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Abstract  

This paper introduces a new structure in neural networks called TD-CMAC, an extension to the conventional 
Cerebellar Model Arithmetic Computer (CMAC), having reasonable ability in time series prediction. TD-CMAC, the 
conventional CMAC and a classical neural network model called Multi-Layer Perceptron (MLP) are simulated and 
evaluated for 1-hour-ahead prediction and 24-hour-ahead prediction of carbon monoxide as one of primary air 
pollutants. Carbon monoxide data used in this evaluation were recorded and averaged at Villa station in Tehran, Iran 
from October 3rd. 2001 to March 14th. 2002 at one-hour intervals. The results show that the errors made by TD-CMAC 
is fewer than those made by other models. 
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Introduction

In this changing world, parameters such as air
temperature, pressure, pollution, population, traffic,
and... are undergoing continuous changes as well.
These time altering parameters are known as time
series (Shumway and Stoffer, 2000). Time series
prediction takes an existing series of data X (t), X
(t-1)… X (t-d) and forecasts the values X (t+1), X
(t+2)… The goal is to model existing data series to
enable accurate prediction of unknown data
values.Until now, several methods for prediction of
air pollutants (time series data) have been designed.
One method for modeling air pollution equations is
the analytical method, which is complicated,
difficult and needs considerable experience and high
expertise (Haase and Schlink, 2001), (Pollack and
Stocking, 1989). Another method is applying
intelligent systems such as neural networks, fuzzy
systems, etc. This method simulates the predictive
model based on the observed time series data
(Boznar, 1997 and de Castro, et al., 2003).

Numerous researches and studies have been
carried out on the subject of nature and dynamic
behavior of pollutants, emission, propagation and
effects of pollutants. Predicting future dispersion of
air pollution is of immense importance since it can
provide an effective decision making tool by giving
advance warning of excessive pollution beyond the
threshold. Also, it enables early air quality control

Materials and Methods
Conventional CMAC model

The conventional CMAC was model introduced
by Albus (Albus, 1972) for the first time. CMAC is
a neural network, which models the structure and
operation of the section, part of the brain. The main
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to  mitigate the adverse impacts. on the other hand,
high dynamism and nonlinear behavior of air
pollutant data makes prediction difficult or
inaccurate. High capabilities of artificial neural
networks e.g. flexible structure and the use of
dynamic learning algorithm promote the application
of these intelligent systems. The behavioral
monitoring of pollutants and modeling the possible
through the utilization of a memorizing neural
network. Therefore, temporal dimension must be
main tined in its structure. In other words, the
network must have a dynamic behavior to keep
output data continually dependant to present and
past inputs.

The aim of this paper is to present a new
structure based on neural networks e.g. cerebellar
model. This model can be used as the black box
approach for prediction of unknown time series data.
The model can be modified to predict future
behavior of air pollutant density (carbon monoxide)
by using the current and past values of observed
and collected data.
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Figure 1: Block diagram of CMAC Figure 2: The CMAC structure with two inputs
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The input variables are divided into distinct states
specifying memory cell addresses. Several memory
cells (associative memories) are applied to store the
data. The output is obtained by summing retrieved
data in associative memories. CMAC acknowledges
its correct output by changing the contents of memory
cells.

The CMAC model uses the following three
mapping relations:
•  Quantized input state to Associative memory cells

                                                 S→A
• Associative memory cells to Physical memory
addresses                                              A→P
• Physical memory addresses to CMAC output
vector                          P→Y

Figure 2 illustrates an example of CMAC
structure with two S1 and S2 input variables. Each
input variable is divided into a number of discrete
sections called blocks. In this Figure, these sections

conventional CMAC, only blocks in similar layers
will create hypercubes.

