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ABSTRACT: Surface aeration experiments were conducted in two types of rectangular tanks of aspect ratiosi.e.,
length to width ratio (L/W) of 1.5 and 2 and devel oped simulation equationsto correl ate the oxygen transfer coefficient,
k and power number, P, with a parameter governing theoretical power per unit volume X. The parameter X is defined
asequal to F**RY3, where F and R areimpellers’ Froude and Reynolds numbersrespectively). Results have shown that
the P, can not be simulated singularly with either Reynolds number, R or Froude number, F, which results in scale-
effects; there appears to be a need to incorporate the effects of both F and R. It was found that P, is uniquely related
to X for rectangular aeration tanks of both aspect ratios, however, such relationships are different depending upon the
aspect ratios. It has been demonstrated that energy can be saved substantially if the aeration tanks are run at relatively
higher input powers. It is also demonstrated that smaller sized tanks are more energy conservative and economical
when compared to big sized tanks, while aerating the same volume of water, and at the same time by maintaining a
constant input power in al the tanks irrespective of their size.

K ey words: Froude number, oxygen transfer coefficient, power number, power per unit volume, Reynolds number,
surface aerators, water and wastewater treatment

INTRODUCTION

Aerobic wastewater treatment uses microorganism
to feed on waste in the water and convert them to
sludge, carbon dioxide and water. To keep the process
going, the wastewater needsto be aerated with oxygen.
The two basic and widely used methods of aerating
wastewater are: (1) tointroduceair or pure oxygeninto
thewastewater body with diffusersgenerally called as
bubble or diffused aerators and (2) to agitate the
wastewater mechanically so as to promote the mass
transfer of air from the atmosphereinto the wastewater
body, which isgenerally achieved by surface aerators.
Surface aeratorsare apopular choice of aeration system
because of their inherent simplicity and their
competitive rate of oxygen transfer per unit of power
input under actual aeration conditions. To design
surface aeratorsin geometrically similar systems, one
may require scale-up criteriafor two basic parameters-
oxygen transfer rates and input power. Power
consumption in surface agratorsisgenerally interpreted
as the Power number. Most scale-up studies in the
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past for mixing rely solely upon the relationship
between power number and Reynolds number. While
this is probably adequate for the baffled system,
unbaffled system need incorporation of Froude number
inthe correlation for power number (Rushton, 1952). It
is advantageous to use unbaffled surface aerators,
because they give rise to higher fluid-particle mass
transfer rates for agiven power consumption (Grisafi,
et al., 1994; Rao and Jyothish, 1997), which is the
paramount importance in designing aeration system.
Inthe unbaffled tanks, existence of central vortex plays
an important role in enhancing the mass transfer
process (Johnson and Huang, 1956; Hsieh 1991). In
theliterature, innumerablereferences are availableon
unbaffled cylindrical and square tanks and apparently
there is no information available dealing the issues of
the basic design variables of rectangular tank surface
aerators. Thefocus of thispaper isto develop the scale-
up criteriafor oxygen transfer and power requirement
(power number) in geometrically similar rectangular tank
surface aerators and from there analyze the resultswith
an objective of conserving energy while using the
different sized aerators. The experiment explained in
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Fg. 1: Schematic diagram of a surface aerator

the present paper has been conducted at the
Department of Civil Engineering, Indian Ingtitute of
Science, Bangalorein Indiaduring 2003-2005.

MATERIALSAND METHODS

Experimentswere conducted in rectangular surface
aerators of aspect ratios L/W=1.5 and 2. A typical
surfaceaerator isshowninFig. 1. Thevariousgeometric
dimensionsof the aerator are: A (cross-sectional area),
H (water depth), h (distance between the horizontal
bottom of the tank and the top of the blades) and D
(diameter of therotor). Therotor isfitted with six flat
bladesin symmetrical and evenly manner such that b
and | aretheir linear dimensions. Rotor shaft isconnected
toaDC motor torotatetherotor at desired speeds. The
cross-sectional areas of tanks tested are A=1 m?, and
0.5184 m? in each of the aspect ratios. Thus the four
tanksweretested. Conditionsof geometric similarity as
suggested by Udayaet al. (1991) were maintainedin all
thefour surface aeratorsi.e.

VA/D=2.88,H/D = 1.0, 1/D=0.3,b/D = 0.24
and h/H = 0.94 (1)

Determination of Mass transfer coefficient

According to two-film theory (Lewis andWhitman,
1924), the oxygen transfer coefficient at T°C, K a, may
be expressed asfollows.

