Mini Review

Current concepts in the management of anterior urethral strictures

I. A. Mungadi and N. H. Mbibu

I Urology Unit Department of Surgery Usman Danfodiyo University Teaching Hospital, Sokoto and 2 Ahmadu Bello University Teaching Hospital, Zaria Nigeria

Request for reprints to Dr. Isma’ila A. Mungadi Department of Surgery Usman Danfodiyo University Teaching Hospital, Sokoto. Nigeria

Email imungadi@yahoo.com

Abstract

Objectives: This review paper presents the current trends in the evaluation and treatment of anterior urethral strictures. Stricture disease is recorded as one of the oldest afflictions of mankind and even in the millennium; it is the one disease associated with rapid turn over in treatment options and continuous evolution of new options. The stricture is still a significant burden on the urologist workload right from initiation of treatment and follow up. It may be associated with significant morbidity and deteriorating quality of life and may be frustrating to treat. Current trends are to discover a long lasting satisfactory treatment suitable in most cases the gold standard.

Methods: A review of current concepts in anatomy and the patho-physiologic mechanisms of the anterior stricture has been done. A structured literature search through a MEDLINE search was performed. New urethral substitutes have been compared to other techniques of urethroplasty as seen over the last decade. Expert surgical consensus and opinion have been reviewed.

Results: The anterior urethral stricture is a consequence of major peri-urethral fibrosis and may be very complex if the inflammation is complicated or prolonged. It can be satisfactorily assessed by routine retrograde urethrography and endoscopic assessment for type and complexity. The urethral ultrasound appears to provide more information about the extent of fibrosis and the length of strictures. In review of recent experience, it has proven to be accurate convenient and a cheap complement to already established studies. Oral mucosa, rectal mucosa, bladder mucosa, dermal grafts, tunica vaginalis, tissue culture and synthetic polymers have all been applied over the last decade in the search for the suitable urethral substitute.

The buccal mucosa is outstanding among several options in the repair of the diseased anterior urethra as popularized by Barbagli. It appears to provide the solution for most situations in the anterior urethral stricture.

Conclusions: The Buccal mucosal graft (BMG) may as well be the new ‘gold standard’ in the management of anterior urethral stricture.

Introduction

The anterior urethral stricture is an organic narrowing of the urethra caused by scarring of the urethral epithelium and the spongy erectile tissue of corpus spongiosum. Infection is still an important cause of most inflammation of the male urethra in the developing world and is most commonly due to Neisseria gonorrhoea and infrequently caused by Chlamydia, lymphogranuloma venerum, tuberculosis and shistosomiasis. The traumatic strictures are becoming increasingly important due to increase in civil violence and injury following road traffic accidents. The inflammatory reaction following trauma is limited and so the fibrosis that is responsible for stricture formation is localized and the stricture is short and formed within a short time from injury. Catheter induced strictures are not uncommon and pathophysiologically resemble trauma induced stricture. Malignant strictures are not common but may be formed in association with urethral and penile tumours. Stricture disease represents a significant part of the workload of the urologist. A multitude of methods have evolved aiming to cure these patients but non has proven to be suitable for all types of strictures. In the last decade advances in imaging and endoscopy and experience with oral mucosa (buccal, lip and lingual) have observed satisfactory
reconstruction and outcome in the treatment of all types of anterior strictures on prolonged follow up. The versatility of the buccal mucosal graft represents an emerging threat to many available urethroplasty techniques. This paper reviews the current trends in the management of the anterior urethral strictures.

Anatomic definition
The anterior urethra is that part of the urethra below the genitourinary membrane. It is about 15cm long in the adult and is divided into proximal bulbar and distal penile portions at the level of the peno-scrotal junction. The urethra runs a central course through the corpus spongiosum in pendulous part of the phallus but lies ventrally at the level of the glans penis in the expanded portion of the corpus spongiosus. In the bulbous region the urethra is displaced dorsally and the spongiosus is notably thin dorsally and thick ventrally. The cushion of the ventral part takes the first impact of a fall stride injury and may ameliorate the outcome. The bulbous urethra is richly populated by urethral glands which are sparsely distributed in the rest of the distal/anterior urethra. They are lined by columnar epithelium and are often described as looking flask like. They are more susceptible to infection compared to the more resilient urothelium or squamous over epithelial urethral lining. Nisseria gonorrhea appears to have an affinity for columnar epithelium where it brings about infective strictures.