In other words, the available parameters in
CMAC network are defined as follows:
Nv: Number of input variables (here two),
Nb: Number of blocks in one layer (here three),
Ne: Number of layers or number of complete
elements occupying one block (here three),
S: Input vector, e.g. State (S1, S2) = (4, 3),
A: Associative cells or hypercubes, e.g. Bb, Fe, Hh,
P: Physical address of Ne hypercubes of set A,
Y: Related output to S, or stored data in those
hypercubes, which cover S.
The output value is equal to the sum of stored data
(weights) in associative cell of Ne hypercubes of
set A. The outputs are calculated by the following
equation:
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Where, s is the input vector. M is memory size
equal to the number of hypercubes ( 2

be NNM ×= ).
W is weight vector or stored data in memories and
if the memory location of j is covered by one of the
hypercubes then )(sa j =1, otherwise, =0.

function of this part is to the movements of
coordinate and control of eyes, hands, fingers, arms,
and legs. At first, CMAC model was used in order
to control robot arms (Albus, 1975). The model is
based on associative memory, which uses a lookup-
table technique. The block diagram of CMAC model
is shown in Figure 1.

are shown as A, B and C for S1 and a, b and c for
S2. Several blocks in input state form a space called
hypercubes. These spaces are named Bb, Aa, Ac
and Ca… Each hypercube is a memory cell, which
stores and retrieves data. By shifting each block a
small distance (called an element), different blocks
are created in different layers. For example: for A,
B and C of S1 input variable, D, E and F were in the
next layer and G, H and I in the last layer. Hence,
the hypercubes Bb, Fe, Hh, Gi … are created. In

The CMAC model uses iterative supervised
learning algorithm based on global error minimization
to adjust the stored weights in hypercubes. It has
two steps: 1- forward step: applying inputs and
obtaining outputs, 2- backward step: adjusting
weights by comparing the obtained outputs with the
desired out comes. The first step is carried out by
equation (1), which calculates the output mapping.
The second step is performed by the following
equation:
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Figure 3: The structure details of TD-CMAC model
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Where α  is the learning rate, )(ˆ sy is the desired
output, Ne is the number of elements and

old
T Wsasy )()(ˆ −  is the amount of error at the

backward step. Then, the amount of error is
multiplied in )(sa  in order to adjust the weights that
are covered by hypercubes. Generally, learning
algorithms have two main capabilities:
1. Generalization: In regard to input data, the network
has the capability of adjusting memory weights. It
has the ability to learn and experience new conditions.
So that, by applying new inputs not experienced
before, it can produces proper outputs. The CMAC
model can divide the input space into suitable blocks
and layers to reach good generalization ability
(Gonzalez-Serrano, 1998).
2. Identification capability: By means of the
Kolmogorov Theory, it could be proven that the
CMAC model can be used as universal
approximator of non-linear mappings or as a general
class for approximation of any type of functional
models [Cotter and Guillerm, 1992] such as the time
series prediction.

TD-CMAC (Time delay CMAC)
TW-CMAC (Time window CMAC) (Sarmadi

and Teshnehlab, 2002) was used to memorize the
conventional CMAC model for time series
prediction. In this method, both present and previous

 ( ) ( )
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TD-CMAC structure consists of d (d+1)/2
number of two input conventional CMACs which d
is the number of delays. TD-CMAC structure
shown in Figure 4, block B1 consists of d number of
two-input CMACs. The first CMAC holds X (t) and
X (t-1) as inputs and the second CMAC uses X (t)
and X (t-2) as inputs. Finally, the last CMAC has
two input variables of X (t) and X (t-d).

Again, block B2 consists of d-1 number of two-
input CMACs. Like block B1, the first CMAC holds
X (t-1) and X (t-2) as inputs, the second CMAC
uses X (t-1) and X(t-3) as inputs and finally, the last
CMAC has two inputs as X (t-1) and X (t-d).

values of time series (X (t), X (t-1), X (t-2), …, X
(t-d)) were used as input variables of the CMAC
model in order to predict its output (X (t+1)), which
is 1-step-ahead prediction.

TD-CMAC structure
In this paper, the new structure based on CMAC

(called TD-CMAC) is used for time series
prediction. The block diagram of new model and its
structure details are shown in Figure 3 and Figure
4.In TD-CMAC model, the output value or X (t+1)
depends both on the present value (X (t)) and on
the previous values or X (t-1), ..., X (t-d). Therefore:
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Figure 4: Block diagram of TD-CMAC model

Moreover, the last block shown in Figure 4 or Bd
consists of X (t-d+1) and X (t-d) as inputs.

