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ABSTRACT: Present paper endeavors to develop predictive artificial neural network model for forecasting the
mean monthly total ozone concentration over Arosa, Switzerland. Single hidden layer neural network models with
variable number of nodes have been developed and their performances have been evaluated using the method of least
squares and error estimation. Their performances have been compared with multiple linear regression model. Ultimately,
single-hidden-layer model with 8 hidden nodes have been identified as the best predictive model.
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INTRODUCTION
Processes involved in the formation of ozone (O3)

are highly multifaceted in nature. Ozone is a secondary
pollutant and is not usually emanated straightforwardly
from stacks. Instead is formed in the atmosphere as a
result of reactions between other pollutants emitted
mostly by industries and automobiles. The ozone
precursors are generally divided into two groups,
namely oxides of nitrogen (NOX) and volatile organic
components (VOC) like evaporative solvents and other
hydrocarbons. In suitable ambient meteorological
condition (e.g. warm, sunny/clear day) ultraviolet
radiation (UV) causes the precursors to interact
photochemically in a set of reactions that result in the
formation of ozone.

The process of ozone formation can be expressed as:
     NO2+ UV→ NO+O
     O+O2+M→ O3+M

Where, M is a third body molecule that remains
unchanged in the reaction.

Ozone produced this way gets simultaneously
destroyed as:
     O3+D→DO+O2

Where, D implies additional reactant that destroys
the ozone via oxidation.

Because of its capability to absorb the incoming
radiation, the stratospheric ozone is a major source of

stratospheric heating, which further heats the
troposphere. Again, because of radiation of IR the
tropopause gets some cooling. Thus, stratospheric
ozone exerts both heating and cooling effect on the
land-troposphere system. Total ozone is a measure of
the number of ozone molecules between the ground
and the top of the atmosphere. In a more mathematical
language, total ozone is simply the integral of the ozone
concentration with respect to height. A literature survey
by the authors of the present contribution has shown
that statistical time series analysis approach in
forecasting the atmospheric and environment pollution
has been proved viable by a number of researchers
(e.g. Milionis and Devis, 1994; Shi and Harrison, 1997
and many others). But, in recent times, artificial neural
network (ANN) has been proposed by many scientists
as a better alternative to the conventional regression
approach in forecasting time series pertaining to
complex atmospheric and environmental phenomena.
Since formation of ozone is a highly intricate
phenomenon, a number of researchers have
concentrated on its prediction and consequently
comparative studies have been carried out to discern
the performance of ANN over conventional regression
approach in predicting tropospheric ozone over
different cities. Prybutok, et al., (2000), Balaguer
Ballester, et al.,(2002), Nunnari, et al., (1998), Viotti, et
al., (2002) put ANN into practice in a number of case
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studies where they established supremacy of ANN over
customary methodologies in ozone forecasting. Corani
(2005) implemented ANN, pruned ANN, and lazy
learning to predict ozone concentration over Milan.
But, in all the aforesaid works, ANN models have been
developed with other meteorological variables as
predictors. In none of the ANN applications to ozone
concentration, past values of the same data have been
used as predictor. Since all other meteorological
variables have their own chaotic characteristics and
complexities, their inclusion to the input set would
incorporate more complexity in the forecasting. Present
approach viewed the prediction problem from a
different point of view. Instead of tropospheric ozone,
total ozone has been considered as the predictand and
instead of incorporating other meteorological variables;
past values of the total ozone time series have been
explored in developing ANN predictive models.
Performance of ANN models has been compared with
conventional regression model. The research work
explained in the present paper has been done in Kolkata,
India, during the period April-June 2006.

MATERIALS AND METHODS
Artificial Neural Networks, an overview

Artificial Neural networks are mathematical analogue
of biological neural systems, in the sense that they are
made up of an interconnected system of nodes
(neurons). Furthermore, a neural network can recognize
patterns in numeric data in a similar fashion to the
learning process in its biological counterpart. Neural
networks are highly robust with respect to underlying
data distr ibutions (non-parametric), and no
assumptions are made about relationships between
variables (unlike the linear or pre-specified curvilinear
relationships in regression). Since it does not depend
upon any assumption regarding the data and it is robust
to chaotic behavior of the data, ANN has opened up
new avenues to pattern recognition and forecasting
related to complex natural processes. According to
Maqsood, et al., (2002) ANNs are highly suitable to
the cases where the underlying processes are less
recognizable and are characterized by chaotic features.
Though ANN can be used in a number of complex
problems, the basic jobs that can be performed by ANN
can be precisely enlisted as
• Pattern recognition
• Pattern classification
• Prediction

