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Abstract 

Purpose: To formulate and assess thermoresponsive ketamine hydrogels for prolonged transdermal 
analgesia/anaesthesia. 
Methods: Thermoresponsive ketamine hydrogels were prepared from chitosan (CTS) and poloxamer 
407. Four different formulations (2 formulations of ketamine with 1 and 2 % w/w CTS and 2 formulations 
with 10 and 15 % w/w ploxamer 407) were assessed for pH, spreadability, drug content, viscosity, in 
vitro permeation/diffusion, in vivo skin irritancy, and in vivo analgesia (using the hot plate/writhing 
method in Wistar rats). 
Results: The formulations had a high drug content (96.12 ± 1.24 to 98.49 ± 0.07 %) with good 
spreadability. They showed prolonged drug release/permeation of ketamine across the skin, ranging 
from 81.23 to 98.28 %, and were non-irritating to the denuded skin of Wistar rats with no erythema or 
oedema after 24 h. The preparation showed effective analgesia that lasted 24 to 30 h. In the writhing 
test, CTS hydrogels showed stronger analgesia (60.26 – 58.97 %) than those made with poloxamer-
based hydrogels (56.41 and 53.85 %). Compared to the activity shown by the standard, lidocaine (which 
produced 62.82 % analgesia), the effect of the test formulations seem good for probable therapeutic 
use. Using the hot plate method, the poloxamer-based hydrogels showed more prolonged analgesia 
than the CTS-based hydrogels. 
Conclusion: Ketamine hydrogels of CTS and poloxamer may be useful for prolonged analgesia in 
neuropathic pain and local anaesthesia in minor surgeries.  
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INTRODUCTION 
 
Anaesthesia is a vital requirement for surgery. 
Unlike major surgeries that require general 
anaesthesia, minor surgeries are often 
performed under local anaesthesia. Transdermal 
(i.e., through the skin) anaesthesia may be a 
good alternative to local blocks for minor 
surgeries. Transdermal anaesthesia is of 
potential benefit postoperatively, particularly in 
paediatric and elderly patients. Transdermal 

anaesthetic agents are available as a patch, film, 
gel, or cream [1–3]. 
 
Transdermal anaesthesia has been used for 
more than three decades in children following 
invasive procedures [1–3]. Transdermal 
anaesthetics must have a rapid onset of action 
with good efficacy at a low cost. Many studies 
have explored the transdermal administration of 
anaesthetic drugs in various forms that allow 
rapid absorption (irrespective of molecular weight 
and skin permeability) with consistent efficacy 
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[2,3]. Various polymers such as polyglycolic acid, 
poly l-lactic acid, polylactic copolymer, chitosan 
(CTS), and poloxamerhave been investigated for 
the development of hydrogels. In this study, CTS 
and poloxamer were selected due to their relative 
ease of conversion to thermoresponsive 
hydrogels [4].  
 
Ketamine (a phencyclidine derivative) is a non-
competitive antagonist of the N-methyl D-aspartic 
acid receptor that interacts with cholinergic opioid 
receptors, purinergic receptors, and 
adrenoreceptors yielding local anaesthetic 
effects [5]. It is indicated for dissociative general 
anaesthesia and analgesia for neuropathic pain. 
Although not widely used, it has several unique 
clinical properties that make it appropriate in 
certain situations. Ketamine may be administered 
in a topical gel for peripheral action (at opioid and 
sodium-potassium receptors) [6], and can also 
be administered intravenously, although this 
route is associated with side effects such as 
dizziness, nausea, nightmares, agitation, and 
hallucinations [7]. Topical and transdermal 
administration of ketamine have been 
investigated to avoid dizziness and nausea. 
Moreover, when the drug penetrates the skin, it 
acts directly on the small nerve fibres, achieving 
effective localised anaesthesia [8–11]. 
Transdermal ketamine has also been 
investigated as an anaesthetic for cosmetic and 
laser dermatology. Previous studies that 
investigated creams and gels of ketamine 
formulations, demonstrated reduced numerical 
pain scores of 53–100 % on a 1–10 pain intensity 
scale [12]. These results indicate that ketamine 
gel may be useful for cases of chronic 
neuropathic pain [12–16]. But the prior studies of 
topical ketamine did not compare the 
formulations prepared with different polymers. 
Therefore, this study assessed the analgaesic 
efficacy of ketamine hydrogels composed of two 
different polymers: CTS and poloxamer. 
 
EXPERIMENTAL  
 
Materials 
 
Ketamine and CTS (from shrimp shells) were 
purchased from Sigma Aldrich (St. Louis, MO, 
USA). Poloxamer 407 was purchased from BASF 
(Ludwigshafen, Germany). The other chemicals 
were of analytical grade.  
 