Aetio-pathogenesis
Inflammation of the urethra and perineal trauma are the commonest cause of anterior urethral strictures. The so called congenital strictures occur in teenage boys and young adults with no history of trauma or infection. These short strictures occur between the middle and the proximal thirds of the bulbar urethra and are related to the Cobb’s Collar and are often difficult to distinguish from type III posterior valves.

Failed hypospadias repair is an important cause of anterior strictures in children. These strictures may be located at the external meatus or may be complex and long involving the whole anterior urethra. Repeated failed repair has previously been the commonest cause of ‘stricture cripples’. Balanitis Xerotica obliterans (BXO) the genital forms of Lichen Sclerosis initially affect the prepuce and glans, but can extend to involve the anterior urethra up to the bulbous is not a common encounter in Africans. This disease is not simply an obliterating balanitis and Lichen Sclerosis is the preferred description.

Evaluation
Thoughtful evaluation is important in the outcome of urethroplasty and has to be planned and done meticulously. The first occasion of urethroplasty is commonly the best and the aim is to elect the best option for the situation. Patients initial evaluation should aim at the total assessment to estimate the magnitude of the disease. Some present with peri-urethral abscess, perineal sepsis or Watering Can Perineum. Some may present in retention of urine from other causes like acute prostatitis, and stone disease. There may be history of poorly treated chronic urethritis, urinary tract trauma and instrumentation or surgery. Initial assessment may reveal purulent urethral discharge, induration of the multiple urethrococutaneous fistulous perineal tracts draining pus and urine. Rarely these tracts may be malignant fistulae. Its common to see these patients presenting after a long time with a superpubic catheter to divert urine previously due to retained urine or for a fistula ridden perineum. They would have defaulted or are in the waiting list. Urethrogram, urethroscopy and ultrasonography are employed to determine the
location length and density of spongiosis. Static urethrogram are commonly used but a dynamic study gives a better definition 16. A retrograde and voiding urethrogram in lateral oblique position give good definition of anterior strictures. It is best to delay urethrography in patients with markedly inflamed urethra and acute Watering Can Perineum to avoid extravasations of contrast. With flexible urethroscopy the stricture can be visualised and its distensibility assessed. A flexible pediatric cystoscope can negotiate narrow strictures without the need for dilatation. Ultrasonography and Magnetic Resonance Imaging (MRI) are increasing being employed to determine the degree of spongiosis. A lubricating jelly or saline is used to distend the urethra and real time sonographic scanning performed. Morey and McNinch found that ultrasonography more accurately defines the extent of spongiosis in bulbar urethra 17. Spongiosis manifest as lack of urethral distensibility. Sonographic staging before treatment of complex or reoperative anterior strictures was found useful in elucidating complicating features such as calculi, urethral hair and stent encrustation which may be useful in guiding reconstruction 18. MRI may also provide adjunct information about spongiosis, diverticular formation, tumour and pelvic anatomy that may not be obtainable with other modalities 19. At present, MRI is more relevant in patients with traumatic posterior urethral stricture to determine the extent of prostatic-membranous and pelvic distortion 20. The final evaluation of stricture can only be made during surgery assisted by endoscopy and bougienage 16. A proximal involved segment may appear deceptively normal due to hydro dilatation during high pressure voiding. This segment constrict if not included in repairs. Jordan and Schlossberg found it useful to place a suprapubic tube to dilate strictures 21. Balloon dilatation is preferable from biocompatible materials like stainless steel, nitinol or titan 31. Non metallic materials such as polyurethane are used for temporary stenting 45. Stents were first used in vascular surgery to reduce endoluminal restricturing after balloon dilatation 43. Metal stents were first used in the urethra by Fabian 44. Essentially, stents are self expanding meshwork with a lower limit of treatment 31. Longitudinal forces applied during dilatation with metals or catheter can lead to mucous membrane trauma. The eccentrically active forces of balloon dilatation are less traumatic 31.

