
antibodies for 2 h. Then X-ray autoradiography 
was performed and the gray scale images were 
analysed. 
 
Cell proliferation assay 
 
In each well of a 96-well plate, aliquots 
containing 3 × 105 cells were seeded. The cells 
were incubated overnight in a 5 % CO2 incubator 
at 37 oC and then cucurbitacin in DMSO diluted 
with RIMI 1640 (10 % FBS) was added to each 
well. After dilution with RIMI 1640 (10 % FBS), 
these were used to treat the tumor cells. RIMI 
1640 (10 % FBS) with 0.1 % (v/v) DMSO was 
used as control. The incubation for 48 h was 
followed by addition of 25 µL of MTT (3 mg/mL in 
PBS) to each well and incubation was continued 
for 4 h more. To each well was added 100 µL of 
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SDS–HCl solution (SDS 10 % w/v, 0.01 M HCl) 
and incubated again for 12 h. An Infinite M200 
pro reader (Tecan Austria GmbH, Salzburg, 
Austria) was used to measure the absorbance at 
570 nm. The viable cells were expressed as 
percent of control and all the experiments were 
conducted in triplicate.  
 
Cell cycle analysis 
 
Cells were maintained in Minimum Essential 
Medium (MEM) supplemented with 10 % Fetal 
Bovine Serum (FBS) for 30 h. Then cells after 
fixing overnight in ethanol were stained with 
phosphate buffer 10 % Fetal Bovine Serum 
(FBS) containing 50 μg/mL propidium iodide and 
100 μg/mL RNase A for 45 min at 37 °C. Accuri 
C6 flow cytometry system (BD Biosciences, 
Franklin Lakes, NJ, USA) was used to measure 
DNA content of the labelled cells. 
 
Statistical analysis 
 
The data represents the mean of three 
independent experiments. Student t test with the 
SPSS13.0 statistical program for windows was 
used for data analysis. P < 0.05 was considered 
to indicate statistically significant difference. 

RESULTS 
 
Cucurbitacin B inhibits SENP5 expression in 
osteosarcoma cell lines and tissues 
 
The results from quantitative PCR and western 
blotting analysis are shown Fig. 2A and B. It is 
clear from the figure that SENP5 is significantly 
overexpressed in osteosarcoma cell lines 
(U2OS, Saos-2 and MG-63) compared with HOB 
cells (human osteoblasts isolated from normal 
human bone). There was also high level of 
SENP5 expression in clinical osteosarcoma 
specimens in comparison to normal adjacent 
bone tissues (Fig 2C and D). 
 
Treatment of osteosarcoma cell lines (U2OS, 
Saos-2 and MG-63) with cucurbitacin B resulted 
in inhibition of SENP5 expression in a dose and 
time-dependent manner (Fig. 3A, B). We treated 
osteosarcoma cells with a range of cucurbitacin 
B amount from 10 to 50 mg. There was a 
significant decrease in SENP5 expression at of 
30 mg. 
 

 
 
Fig 2: SENP5 is overexpressed in osteosarcoma cell lines and tissues. (A) mRNA expression and (B) protein 
levels of SENP5 in U2OS, Saos-2 and MG-63 osteosarcoma cell lines. (C) mRNA expression of SENP5 in four 
paired clinical specimens . (D) Protein levels of SENP5 in two paired clinical specimens 
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The results from RT-PCR analysis clearly 
demonstrated a significant inhibition of SENP5 
expression from day 10 with a maximum effect 
on day 20. 
 
Suppression of SENP5 expression by 
cucurbitacin B significantly inhibits cell 
growth in osteosarcoma cells 
 
The results from quantitative PCR and western 
blot analysis indicated a significant decrease in 
mRNA and protein levels of SENP5 on treatment 
with 50 mg of cucurbitacin B (Fig 4A, B). 
Although the decrease in mRNA and protein 
levels of SENP5 began from 30 mg/mL it was 
significant only at 50 mg amount. This decrease 
in mRNA and protein levels of SENP5 leads to 

decrease in proliferation of U2OS and Saos-2 
cells. 
 
Cucurbitacin B treatment results in G2/M 
arrest and apoptosis in U2OS and Saos-2 
osteosarcoma cells  
 
Apoptotic cell death leading to reduction in U2OS 
and Saos-2 osteosarcoma cell growth was 
confirmed by flow-cytometric analysis and 
ssDNA detection assay. Exposure of the U2OS 
and Saos-2 osteosarcoma cells to cucurbitacin B 
resulted in apoptosis. In U2OS and Saos-2 
osteosarcoma cells grown in control medium 
there was only 2.05 ± 1.01 % of the cells that 
underwent spontaneous apoptosis (Fig. 5A), 
after 24 h of incubation. 
 