Preparation of hydrogels 
 
The ketamine hydrogels were prepared from two 
polymers, poloxamer 407 and CTS (Table 1). To 
prepare the CTS hydrogel, CTS was dissolved in 
a 1 % acetic acid solution while mixing at 300 

rpm for 15 min. Ketamine was mixed into the 
solution along with propylene glycol and 
triethanolamine until homogeneity was achieved. 
The poloxamer solution was prepared in pre-
cooled water, and ketamine was mixed into the 
solution along with propylene glycol and 
triethanolamine until it became slightly viscous. 
The pH was adjusted to 6.5 to reduce its 
tendency to cause skin irritation, and the slightly 
viscous hydrogel was stored at room 
temperature overnight to ensure the release all of 
their bubbles. The hydrogels were packed into 
aluminium tubes that were securely closed, and 
stored at room temperature until used. 
 
Table 1: Composition of ketamine hydrogel  
 
Ingredient 
(% w/w) 

Hydrogel formulation 
H1 H2 H3 H4 

Ketamine 5 5 5 5 
Chitosan 1 2 - - 
Poloxamer 407 - - 10 15 
Polyethylene Glycol 10 10 10 10 
Triethanolamine 0.1 0.1 0.1 0.1 
Distilled Water Qs Qs qs qs 
 
Physical assessment of hydrogels 
 
The hydrogels were assessed for colour, 
appearance, tactile feel upon application, 
consistency, texture, and pH. Spreadability was 
also determined by sandwiching the gel between 
two glass plates and recording the movement of 
the top plate in response to a pulling force of 80 
g. pH was determined using a digital pH meter. 
 
Rheology of hydrogels 
 
The viscosity values and rheological properties of 
the hydrogels were determined using a DV II + 
ProDigital Viscometer (Brookfield Engineering, 
Middleboro, MA, USA).  
 
Drug concentration 
 
From the vials of formulations, 1 mL of each 
sample was transferred to a volumetric flask 
using a micropipette. Methanol (up to 10 mL) 
was added to this sample until complete 
precipitation (i.e., the supernatant became mostly 
clear). After centrifugation (1000 rpm for 20 min), 
the clear supernatant was withdrawn, diluted, 
and analysed with a spectrophotometer at 276 
nm. 
 
Ex vivo drug diffusion studies 
 
Ex vivo drug diffusion was assessed using the 
abdominal skin of rats (pre-treated to remove 
hair and other fatty and connective tissues) with 
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a Franz diffusion cell at 37 ± 1.0 °C in 12.5 mL 
phosphate buffer at pH 7.4. The pre-treated rat 
abdominal skin was placed on the bottom 
opening of the donor compartment in contact 
with the receptor medium throughout the study; 
both compartments were tightly fastened with 
clamps. The receptor medium was agitated at 
200 rpm by placing the apparatus on a magnetic 
stirrer on a hot plate for 24 h, after which1 mL of 
sample was removed at various time points and 
replaced with the same volume of fresh 
phosphate buffer (pH 7.4) at the same 
temperature. Each sample was analysed at 276 
nm in an ultraviolet–visible spectrophotometer. 
 
In vitro release kinetic analysis 
 
The drug release kinetics was determined by 
inserting the obtained data into the following 
model equations to check for fit: 
 
Zero Order: C (%) = kt) …………. (1) 
 
First order: log C [fraction unreleased] = 
kt/2.303…….………………………..... (2)  
 
Higuchi: % C (%) = Kt1/2 …………….. (3) 
 
Korsmeyer-Peppas: Log %C = Log k+ n Log t) 
……………………………………….... (4) 
 
where C is drug C concentration. 
 
In vivo study 
 
The study was conducted using healthy male 
Wistar rats (200–280 g). The rats were kept in 
standard housing and environmental conditions. 
Rats were given 3–4 days to acclimatise before 
the in vivo study. The rats were given free 
access to drinking water and a standard diet. The 
in vivo study protocol was approved by the 
Animal Ethical Committee (approval reference 
no. 299/2015). The study was conducted in 
compliance with the international guidelines on 
animal handling [17].  
 
Primary skin irritation studies 
 
The primary skin irritation test was conducted to 
check for side effects such as discomfort, 
erythaema, and oedema. Animals were divided 
into four groups (n = 3). A 2 × 2 cmarea of dorsal 
skin was denuded with a razor, and then wiped 
with alcohol. Four hours after denuding, a non-
medicated gel was applied to the skin of the rats 
in Group I (control group). Gel formulations H2 
and H4 (with higher concentrations of CTS and 
poloxamer) were applied to Groups II and III. A 
standard irritant (0.8 % v/v aqueous solution of 

formaldehyde) was applied to Group IV 
(standard). After 24 h, the application sites were 
scored for erythema and oedema [18].  
 