Visual Internal Urethrotomy

Urethrotomy is a full thickness incision through the scar performed at 12 O’clock position using an optical direct vision urethrotome. A 12 o’clock urethrotomy avoids damage to the cavernous nerves which are at 5 and 7 o’clock to the prostatic urethra, 3 and 9 o’clock to the membranous and 11 and 1 o’clock to the bulbar urethra 29. The penile urethra is not related to cavernous nerves. Following adequate urethrotomy the urethra should admit size 24 Fr catheter easily. The urethral catheter should be removed after 3 days. Using pack of 15ml/s as the lower limit of treatment failure, Pansadoro and Emilozzi found a recurrence rate of 58% in bulbar, 84% in penile and an overall recurrence rate of 68% on 1st urethrotomy. These were a long term follow-up of a large series of 225 patients. They suggested that single strictures, less than 1 cure and in the bulbar region which had a success rate of 77% are the optimal strictures for urethrotomy as the first line. Several studies have shown that urethrotomy offers no advantage over dilatation 33-35. A single recurrence following urethrotomy should be treated with other procedures since a second urethrotomy is of limited value even for palliation and a third repeated urethrotomy of no value 34,36. Intraligamental corticosteroid injection in combination with urethrotomy has been tried to reduce recurrence but there are no randomized study to support the practice 37. Clean intermittent self catheterization once a week could reduce recurrence rate from 68% to 19% following internal urethrotomy 37. Being subjected to intermittent self catheterization is far from satisfactory when cure is the goal. Laser can be employed to effect urethrotomy. The advantage of laser is clean cutting combined with haemostasis. Neodymium-YAG, Argon, Holmium and Calcium-Titanyl-Phosphate(KTP) lasers are in current usage 39,42. Given the high cost of lasers they have no clinical advantage over conventional urethrotomy at the moment 34.

Stents

Stents were first used in vascular surgery to reduce endoluminal restricturing after balloon dilatation 43. Metal stents were first used in the urethra by Fabian 44. Essentially, stents are self expanding meshwork from biocompatible materials like stainless steel, nitinol or titan 31. Non metallic materials such as polyurethane are used for temporary stenting 31. Stents are placed endoscopically at least 0.5cm from the external sphincter to avoid incontinence. In the anterior urethra the use of stents is limited to but strictures. The mobility of the pendulous urethra
makes it unsuitable for stenting. Studies reporting 90% success for stenting have short follow-up. However, Milroy and Allen reported that 84% of their 50 patients had open urethral lumen 5 years after implantation. The complications of stenting are displacement, perineal pain, incontinence, recurrent urinary tract infection, encrustation haematuria and stimulation of spongiofibrosis.

Urethroplasty

Dilatation, urethrotomy and stenting have limited results and largely palliative outcome. Therefore, urethroplasty is the standard curative treatment for most urethral strictures. Repair may be effected by excision and end to end anastomosis or by urethral substitution. The choice of procedure depends on the type and location of stricture. In general, strictures in the bulbar urethra of 2cm or less are treated by excision and spatulated end to end anastomosis. End to end anastomosis of penile strictures or bulbar strictures of more than 3cm may lead to shortening of the urethra and penile curvature at erection. These strictures are treated by substitution urethroplasty using vascularised genital skin or free grafts. Augmented anastomotic repair should be considered when a 2-3cm bulbar stricture excision is necessary. In this technique, the stricture is excised and dorsally spatulated. The dorsal spatulation is patched but the ventral circumference is anastomosed. This ensures a wide and tension free anastomosis.

Anastomotic Urethroplasty

The success rate of anastomotic urethroplasty is in excess of 90% which is sustained on the long term. The bulbar urethra is elastic and can be mobilized from its attachment within the bulbospongiosus allowing 2-4cm of stretch to overcome a defect, but 1cm of this length is also lost to spatulation. The key to successful anastomotic repair are adequate mobilization and tension free spatulated anastomosis. Spatulation is important in overcoming any narrowing that may occur at the repair site. The lowest re-stricture rate and the lowest complication rate are achieved with anastomotic urethroplasty and this should be performed when ever possible.

Substitution Urethroplasty

Substitution urethroplasty can be performed using either vascularised genital skin or free graft. Flaps have been regarded to be more reliable because they carry their blood supply. The comprehensive description of penile microcirculation by Quartey led to the dominance of flap in 1980’s and early 1990’s. This seemed theoretical since current studies could not establish superiority of flaps over grafts in terms of re-stricture rate. Flap reconstruction is time consuming, the dissection extensive and redeployment of dartos tend to cause penile deforming and scarring. With the advent of buccal mucosa there is renaissance of the graft in urethral reconstruction. Flaps are still favoured in some revision surgeries and in any condition that may interfere with the ability of graft take such as radiotherapy, peripheral vascular disease or persistent local infection. Therefore, the reconstructive urologist must be familiar with both grafts and various flap repairs.