 
 
Fig 3: Inhibition of SENP5 expression by cucurbitacin B treatment. (A) Concentration dependent inhibition of 
SENP5 expression in U2OS and Saos-2 cells. (B). Time dependent inhibition of SENP5 expression in U2OS and 
Saos-2 cells 
 

 
 
Fig 4: Inhibition of SENP5 expression by cucurbitacin B. (A) mRNA levels of SENP5 in U2OS and Saos-2 cells 
transfected with mock or Cucurbitacin B. (B) Protein levels of SENP5 in U2OS and Saos-2 cells treated with 
cucurbitacin B 
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Fig 5: SENP5 inhibition results in G2/M arrest and apoptosis in U2OS and Saos-2 osteosarcoma cells. (A) 
Apoptosis in U2OS and Saos-2 cells. (B) Cell cycle distribution of U2OS and Saos-2 cells transfected with mock 
or cucurbitacin B. Cells were fixed with 70 % ethanol and stained with PI 
 
The effective amount of cucurbitacin B (30 
mg/ml) in the MTT assay caused an induction of 
apoptosis with results overlapping that obtained 
in control cell culture (5.89 ± 3.98 %). The 24 h 
cell cultures with IC50 concentration of 
cucurbitacin caused an induction of apoptosis in 
54.72 ± 5.42 % of the total cell population (Fig. 
5A). Similar results were observed in the Saos-2 
cells, where in control group the percentage of 
apoptosis was 1.79 ± 0.23 %, and the exposure 
to cucurbitacin B was found to increase the 
apoptotic rate from 9.86 % ± 8.89 with 10 mg/ml 
to 48.54 ± 14.5 with 50 mg of cucurbitacin B (Fig. 
5A). 
 
The study of cell cycle phase distribution 
revealed that cucurbitacin B caused a significant 
accumulation of cell population in G2/M phase 
after treatment for 24 h. However, after 48 h, 20 
% of cell population accumulated in sub-G1 
phase, which is indicative of apoptosis (Fig 5B). 
 
DISCUSSION 
 
There is overexpression of SENP5 in 
osteosarcoma cell lines (U2OS, Saos-2 and MG-
63) compared with HOB cells (human 
osteoblasts isolated from normal human bone) 
and clinical osteosarcoma specimens in 
comparison to normal adjacent bone tissues. In 
the present study, Cucurbitacin B was used to 
analyse its effect on SENP5 expression. The 
results indicated that Cucurbitacin B treatment 
causes inhibition of SENP5 expression, induces 
decrease in mRNA and protein levels, apoptosis 

and cell cycle arrest in G2/M phase in U2OS and 
Saos-2 osteosarcoma cells. 
 
The results from RT-PCR analysis demonstrated 
that cucurbitacin B inhibits the expression of 
SENP5 in U2OS and Saos-2 osteosarcoma cells 
at 50 mg.  SENP5 inhibition was significant from 
day 10 with a maximum effect on day 20. 
Cucurbitacin B treatment at 50 mg also induced 
a significant decrease in mRNA and protein 
levels of SENP5. This decrease in mRNA and 
protein levels of SENP5 leads to decrease in 
proliferation of U2OS and Saos-2 cells. Exposure 
of the U2OS and Saos-2 osteosarcoma cells to 
cucurbitacin B resulted in apoptosis. In U2OS 
and Saos-2 osteosarcoma cells grown in control 
medium there was only 2.05 ± 1.01 % of the cells 
that underwent spontaneous apoptosis, after 24 
h of incubation. The effective concentration of 
cucurbitacin (30 mg/mL) in the MTT assay 
caused an induction of apoptosis with results 
overlapping that obtained in control cell culture 
(5.89 ± 3.98 %). The 24 h cell cultures with IC50 
concentration of cucurbitacin B caused an 
induction of apoptosis in 54.72 ± 5.42 % of the 
total cell population. Similar results were 
observed in the Saos-2 cells, where in the control 
group the percentage of apoptosis was 1.79 ± 
0.23 %, and the exposure to cucurbitacin was 
found to increase the apoptotic rate from 9.86 % 
± 8.89 with 10 mg to 48.54 ± 14.5 with 50 mg of 
cucurbitacin B. The cell cycle phase distribution 
revealed that cucurbitacin B caused a significant 
accumulation of cell population in G2/M phase 
after treatment for 24 h. However, after 48 h, 20 
% of cell population accumulated in sub-G1 
phase, which is indicative of apoptosis. 
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CONCLUSION 
 
Thus, cucurbitacin B is a novel therapeutic agent 
with some potential for the treatment of 
aggressive malignancy in osteosarcoma. 
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