In vivo analgesic study 
 
Writhing method 
 
Acute analgesia provided by the hydrogels was 
assessed using the writhing method (induced by 
acetic acid). The rats were divided into six 
groups (n = 6). The first group (control) received 
non-medicated hydrogel, the second group 
received standard analgesia (topical gel of 
lidocaine hydrochloride, 5 µg/kg body mass), and 
test groups III–VI received H1, H2, H3, and H4 
formulations (10 µg/kg body mass), respectively. 
Three hours following application, writhing was 
induced using 10 mL/kg acetic acid solution (0.6 
% v/v) injected intraperitoneally; the number of 
writhes in 20 min was recorded as the 
percentage reduction of writhing compared to the 
control group.  
 
Hot plate method 
 
The four test groups of rats were each 
administered an individual formulation. The 
control group received non-medicated gel and 
the standard group received lidocaine (topical 2 
% gel, 5 µg/kg). After 30 min, the rats were 
placed on an analgesiometer at 50 °C. The 
duration and maximum response were noted for 
each group.  
 
Statistical analysis 
 
All of the data are presented as mean ± standard 
deviation (SD). One-way analysis of variance 
was used for statistical analysis with Origin 5 as 
the software. P < 0.05 was considered 
statistically significant. 
 
RESULTS 
 
The ketamine hydrogels were thermoresponsive 
and gelled after heating. The gels showed good 
spreadability and were clear and transparent. 
The surface pH ranged from 6.5 ± 0.01 to 6.9 ± 
0.02 (Table 2).  
 
Drug content was relatively high, ranging from 
96.12 ± 1.24 to 98.49 ± 0.07 % for all the 
hydrogel formulations. 
 
Rheological properties 
 
The viscosity of the ketamine hydrogels showed 
pseudo-plastic rheology. The shear rate 
increased in direct proportion to the angular 
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velocity in the pre-gelled formulations. A change 
in viscosity with angular velocity (shear stress) 
was observed (Figure 1). 
 
Table 2: Physiochemical characteristics of 
ketamine hydrogels 
 

Formulation 
code 

pH Drug 
content (%) 

H1 6.5 ± 0.01 97.14 ± 1.06 
H2 6.5 ± 0.03 96.12 ± 1.24 
H3 6.9 ± 0.01 98.02 ± 0.42 
H4 6.9 ± 0.02 98.49 ± 0.07 

 

 
 
Figure 1: Viscosity of ketamine hydrogel 
formulations H1 (♦), H2 (□), H3 (∆) and H4 (×) 
 
At the angular velocity of 50 °C, the viscosities of 
the hydrogels were 19.99, 22.01, 22.91, and 
22.45 cps for H1, H2, H3, and H4, respectively. 
 
In vitro diffusion/permeation  
 
The drug flux was constant and slow across the 
biomembrane. The hydrogels H3 and H4 showed 
the highest in vitro drug permeations across the 
membrane (Fig. 2). 
 

 
Figure 2: In vitro drug permeation of ketamine 
from hydrogels across rat abdominal skin. Note: 
H1 (♦), H2 (□), H3 (∆) and H4 (×) 
 

 
After 24 h, drug permeation was 81.23, 88.04, 
98.28 and 92.28 % for H1, H2, H3, and H4, 
respectively. On subjecting the data to various 
pharmacokinetic models, all the hydrogels 
demonstrated Higuchi-type permeation. Matrix 
diffusion was seemed to be the main mechanism 
involved.  
 
Primary skin irritation 
 
No formulation showed any observable skin 
irritation. No side effects such as swelling or 
erythema were observed at the application site 
after 24 h (Table 3). 
 
Table 3: Primary skin irritation test results for 
ketamine hydrogels 
 
Animal Group Mean ±SD 

Erythema* Oedema** 
I  Control 
 

0.67±0.58a 0.34±0.58a 

II Test 1 (H2) 
 

0.67±0.58a 0.34±0.58a 

III Test 2 (H4) 
 

0.67±0.58a 0.34±0.58a 

IV Standard 
Irritant 
 

3 ± 0 1.67±0.50 

aP < 0.05, significant compared toformalin; *erythema 
scale: 0, none; 1, slight; 2, well defined; 3, moderate; 
4, scar formation. **Oedema scale: 0, none; 1, slight; 
2, well defined; 3, moderate; 4, severe 
 
In vivo analgesia 
 
The writhing results demonstrated that H1 and 
H2 had good analgesia with a percentage of 
62.82 and 60.26 %, respectively (Table 4). 
 
The hot plate method demonstrated that H3 and 
H4 (poloxamer-based hydrogels) yielded 
prolonged analgesia compared to that of H1 and 
H2 (Table 5).  
 
