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Abstract 

Background: Spermatogonial stem cells (SSCs) are undifferentiated cells which are 

highly reproducible and expandable. Several studies have been conducted to 

reproduce these cells in culture. They used growth factors, hormones and different 

feeder cells to improve survival and proliferation of SSCs. 

Objective: This study was conducted to evaluate the effects of follicular stimulating 

hormone (FSH) on gene expression of fibroblast growth factor (FGF2) and glial 

cell-derived neurotrophic factor (GDNF) in Sertoli cells. 

Materials and Methods: Sertoli cells and SSCs were isolated from 3-5 month-old 

calves. Bovine testicular cells were cultured for 15 days with or without FSH. 

Identification of these cells was confirmed by immunocytochemistry analysis. 

Colony formation of SSCs was evaluated using an inverted microscope. The gene 

expression of FGF2 and GDNF and the gene markers bcl6b, thy-1, and C-kit were 

evaluated using the quantitative RT-PCR technique. 

Results: The results indicated that FSH increased colonization of SSCs. the 

expression of GDNF, FGF2, and markers of undifferentiated spermatogonia was 

increased following culture in control and FSH groups (p<0.05), this increase was 

more in FSH group. Conversely, the expression of C-kit was decreased in both 

groups (p<0.05). 

Conclusion: The results showed that FSH can increase the self-renewal of SSCs in 

vitro via upregulation of GDNF and FGF2 expression in Sertoli cells. 
 

Key words: Sertoli cell, SSCs, FSH, Self-renewal. 

 

Introduction 
 

permatogenesis is a complex 
developmental process of cell 
proliferation and differentiation that 

originates from spermatogonial stem cells 
(SSCs) and produce mature spermatozoa (1). 
SSCs have two main features including self-
renewing and differentiation properties, that 
maintains spermatogenesis (1). In this context 
thy1 (1-3) and bcl6b (3-5) are known 
undifferentiated markers of spermatogonia, 
whereas C-kit (6) considered as an SSCs 
differentiation marker. The balance between 
SSCs self-renewal and differentiation requires 
a specific microenvironment, called niche (1). 
In mammalian testes, Sertoli cells, basal 
membrane and, interstitial cells are the main 
components of SSCs niche (7). Sertoli cells 
generate growth factors required for self-
renewing of SSCs such as glial cell derived 
neurotrophic factor (GDNF), Basic fibroblast 
growth factor (bFGF) and Kit (8-10). GDNF is 

a critical factor for self-generation of SSCs. 
GDNF is a protein secreted after generation of 
Sertoli cells and is responsible for maintaining 
and proliferating SSCs in both body and 
culture (9). Fibroblast growth factor 2 (FGF2) 
is secreted and expressed by Sertoli cells, 
Leydig cells and differentiated germ cells and 
stimulates self-renewing of SSCs (11). SSCs 
are undifferentiated cells which are highly 
reproducible and expandable. 
Biotechnologically, these cells are particularly 
important, because they are the only adult 
stem cells which can transfer genetic 
information to the next generation (12). To 
study characteristics and function of SSCs, it 
is essential to achieve a sufficient number of 
them (13). For this purpose, several studies 
have been conducted successfully to 
proliferation these cells in vitro. They have 
used growth factors, hormones and different 
feeder cells to improve survival, proliferation 
and occasionally differentiation of SSCs (14-
17). Hormonal control of spermatogenesis is 
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through follicle stimulating hormone (FSH) 
and testosterone activity on Sertoli cells. FSH 
is an essential prerequisite for maintaining 
spermatogenesis in adult mammals (18, 19). 
FSH stimulates GDNF production by the 
Sertoli cells and consequently increases the 
SSCs self-renewal (20). This study was 
conducted to evaluate the effect of FSH on 
the expression of the growth factors FGF2 
and GDNF in Sertoli cells. 

 
Materials and methods 

 
This experimental study was performed at 

Stem Cell Research Center, Faculty of 
Veterinary Medicine, University of Tehran 
between November 2015 and July 2016. 

 
Animals and testicular biopsy 

Testicular biopsies were obtained from 8 
Holstein calves (4 calves were used for 
evaluation of colonization and 4 calves for 
gene expression) aged between 3 to 5 
months, as previously described (21). 
Following testicular biopsy, samples taken 
from testicle were placed on ice and 
transferred to the laboratory within 2 hr, before 
they could be used for experiments.  
 