Output mapping
According to the following equation, X (t+1) or the
output value which is used for prediction of time
series is equal to the sum of the CMAC outputs
each multiplied by afactor:

Where,
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In the above equation, S is the determined input
vector, W is the weight vector, and d is the number
of delays. Each CMAC has two inputs, namely X
(t-i+1) and X (t-j) for (i=1, 2, .., d) and (j=i, i+1, …,
d). M is the number of hypercubes ( 2

be NNM ×= ).
Each hypercube is identified by a variable like ijk,
where k=1, 2, … M. If the memory locations of ijk
were covered by one of the hypercubes of S then

)(saijk =1, otherwise=0. At last, in time series
prediction, predicted values depend more on recent
data than on the old data. Therefore, factor c (s) is
applied to reduce the effect of old data in the output
values.

Learning algorithm
The learning algorithm in TD-CMAC is similar

to the conventional CMAC. It has two steps: 1-
forward step: applying inputs and obtaining outputs,

Where, )(sy  is the obtained output from
equation (4). )(ˆ sy  is the desired output, Ne is the
number of layers, )()(ˆ sysy − is the amount of error

at the backward step. The amount of error is
multiplied by a(s) in order to adjust the weights that
are covered by hypercubes. c(s) is the forgetting
factor, which reduces the effect of old data in
weighting time series prediction.

Results
As a reference for comparison and evaluation

of the TD-CMAC model, the conventional CMAC
(TW-CMAC) and a multi-layer perceptron (MLP)
neural network are selected. It has been proved that
a MLP, which has only one hidden layer with
sufficient number of neurons, can act as universal
approximator for non-linear mapping (Hornik, et. al.,
1989).The TD-CMAC model and TW-CMAC
model are written in C++ language. A MLP with one
hidden layer with hyperbolic tangent hidden units
and linear output units based on Gradient descent
with adaptive learning rate back-propagation
algorithm is implemented in Matlab neural network
toolbox. The simulations were conducted for 1-hour-
ahead prediction and for 24-hour-ahead prediction
(one-day-ahead) of air pollutants time series to
compare the prediction capability of different
models. Time series data used in this evaluation were
taken from CO values recorded and averaged at
Villa station in Tehran, Iran from October 3rd. 2001
to March 14th. 2002 at one-hour intervals (3912
samples). In these simulations, the models, learning
algorithms, output mapping and inputs are the same,
but the outputs are different. The output for 1-hour-
ahead prediction is X (t+1) and for 24-hour-ahead
prediction is X (t+24). First, the program was
executed for CO pollutant by four-input TD-CMAC
with three delays, 14 blocks, and 6 layers, for the
3912 observed and recorded data of CO. The first
3744 collected data will be used to train the model,
and the next 168 accumulated data (one-week) will
be used to evaluate and validate the proposed model.

(4)

(5)

(6)
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2- backward step: adjusting weights by comparing
the obtained outputs with the desired outcomes:

cij (s)=
ij
1
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(8)

Where )(sy  is the observed data, )(ˆ sy  is the
predicted data, µ̂  is the mean value of predicted
data and n is the number of predicted data.

)()(ˆ)( sysiyse ii −= . ),( ⋅⋅Cov  is covariance
matrix. Table 1 shows the values for MAE, RMSE,
s and r of TD-CMAC, conventional CMAC (TW-
CMAC) and MLP models for 1-hour-ahead
prediction. The same evaluation parameters and
models for 24-hour-ahead prediction are shown in
Table 2. As it is observed, the new TD-CMAC model
has better prediction capability.