Buccal mucosa graft urethroplasty.

Buccal mucosa graft (BMG) gas emerged as reliable urethral substitute with long term results comparable or superior to penile flaps. Buccal mucosa graft is easy to harvest and trim, more resistant to infection than skin, flexible and has thick lamina propria and excellent microvasculature favourable for graft inosculation. The natural location of BMG in oral environment favours easy adaptability in the urethral passage, thus giving long term results. Buccal mucosa is now the established materials of choice for patch repair of the bulbar urethra. The technique of BMG repair has, gradually, outmoded the use of bladder mucosa or appendix for anterior urethral repair. Potential Buccal mucosa donor site are the inner cheek, the lower lip and under surface of the tongue. The graft may be applied ventrally, in an augmented anastomotic fashion (figure 3), dorsally (figure 4) or for staged repair. Dorsal placement (Barbagli technique) has found favor recently.
This radical change in urethral substitute repositioning ensures adequate graft bed support provided by the corporal bodies and virtually eliminates graft ballooning and biventricular formation. The consequent post void dribbling and ejaculatory dysfunction (scanty ejaculation) are therefore avoided. There appears to be no difference in restricture rate between a dorsally and ventrally placed BMG.6,7

Endourethroplasty may be performed where urethrotomy alone is inadequate for complex or recurrent strictures. This procedure involves preparation of free graft, endoscopic delivery and fixation in the stricture bed with the aid of balloon catheters or a novel suturing technique described by Naude.8 Endourethroplasty has not gained wide acceptance and the number of studies is still limited.

The future of anterior urethral stricture surgery
With refinement of techniques, the scope of endoscopic urethroplasty may broaden. This will appeal to patients seeing that no penile dissections are required. Success of endoscopic substitute replacement requires increasing use of MRI and high resolution Ultrasonography to accurately define the extent of spongiofibrosis and to properly select patients. The future of anterior urethral substitutes seems to lie on Tissue Engineering. Currently buccal mucosa can be cultured and seeded to a scaffold for urethral replacement.89-90 This will obviate the need for tissue transfer in patients with long and complex strictures. With tissue engineering we are no longer limited by the quantity or quality of urethral substitutes available in any given patient.

References

10. Andrich DE, Mundy AR. Urethral Strictures and their Surgical Management. BJU Int 2000;86:571-580


Mohammed SH, Wirima J. Balloon catheter dilatation of urethral strictures. AJR 1988; 150: 327 - 330


Dotter CT, Transluminally placed coilspring endarterial tube graft long-term patency in canine popliteal artery. Invest Radiol 1969; 4: 329-334

Fabian KW. The intraprostatic partial catheter (Urological spiral). Urologe A 1980; 19: 236-238


63 Andrich DE, Mundy AR. Substitution urethroplasty with buccal mucosal free grafts. J Urol 2001; 165: 1131 - 4
65 Andrich DE, Leach CJ, Mundy AR. The Barbagli procedures gives best result for path urethroplasty of the bulbar urethra BJU Int 2001; 88: 385 - 389
68 Greenwell TJ, Venn SN, Mundy AR. Changing practice in anterior urethroplasty BJU Int 1999; 83: 631 - 635
69 Bhargava S, Chapple CR. Buccal mucosal urethroplasty: is it the new gold standard? BJU Int 2004; 93: 1191 - 3
71 Venn SN, Mundy AR. Urethroplasty for balanitis xerotica obliterans. BJU 1998; 81: 735 - 737
74 Rosenstein DI, Jordan GH. Dorsal onlay graft urethroplasty using buccal mucosa in bulbous urethral reconstruction J Urol 2002; 167: 16
82 Mundy AR. Results and complications of urethroplasty and its future. BJU 1993; 71: 322 - 325
83 Mundy AR. The long term result of skin onlay urethroplasty. BJU 1995; 75: 59 - 61
86 Chiou RK. Endourethroplasty in the management of complicated posterior urethral strictures J Urol 1988; 140: 607 - 609
Lauer G, Schimming R, Frankenschimdt A.