Cell Isolation 

Cell isolation was implemented using a 
two-step enzymatic isolation procedure as 
previously used by our lab (22). Briefly, the 
obtained testis tissue was washed three times 
in DMEM containing antibiotics and Fetal 
Bovine Serum (FBS) 10% (Sigma, USA). They 
were then minced into small pieces as much 
as possible by a sterile scissor. The minced 
testicular tissue was suspended in DMEM 
containing 1 mg/ml collagenase (Sigma-
Aldrich, USA), 1 mg/ml hyaluronidase (Sigma-
Aldrich, USA), 1 mg/ml trypsin (Sigma-Aldrich, 
USA) and 5 µg/ml DNase (Fermentas, 
Germany) at 37°C in a shaker incubator 
operated at 80 cycles per minute for 
approximately 60 min. After three times 
washing in DMEM and removal the interstitial 
cells, during the second step of enzymatic 
digestion, the seminiferous tubules were again 
incubated at 37°C in DMEM containing 1 
mg/ml collagenase, 1 mg/ml hyaluronidase 
and 5 µg/ml DNase. In this step, seminiferous 
tubules were deconstructed and their cells 
were separated. Finally, obtained cellular 

suspension was centrifuged at 30×g for 2 min 
to achieve population individual cells. 
Following filtration through 77 and 55 mm 
nylon filters, the cells were pelleted. The pellet 
was re-suspended in DMEM containing 
antibiotics and 10% fetal bovine serum (FBS). 
 
Cell culture 

Cell culture for colonization and gene 
expression were conducted as the procedure 
which was previously used by our lab (23). To 
assess colonization and gene expression 24-
well and 6-well plates (TPP, Switzerland) were 
used, respectively. To evaluate the gene 
expression and colonization, cells were 
seeded at the concentrations of 10*105 and 
3*104 per well contacting DMEM, 
respectively.  

The plates were incubated at 37oC in the 
presence of 5% CO2 for 15 days. DMEM 
(Sigma-Aldrich, St. Louis, MO, USA) 
containing 10% FBS, 4 mM L-glutamine, 0.1 
mM non-essential amino acids, 100 IU/mL 
penicillin and 100 mg/mL streptomycin was 
used for culturing cells. The cells were 
cultured in two groups including group1 
(Control) and group2 (FSH 30 IU/ml). Culture 
medium together with the FSH was refreshed 
every 3 days. 
 
Cells identification 

Vimentin is a cytoskeleton protein in Sertoli 
cell cytoplasm. At day 6 of culture, for Sertoli 
cells identification, Vimentin was stained, as 
described by Anway et al and Tajik et al (24, 
25) and the specific marker Oct-4 was 
assessed in colonies of SSCs by the method 
proposed by Kubota et al (9). 
 
Colony assay 

Four cell populations from different calves 
were used for evaluation of colony formation. 
The colonization of SSCs in the control and 
FSH groups was assessed using an inverted 
microscope (IX71, Olympus, Japan). 
 
Gene expression assessment (qRT-PCR) 

Expression of the considered genes was 
assessed in the days 0, 6 and 12. Following 
trypsinization of the cultured cells (n=4 cell 
population from different calves), total RNA 
existing in the cells was extracted using Trizol 
reagent (Fermentas, Germany). In order to 
eliminate contamination of DNA, the extracted 
RNA was treated by DNase І (Fermentas, 
Germany). The concentration of the extracted 
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RNA was determined by using 
spectrophotometry (Eppendorff, Germany). 
cDNAs were built by using 500ng RNA 
extracted and oligo-primers and cDNA 
synthesis kit (Fermentas, Germany). 

Table I lists the primers of the considered 
genes. qRT-PCR was done by using SYBR 
Green mastermix (Fermentas, Germany) and 
by thermocycler (Applied Biosystems, USA). 
qRT-PCR started with a primary melting stage 
for 5 min at 95°C to activate polymerase and 
continued with 40 cycles including melting (30 
s at 95°C), synthesis (30 s at 58°C) and 
formation (30 s at 72°C). Quality of qRT-PCR 
reactions was determined by melting curve 
analysis.  

For each sample, qRT-PCR was done for 
reference gene (β-actin) and target gene 
simultaneously. Cycle threshold (Ct) of the 
reference gene was subtracted from cycle 
threshold of the target gene to obtain ΔCt. In 
each nteraction interaction, Ct on time point 0 
was considered as calibrator. Consequently, 
the relative gene expression was obtained by 
using Livak and Schmittgen (26) and 
calculation of ΔΔCt. 

Ethical consideration 
The research was conducted in 

accordance with guidelines of the Animal 
Ethics Committee at the University of Tehran. 
 
Statistical analysis 

All data were analyzed using Statistical 
Package for the Social Sciences, version 
24.0, SPSS Inc, Chicago, Illinois, USA 
(SPSS). Data related to colonization and gene 
expression was assessed by using paired-
samples t-test. 