Again, the program was executed by four-input
TW-CMAC with three delays, 14 blocks, and 6
layers, for the same data. The observed data and the
predicted data of 1-hour-ahead prediction of CO
pollutant are shown in Figure 5 and Figure 6, more
over the observed data and the predicted data of 24-
hour-ahead prediction are shown in Figure 8 and
Figure 9.In second attempt, the program was
executed by a four-input MLP with three delays for
the same collected data. It is acknowledged that
selecting sufficient unit numbers (neurons) in the
hidden layer is very critical and difficult in such
networks. In practice, to achieve the desired degree
of approximation, number of units in the hidden
layer is determined by trial and error. In this
evaluation, ten units were determined to be suitable
for the time series data. The observed data and the
predicted data of 1-hour-ahead prediction are shown
in Figure 7 and the 24-hour-ahead predictions are
shown in Figure 10.The following parameters were
used to evaluate efficiency of different models.
Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), Correlation Coefficient (r) and Error
Standard Deviation (s) are calculated as below:
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Discussion and Conclusion
So far, numerous researches and studies on

indentification, modeling and prediction of air
pollutants have been carried out and different
methods and algorithms have been designed and
implemented. One method is the analytical method,
which is not user friendly and needs extensive
experience and expertise. Another method is
intelligent neural networks, which simulates the
predictive model based on the observed data. The
CMAC model is a kind of neural network, which
shows superior ability to memorize and predict time
series. In this paper, a new neural network structure
known as TD-CMAC was introduced. It was used
as a model for 1-hour-ahead prediction and 24-hour-
ahead prediction of carbon monoxide. The efficiency
evaluation revealed that under equal conditions TD-
CMAC has better prediction capabilities than the
conventional CMAC (TW-CMAC) and MLP neural
network meanwhile the short-term prediction
provides better result than the long-term prediction.
On the other hand, the new model uses a decreased
memory size with lower hardware implementation
costs comparing to TW-CMAC. Finally the last
advantage of using the TD-CMAC model is its
simplicity and ability to conduct online
implementation in comparison to MLP.

In addition, comparing the two Tables indicates
that the 1-hour-ahead prediction provides more
accurate and precise result than 24-hour-ahead
prediction, because of high dynamic and nonlinear
behavior of CO pollutant in atmosphere. Although,
long-term prediction provides acceptable results, the
short-term prediction delivers better outcomes. On
the other hand, as the number of delays increases,
the size of memory decreases more in TD-CMAC
model in comparison to TW-CMAC. If  it is assumed
that the number of blocks in each layer is bN , the
number of layers or elements as eN  and the number
of delays as d, then the used memory size of (d+1)-
input- TW-CMAC model will be equal to

1+× d
be NN and the used memory size of (d+1)-input

TD-CMAC model will be 2

2
)1(

be NNdd
××

+×
.

Therefore, hardware implementation will be simpler
and more feasible (Miller, et al., 1990). Finally, the
advantage of using the TD-CMAC model in
comparison to MLP is its simplicity and ability to
conduct online implementation due to existence of
fast learning algorithms in confronting new data.



Table 1: MAE, RMSE, r and s values of different models for 1-hour-ahead prediction

Table 2: MAE, RMSE, r and s values of different models for 24-hour-ahead prediction

Figure 5: Four-input TD-CMAC. The observed data and the predicted data of 1-hour-ahead-prediction of CO

Figure 6: Four-input TW-CMAC. The observed data and the predicted data of 1-hour-ahead-prediction of CO
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Model MAE RMSE s r 
Four -input TD-CMAC  1.717 2.398 3.318 0.783 
Four -input TW-CMAC  2.750 3.982 2.056 0.393 
Four -input MLP  2.128 3.293 5.341 0.781 

 
Model MAE RMSE s r 

Four -input TD-CMAC  2.201 2.997 3.552 0.672 
Four -input TW-CMAC  3.625 4.808 2.152 0.105 
Four -input MLP  2.525 4.102 5.677 0.662 
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Figure 7: Four-input MLP. The observed and the predicted data of 1-hour-ahead-prediction of CO pollutant

Figure 8: Four-input TD-CMAC. The observed data and the predicted data of 24-hour-ahead-prediction of CO

Figure 9: Four-input TW-CMAC. The observed data and the predicted data of 24-hour-ahead-prediction of CO
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Figure 10: Four-input MLP. The observed and the predicted data of 24-hour-ahead-prediction of CO pollutant
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