K.a, =[In(C,-C,)-In(C.-C)it @)

Where, the concentrations C, C and C, are dissol ved
oxygen (DO) in parts per million (ppm), C, = the
saturation DO concentration at time tending to very
largevalues, C isatt=0and C isattimet =t. Thevalue
of K a, can be obtained as slope of the linear plot
between In (C - C) and timet. Thevalueof K a, canbe
corrected for a temperature other than the standard
temperature of 20°C as K a,, using the Vant- Hoff
Arrheninsequation (WEF and ASCE, 1988):

Ka, =Ka, 00 » 3)

Where6 isthetemperature coefficient 1.024 for pure
water. Thewater in the aeration tank is deoxygenated
by adding certain standard chemicals (WEF and ASCE,
1988) and therotor isrotated at adesired speed. During
the re-oxygenation process, DO measurements are
madeat regular intervals of time. The known val ues of
DO measurementsintermsof C, at regular intervals of
timet (including theknown valueof C att =0) alinear
lineisfitted, by regression analysis of Eq. 2, between
thelogarithm of (C, - C) andt, by assuming different
but appropriate values of C_such that the regression
that givesthe minimum “standard error of estimate’ is
taken and thusthevalues of K a, and C_were obtained

simultaneously. ThevaluesK a,, are computed using
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Eq. 3with = 1.024 as per thestandardsfor purewater
(WEF andASCE, 1988). Thusthevaluesof K a, were
determined for different rotational rotor speedsNinall
of thegeometrically similar tanks.

Determination of power availability to the shaft
The power available at the shaft was calculated as
follows (Cook and Carr, 1947), which isgiven by:

P=IV,-1Vi-R (1,419 4

Where, |, and |, arethe current drawn by the motor
at no loading (experiments without water, i.e., when
therotor isrotated freely in theair) and loading (when
the rotor is rotated in water) respectively, V, and V,
arethevoltages at noloading and | oading conditions
respectively and R_ is the armature resistance of the
DC motor. By doing this way internal 1osses due to
friction and such others can be eliminated to get an
effective power available to therotor shaft P can be
computed from Eq. 4.

Scale-up criteria

Scaling-up is generally termed as to predict the
processvariablesfor any sizesbased on thesimulation
equations devel oped from the laboratory experiments.
From theseresults, large-scale design can bemodeled
from successful small-scale results avoiding process
failure. The principle of similarity (Holland, 1964,
Johnstone and Thring, 1957) together with the use of
dimensionless groups is the essential basis of the
scale-up of results. The scale-up of surface aeration
systems can be divided into two categories: the scale-
up of oxygen transfer process and the scale-up of
power requirements, which are discussed | ater.

Oxygen transfer coefficient

The variables influencing the oxygen transfer
coefficient at 20°C (i.e., K a,,), for agiven shape of an
aeration tank asshown in Fig. 1, aregiven by

KLa20:f(A1H1D1|1b1 ha Naga pa,pW,V) (5)

Where, the first six are the geometric variables as
shown in Fig 1. Rotational speed of therotor with six
flat bladesisN, gistheacceleration dueto thegravity,
? is the kinematic viscosity of water and pand p,,

Rectangular tank surface...

are the densities of air and water respectively. Eqg. 5
(Rao, 1999) may be expressed in terms of non-
dimensional parameters asfollows:

(6)

k = f (VA/D, H/D, I/D, b/D, h/D, pd/pw, R, F)

Where, k = K a,, (v/g?) **is the non-dimensional
oxygen transfer coefficient, R = ND?%v is called
Reynolds number and F = N2D/g isthe Froude number.
It can be expressed aso as (Rao, 1999; Rao, et al.,

2004):
k=f (VAID, H/D, I/D, b/D, h/D, p /p,, X) U]

Where X= F¥3R¥3|s a parameter governing the
theoretical power per unit volume.

InEq. 7, theparameter p,/P,, iSassumed asinvariant;
henceit can beeiminated fromthe analysis. Thefirst
five non-dimensional parameters represent the
“geometric-similarity” of the system and the last
parameter representsthe dynamic-similarity. When the
geometric similarity conditions are maintained, the
functional relationship represented by Equation 7 is
reduced to afunction of dynamic similarity (Rao, 1999)
for any shape of aeration tank.

k=1(X) (8)

Theexperimental dataexpressed intermsof X=F#
*R¥3andk=K ay ( /g9 areplotted in Fig 2. Itisquite
interesting to note that the each set of data points
pertaining to the given aspect ratio (1:1.5 or 1:2) of
the rectangular tank fall very uniquely on a single
curve. The equations governing such simulations
respectively for aspect ratios 1:1.5 and 1:2 can be
expressed by the following eguations:

k, ;={0.701 exp[0.19X°*] +8.035—7.955exp
[-1.85(X-0.02)2}10° /X 9)

k ,={0.6275 exp[0.5X°] + 21.085 - 20.955 exp
[-1.85(X —0.02)?]} 10 (10)