Table 5: In vivo analgesic activity of ketamine 
hydrogels with the hot plate method 
 
Formulation MR  

(s)a 
TMR 
(h) 

DA 
(h) 

H1 6.5±1.02 1.12 9 
H1 7.5±1.20  1.25 >9 
H3 9.5±1.0 2.50 >12 
H4 10.5±1.2 1.75 >12 
aData are expressed as mean ± SEM (n = 6); MR = 
maximum analgesic response; TMR = time of 
maximum analgesic response; DA = duration of 
analgesic action  
 



Liu & Zheng 

Trop J Pharm Res, July 2017; 16(7): 1485  
 

 Table 4: In vivoanalgesic activity of ketamine hydrogels based on writhing method 
 

Drug Dose 
(µg/kg) 

Analgesicactivity 
No. of writhes a Analgesia (%) 

Control (blank films) - 78±1 - 
lidocaine (Standard) 5 29±2 b 62.82 
H1 10 31±3 b 60.26 
H2 10 32±3 b 58.97 
H3 10 34±3 b 56.41 
H4 10 36±3 b 53.85 

a Mean ± standard error of the mean (SEM), n = 6; b p < 0.05 vs. control. 
 
DISCUSSION 
 
In a previous small scale clinical study, ketamine 
was administered to humans at a dose range of 
0.093 – 9.33 mg/kg) [12].Initial application 
provided significant pain relief to all of the 
patients. The average pain score decreased from 
8.8 (pre-application) to 1.6 post-application 
(mean, 15 min) [12]. The ketamine hydrogels 
investigated in this study were thermoresponsive, 
had good viscosity, and spread easily on the skin 
surface. The viscosity should be optimum for a 
gel in the sense that it should neither be too high 
nor be too low. The higher viscosity may lead to 
the stiff gel which would not be applicable 
properly onto the skin. On the other hand, the 
less viscous gel shall flow and not be retained 
onto the skin. In both the cases the drug release 
may get affected. In this aspect the prepared 
formulations showed desired viscosity with easy 
to spread property. 
 
Poloxamer hydrogels yielded more effective 
analgesia than CTS-based hydrogels. In a 
previous study the phase transition temperature 
(Tsol-gel) and rheological properties of 
poloxamer 407 gel were evaluated [19]. Tsol-gel 
reduced (without compromising the gel strength) 
and pseudoplastic rheology was observed upon 
the addition of microparticles (or drug). Thus, a 
thermoreversible gel was obtained with a 
rheology suitable for application. In the present 
study, the easy sol gel transition might have 
contributed to the improved drug delivery by 
poloxamer based hydrogels. The pH was 
satisfactory for all of the formulations, but the H2 
and H4 formulations (with higher concentrations 
of CTS and poloxamer) had the best permeation 
across the skin. Moreover, drug permeation 
across the skin followed the Higuchi kinetics 
which confirms that the drug diffused via the 
matrix diffusion process.  
 
The poloxamer hydrogels showed better drug 
release across the skin in the present study. The 
nature of polymers governs the release profile. 
Unlike chitosan (a hydrophilic polymer), 
Poloxamer 407® is an amphiphilic synthetic 

copolymer consisting of a hydrophobic poly 
(oxypropylene) (POP) block between two 
hydrophilic poly(oxyethylene) (POE) blocks. Due 
to their amphiphilic nature, poloxamer molecules 
can readily self-assemble to form micelles 
depending on the concentration and 
temperature, and the drug release can be 
improved from these micelles. The micellization 
makes it easy for the drug to pass through 
across the skin. The amphiphilic polymers (like 
poloxamer) pass better across the skin and 
hence show the better drug permeation across 
the skin. 
 
The results also showed that different 
concentrations of polymers may differ in efficacy 
and duration of action. This might be due to the 
formation of different degrees of micellization 
with different concentration in case of 
poloxamers. On the other hand, in case of 
chitosan, the thickness of diffusional barrier of 
polymeric network varies with the concentration 
resulting in change in drug release or duration of 
action. These results indicate that the structure of 
the gel functioned as an increasingly resistant 
barrier to drug release as the concentration of 
chitosan increased [20]. Therefore, the 
concentration of polymers may be chosen or may 
be optimized for desired drug release. 
 
The in vivo results showed that 
thermoresponsive hydrogels provided effective 
analgesia. CTS hydrogel formulations had 
quicker onset times but shorter durations of 
action compared to the poloxamer hydrogels. 
Topical and transdermal routes have also been 
investigated for the administration of other 
anaesthetic agents [21–25]. 
 
CONCLUSION 
 
The findings of this study demonstrated that 
thermoresponsive ketamine hydrogels prepared 
using CTS and poloxamer 407 may provide 
effective analgesia in minor surgery and 
neuropathic pain. Furthermore, the concentration 
of polymer in the hydrogel may affect 
transdermal absorption of ketamine. 
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