 
Table I. Antibodies introduction for SSC 

AB Name Concentration Company 

Primary AB 
Rabbit anti Oct 

4 
1/100 Abcam 

Secondary AB 
Goat anti rabbit 

IGg 
1/100 Abcam 

 
Table II. Antibodies introduction for Sertoli cells 

AB Name Concentration Company 

Primary AB Mouse anti 

vimentin 1/200 Abcam 

Secondary AB Sheep anti-

mouse IGg 1/100 Abcam 

 

 
Table III. Sequence of the primers used for qRT-PCR 

Gene Forward primer (3′-5′) Reverse primer (5′-3′) 

B-ACTIN TCG CCC GAG TCC ACA CAG ACC TCA ACC CGC TCC CAA G 

FGF2 AAA ACA GGA CCT GGG CAG AA ATA TAC CTC TTC ATG TAA AAT GAG ATC AGA TG 

GDNF GCAGCC GAA ACA ATG TAC GA AAG GCG ATG GGT CTG CAA 

THY-1 TTC ATC TCC TTG TGA CGG GTT GCA GAG GTG AGG GAA TGG C 

c-KIT TAC CAA CCA AGG CAG ACA A CTT TGA GGC AAG GAA CGC 

BCL6B AGG GCA CAG GGA ACT CTT TTC CCT CCT TTG GCT TGA GTG TTTT 

 
Results 

 

Immunocytochemical staining of Sertoli 

cells and SSCs 

The expression of Vimentin markers 

detected in the Sertoli cells (Figure 1) and 

OCT4 was detected in the colonies of SSCs. 

(Figure 2). 

 

Numbers of Colonies  

The result of this study showed that the 

number of colonies in two groups increased 

until the 12th day of co-culture and after 12 

days they decreased. Spermatogonial 

colonies started to appear around day 3 and 

increased their number through time. Colonies 

were counted at days 3, 6, 9, 12 and 15. The 

number of colonies in the FSH group was 

significantly higher than that of the control 

group, during in cell culture (p<0.05). 
 

Gene Expression 
Expression of FGF2 significantly increased 

in both group on day 6 and 12 compared to 
day 0 (p<0.001). Expression of FGF2 was not 
different in group 2 on day 6 and 12 (p>0.05), 
while it increased significantly in group 1 
during culture (p=0.001). Expression of FGF2 
in the FSH group was significantly higher than 
that of the control group on days 6 and 12 
(p<0.05). 

Expression of GDNF significantly increased 
in both groups on days 6 and 12 compared to 
day 0 (p<0.05); However, it was not different 
on day 12 compared to day 6 in both groups 
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(p=0.136). On day 6, expression of GDNF in 
group 2 was higher than group 1 (p=0.001). 

Expression of thy1 significantly increased 
in group 1 on day 6 (p=0.027) and 12 
(p<0.0001) compared to day 0 (p<0.05). 
Expression of thy1 significantly increased on 
day 12 compared to day 6 in grou1 (p=0.005). 
Expression of thy1 significantly increased in 
group 2 on day 6 (p=0.001) and 12 (p<0.0001) 
compared to day 0 (p<0.01). Moreover, a 
significant difference was found on day 12 
compared to day 6 (p<0.0001). On days 6 and 
12, expression of thy1 was higher in group 2 
compared to group 1 (p<0.05). 

In group 1, expression of C-kit significantly 
decreased on days 6 and 12 compared to that 

on day 0 (p<0.05); while no significant 
difference was found between days 6 and 12 
in group 1 (p=0.396). In group 2, expression of 
C-kit significantly decreased on day 6 
(p=0.008) and 12 (p=0.012) compared to day 
0 (p<0.05); while no significant difference was 
found between day 6 and 12 (p=0.365). 

In group1, expression of bcl6b significantly 
increased on day 6 (p=0.004) and 12 
(p<0.0001) compared to day 0 (p<0.05). In 
group 2, expression of bcl6b on day 6 
(p=0.005) and 12 (p=0.001) was higher than 
that on day 0 (p<0.05). However in both 
groups 1 and 2 no significant difference was 
found on days 6 and 12 in expression of bcl6b 
(p>0.05). 

 
Table IV. Comparison of colony numbers (mean±SD) between control and experimental groups 

Group Day 3 Day 6 Day 9 Day 12 Day 15 

Control 13.75 ± 3.304034 22.00 ± 4.546061 23.75 ± 2.217356 29.00 ± 1.154707 21.00 ± 2.160247 

FSH (30 iu/ml)  28.00 ± 5.830952 67.00 ± 4.546061 41.00 ± 9.092121 86.00 ± 10.70825 59.00 ± 4.690416 

 

   
Figure 1. Immunocytochemical staining of the bovine Sertoli cell for Vimentin at day 6 of culture. 7ADD staining is used to 

demonstrate the nuclei of Sertoli cells (magnification×400). 

 

    
 

  
Figure 2. Immunocytochemical staining of bovine SSCs for Oct-4 at day 6 of culture. DAPI is the nuclear staining of SSCs 

(magnification ×400). 
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Figure 3. Colonization of SSCs on day 12 in control (A) and FSH (B) groups (magnification×100). 