Where, k  , and k, is the non-dimensional oxygen
transfer coefficient of rectangular tanks of aspect ratios
L/W=1.5and 2 respectively.
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Fig. 2: Simulation eguation correlating oxygen transfer coefficient with theoretical power per unit volume

Power number

The usage of power in mass transfer operationsis
very important while judging the performance of an
aerator. The hydrodynamic conditions of surface
aeration system can be characterized by interpreting
power consumption of theimpeller. Assuming theforces
that may act on afluid elementin atank during agitation
aretheviscousforceF, , drag forceonimpeller F, and
gravity force F_, each of which can be expressed with
characteristic quantiti es associ ated with the agitating
system. The viscous force can be represented by the

Newton’slaws of viscosity as F,=u u A.ltcan be

assumed (Perry et al., 1984) that the average velocity
gradient is proportional to agitation speed N and the
area A isto D? which results F, ~ u ND? The drag
force F, can becharacterized in an agitating system as
(Lee, 1992), F, ~ P/ ND and gravity force, F_ ~pgD?.
Thesummation of all forcesgivestheinertial force, F,
~P D*N?in an agitated system, asF, = F_ + F,+ F_. It
canbesmplifyasF /F +F, /F +F_/F=1Firstteem
is called as power number (P)) and relates the drag
forcetotheinertial forceanditisequal toP,= P/ P

N2D3. Second and third termsarewell known and are

called as Reynolds (R) and Froude number (F)
respectively. Above analysis is showing that the
hydrodynamics characteristics of an agitated system
can be represented by these three numbers, P, R and
F. Ingeneral, asgivenin theliterature (Rushton, 1952;
Maise, 1970), these numbers can be expressed as
follows:

Py =f (R,F)

While adopting either the Reynalds criterion or the
Froude criterion, scal e effects are bound to appear, as
shown in Figs 3aand 3b, becauseneither criterion can
uniquely represent the power number of the surface
aerators. In other words, power number isdifferentin
different sized aerators for agiven value of either the
Reynolds number or the Froude number even though
all the tanks are geometrically similar. It may be also
noted that it is impossible to maintain a constant
Reynolds or Froude number whilevarying the Froude
or Reynol ds number in geometrically similar systems,
when the same fluid is used in both the systems.

(11)
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As discussed above, the parameter X contains both
Reynolds number and Froude number and it is
expressed as X = F¥#*R¥3 | So the experimental data
expressed in terms of power number (P) and X are
plotted in Fig 4. It is of interest to observe that for
geometrically similar systemsrectangul ar tank surface
aerators, power number, P, and X isuniquely related.
Experimental data falls on a unique curve. Such a
simulation curveis sizeindependent, but different for
different aspect ratios. The eguations governing the
simulation curves can be described by the following
two equations:

P,=0.87+0.1/ X+1.16e*

[Rectangular Tank of L/W =1.5] (12)
P,=2.16+0.16/ X+1.36e*
[Rectangular Tank of L/W =2] (13)

RESULTS
The relations developed in Egs. 9 and 10 and 12
and 13 (Figs. 2 and 4) for k with X and P, with X
respectively are analyzed for design purposes with an
objective of searching the conditions leading to
conserve the energy consumption, while choosing
different 5 zed aerator to aerateagiven volume of water.
It should be also mentioned here that these design
curvesare useful not only for scale-up but also hel pful
in choosing the right sized rectangular tank and
appropriate dynamic conditions. Such design
implicationsare demonstrated asfollows:
Example Analyzetheenergy requirement tore-aerate
1 mévolumeof water by asingletank and anumber of
smaller sized tanks of equal volume, when each tank is
subjected to a constant installed input power (P) to
the shaft. Therotor isrotated until DO concentration,
C,, attains 80 % of the saturation value. Theinitial DO
concentration C =0 at t =0 and water temperature is
assumed as constant at 25 °C. Solution: Four different
sizedrectangular tanks(1m2, 0.5m3, 0.25m*and 0.1 m°)
of aspect ratios 1.5 and 2 are taken to analyze their
energy consumption to aerate 1 m3of water at constant
input power (P), such that the numbers of tanks of
each size are respectively 1, 2, 4 and10.Step 1:
Geometrical parameters of the typical surface aerator
asshown in Fig. 1 can beworked out by the geometric
similarity condition as given in Eq. 1, step 2: The
problem is solved for different assumed values of
power, P =50, 100, 200 and 300 watts. As P, D and
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volume of water are known; N can be cal culated from
Egs. 12 and 13 for aspect ratios 1.5 and 2 respectively
by trial and error method and there from X and P can
be calculated.

Step 3: The oxygen transfer coefficient, k can be
computed from Equation 9 and 10, because X isknown
from the previous step or can beread out from Fig 2.
Step 4: The value of K a,) can be computed from
k=K a, (v/g?)"*,andK a fromEq. 3.

Stpe 5: Timet required to achieve 80 % of saturation
valueiscalculated from Eq. 2.

Step 6: Energy is defined asthe product of power
andtime. Toaerate 1 m® of water, it isrequired toemploy
10tank of 0.1 mé, 4 tanks of 0.25 m?, 2 tanks of 0.5 m®
and onetank of 1 m?® capacities. So Energy required to
re-aeratethe 1 m3 of water in multipletanksiscal culated
astheproduct of total power (number of tank x power
consumed) andtime AsshowninFigs. 5and 6, smaller
sized tanksare consuming | essenergy to re aerate the
same volume of water, with less time for re aeration
(Figs. 5cand 6¢), when compared to bigger sized tanks.
One more interesting conclusion can be drawn from
Figs5 and 6issuch that even for agiven sizeof tanks,
higher the input power P, lesser the energy
reguirementsto aerate the same volume of water, which
suggeststhat energy can be saved substantially when
the aerators of a given size are run at higher input
powers (Figs. 5d and 6d). Alsoit can be observed that
inagivensizeof aerator K a, increasesasinput power
increases (Figs. 5aand 6a) whereastherotor speed is
alsomore(Figs. Bband 6b). It isof our interest to know
how much saving of energy can be achieved by using
smaller sized tanks or lossof energy when bigger sized
tanksare employed in aeration processto re-aeratethe
same volume of water. As shown in Fig. 7, by using
smaller sized tanks, energy savings can be as high as
about 80 % and 64 % in rectangular tank of aspect
ratios1.5 and 2 respectively when lower input power is
given to each tank.

DISCUSSION AND CONCLUSION

This paper develops the simulation criteria
connecting the three major parameters of oxygen
transfer coefficient, k and power number, P, and a
parameter governing the theoretical power per unit
volume, X (=F*3R¥?) in geometrically similar rectangular
tanksof two aspect ratios (L/W=1.5and 2). Simulation
equations, thus devel oped are useful in scaling up the
present results for the higher sizes.
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It hasbeen found that either Reynalds (R) or Froude
(F) smilitudeisinsufficient to s mulate P,. Based on
the experiments, it is concluded that P, is uniquely
related to X. Equationsgoverning P, and X and k and
X have been also devel oped in the present paper.

Design procedures for designing the rectangular
tank surface aerator have been demonstrated. It has
been found that at constant input power, employing
smaller sized tanksaremore energy conservativethan
using abig sized tank, while aerating the same volume
of water, thus energy saving by using smaller sized
tanks is very substantial. Besides this, time for re-
aeration is considerably reduced while using smaller
sized tanks when compared to bigger sized aeration
tanksto aerate the same vol ume of water.

NOTATION

The following symbols are used in this paper:
A = cross-sectional areaof an aeration tank;

b = width of theblade;
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C, =initial concentration of dissolved oxygen at time
t=0(ppm);

C, = saturation val ue of dissolved oxygen at test
conditions (ppm);

C, = concentration of dissolved oxygen at any timet
(Ppm);

D =diameter of therotor;

F = N2D/g, Froude number;

F, = drag force;

F. = gravity force;

F, =inertial force

F, = viscous force;

g = 9.81 m/&, acceleration dueto gravity;

H = depth of water in an aeration tank;

h = distance between the top of the blades and the
horizontal floor of thetank;

I, 1,=input current at noload and loading
conditions respectively;

k=K a_(v/g®)¥3 non-dimensional oxygen transfer

L7720
coefficient;
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K,a, = overall oxygen transfer coefficient at room
temperature T°C of water;

K,a,, = overall oxygen transfer coefficient at 20°C;
L = length of the surface aerator;

| = length of the blade (L);

N = rotational speed of the rotor with blade;

P = power availableto the rotor shaft;

P,= P/pN*D®, Power number;

R = ND%v, Reynolds number;

v = characteristics vel ocity;

V = volume of water in an aeration tank;

R,= armatureresistance of DC motor;

V., V,=input voltageat noload and loading
conditions respectively;

X = F#RY = theoretical power per unit volume
parameter;

0 = 1.024, constant for purewater;

v = kinematic viscosity of water;

p=mass density of water.

Volume of water to be nerated = Tm?
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