 

 
Figure 4. Relative gene expression of FGF2 in control and FSH groups on days 0, 6 and 12. Small letter: indicate difference within control group. 

Capital letter: indicate difference within FSH group. Different letter [(a.b.c) (A, B)] indicates significant difference within groups in different time-
points (p<0.05). * Indicate a significant difference between two experimental groups at the determinate time-points (p<0.05). 
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Figure 5. Relative gene expression of GDNF in control and FSH groups on days 0, 6 and 12. Small letter: indicate difference within control group. 

Capital letter: indicate difference within FSH group. Different letter [(a.b.c) (A, B)] indicates significant difference within groups in different time-

points (p<0.05). * indicate a significant difference between two experimental groups at the determinate time-points (p<0.05). 
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Figure 6. Relative gene expression of thy1 in control and FSH groups on days 0, 6 and 12. Small letter: indicate difference within control group. 

Capital letter: indicate difference within FSH group. Different letter [(a.b.c) (A, B, C)] indicates significant difference within groups in different time-
points (p<0.05). * indicate a significant difference between two experimental groups at the determinate time-points (p<0.05). 
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Figure 7. Relative gene expression of C-kit in control and FSH groups on days 0, 6 and 12. Small letter: indicate difference within 

control group. Capital letter: indicate difference within FSH group. Different letter [(a. b) (A, B)] indicates significant difference 

within groups in different time-points (p<0.05). 

 

 
Figure 8. Relative gene expression of bcl6b in control and FSH groups on days 0, 6 and 12. Small letter: indicate difference within 

control group. Capital letter: indicate difference within FSH group. Different letter [(a.b) (A,B)] indicates significant difference 

within groups in different time-points (p<0.05). 

 
Discussion 

 

It seems that FSH stimulates proliferation 
of Sertoli cells both in vitro and in vivo (27). 
This hormone is the most important mitogenic 
factor of Sertoli cells (28). Sertoli cells are 
stimulated by FSH to secrete growth factors, 
which stimulate proliferation and colonization 
of type A SSCs (29). In this study, adding 30 
IU/mL FSH to the culture medium has a 
positive effect on SSC numbers. The number 
of colonies in FSH treatment group was higher 
than the control group. This finding is 
consistent with Anjamrouz et al (10). Hence, 
proliferative SSCs could colonize and 
preferred proliferation pathway. This pathway 
could be activated by growth factors produced 
by Sertoli cells. Vimentin is a cytoskeleton 
protein in Sertoli cell cytoplasm. For Sertoli 
cells identification, Vimentin was stained. This 
finding is similar to the previous studies by 
Anway et al and Tajik et al (24, 25). For 
confirmation of the presence of SSCs, the 
specific marker Oct-4 was assessed in 
colonies of SSCs by the method proposed by 

Kubota et al (9). Thy1 is known as SSCs 
marker in a wide range of mammals (2, 3, 30-
32) and as the best marker for enrichment of 
SSCs (1).  

Moreover, expression of bcl6b (3-5) has 
been reported in rich populations of SSCs. 
Increase in thy1 gene expression in response 
to ordinary culture is consistent with the study 
performed by Nasiri et al (33). On the other 
hand, C-kit is known as differentiated 
spermatogonial marker; undifferentiated SSCs 
are negative in terms of C-kit expression (6). 
GDNF expression increased in response to 
ordinary culture and removal of SSCs. Sharp 
increase in GDNF expression stimulates self-
renewal and inhibits differentiation of SSCs 
(34). On the other hand, undifferentiated 
SSCs gradually disappear in mice with 
deficient GDNF gene expression and only 
Sertoli cells remain in seminiferous tubules of 
these mice (3).  

In addition, assessment of GDNF 
expression during different stages of 
spermatogenesis has shown that GDNF plays 
a basic role in proliferation and differentiation 
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of SSCs (35). Studies have shown that 
addition of GDNF in culture leads to 
proliferation of SSCs (16). Hence, self-
renewal of SSCs in ordinary culture can 
increase expression of GDNF, as previously 
reported by He et al (36). Similar to GDNF, 
FGF2 stimulated SSCs self-renewal in vitro (9) 
as well as in vivo (37). Synergistic relationship 
between FGF2 and GDNF through 
upregulation of ETS variant (10) (Etv5), 
increase expression of receptor tyrosine kinas 
Ret, mediating GDNF signals (37). Therefore, 
it seems that this effect of FSH for SSCs 
proliferation could be through upregulation of 
FGF2 and GDNF in Sertoli cells. 

 

Conclusion 
 

In conclusion, the present study showed 
that follicular stimulating hormone (FSH) 
increases the self-renewal of SSCs and this 
effect probably mediated through upregulation 
of GDNF and FGF2 expression in Sertoli cells. 
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