Since the present paper involves prediction problem,
the features of ANN are discussed here from the point
of view of prediction. The earliest trainable layered
neural networks with multiple adaptive elements was
the Madaline I structure of Widrow and Hoff (for details
see Kartalopoulos, 2000). This ANN model had only
two layers. The first one was the adaptive layer and
the last layer was an output layer with fixed threshold
function. Because of less flexibility, this Madaline I
ANN of the early 60’s could not prove itself suitable
for practical purposes. Advent of the feed forward ANN
or Multilayer Perceptron (MLP) with Backpropagation
learning, an adaptation of the steepest descent method,
opened up new avenues for the application of ANN for
problems of practical interest (Kamarthi and Pittner,
1999; Gardner and Dorling, 1998; Hsieh and Tang, 1998).
In MLP, each network consists of several simple
processors called neurons, or cells, which are highly
interconnected and are arranged in several layers. There
are three basic types of layers: input layer, hidden
layer(s), and output layer. The input and output layers
are connected through hidden layer(s). There may be
one to several hidden layers in between input and
output layer. In mathematical form, the adaptive
procedure of a feed forward MLP can be presented as
(Kamarthi and Pittner, 1999):

kdkwkw η+=+1
(1)

      The above equation represents an iteration process
that finds the optimal weight vector by adapting the
initial weight vector 0w . This adaptation is performed
by presenting to the network sequentially a set pairs
of input and target vectors. The positive constant η is
called the learning rate. The direction vector kd is the
negative gradient of the output error function E.
Mathematically it is denoted as

( )kwEkd −∇= (2)

The Backpropagation algorithm in which the
weights of the network are updated immediately after
the presentation each pair of input and target output is
called the sequential learning. The other learning
procedure in which the whole training set is considered
as a batch is called the batch learning.
For sequential learning,
( ) )( kwpEkwE =

For batch-learning
( ) ( )∑= p kwpEkwE

(3 a)

(3 b)
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Where, Ep(wk) denotes the mean squared error
(MSE)for a pair of input and output. The learning or
training process may be supervised, unsupervised or
competitive. The aim of supervised learning is to find
out a set of weight vectors that minimizes the deviation
between network output and the target output over
the whole training. The optimal weight matrix obtained
this way is applied to the test set to investigate the
viability of the model.

Data and analysis
Present paper deals with mean monthly total

ozone concentration in Arosa, Switzerland between
1932 and 1971. The measurements are taken in
Dobson Units (DU) (300 DU=1layer of 3mm if the
whole ozone column is taken at the sea level with
standard conditions). First of all, an autocorrelation
analysis i s per formed on  the dataset .  The
autocorrelation coefficients (for lag k) are computed
as (Wilks, 1995)

( )( ) ( )( )[ ]
( )( )( ) ( )( )( )knxVarianceknxVariance

knxknxCov
kr

−−

−−
=

,
(4)

Where, kr  denotes the autocorrelation of order k,

( )knx −  denotes the first (n-k) data values, ( )knx −

denotes the last (n-k) data values, and k varies from
1 to n. The autocorrelation coefficient (ACC) values
are computed from the available data set up to 40
lags and their magnitudes are presented in Fig. 1.
The Fig. makes it clear that the high ACC values are
occurring at the lags 1,6,12,18 etc. That is, at lags
separated by 5 time points. Thus, it can be inferred
that mean monthly total ozone time series is
completing a cyclic pattern in every 6 months. Thus,
a predictive model can be developed with 5 months’
data as predictor and the 6th month’s data as
predictand.

Multiple linear regression model
A multiple linear regression model is proposed as

ε+++++= 54321ˆ eXdXcXbXaXy (5)

Where, the left hand side of equation (5) implies

the predicted value of mean monthly total ozone in
the 6th month with X1, X2, X3, X4 and X5 as predictors
i.e. the mean monthly total ozone in months 1,2,3,4
and 5. The constants a, b, c, d and e are the regression
parameters computed by the method of least squares
(Wilks, 1995). In the present study the regression
equation comes out to be

ŷ =0.30 X1+0.18 X2+0.10 X3+0.20 X4+0.54 X5+282

From this linear multiple regression fit it comes
out that the coefficient of determination is 0.7512,
which is not very far from 1. Thus, this linear fit is
not a very bad predictive model. The values of t-
statistic are computed from this model and are
compared to the critical t-statistic value. The
comparison is presented in Fig. 2, which shows that
only the value of the time series in month 3 falls just
below the critical value. Thus, it can be said that
mean monthly total ozone concentration in the month
t, depend heavily upon the values in the months t-5,
t-4, t-2 and t-1; but does not depend significantly
upon the month t-3.

Single hidden layer ANN models
In  t he p revi ous discussi on  i t  ha s been

established the value corresponding to the month
t-3 does not depend influence the month t very
significantly. Since ANN models can work even with
not-so-correlated predictors, all the values can be
considered on the same foot while constructing
single-hidden-layer ANN models. In this paper,
seventeen single-hidden-layer ANN models have
been developed with Backpropagation algorithm
explained in equation (1) through (3b). The models
have been denoted as H1, H2, H3, H4, H5, H6, H7,
H8, H9, H10, H11, H12, H13, H14, H15, and H16and
H17. Here Hi implies that the model contains ‘i’
number of nodes in the hidden layer. All the models
have been trained separately with sigmoidal
activation function up to 500 epochs sequentially
with the aim that the mean squared error (equation
(3b)) is to be minimized. From each input set, 75%
data are considered as the training data and the
remaining 255 data are considered as the test or
validation data. To say more specifically, 120 data
have been considered as validation set and 355 data
are considered as training set. While training,
learning rate has been taken as 0.9 and momentum
rate has been taken as 0.2.

Int. J. Environ. Sci. Tech., 4 (1): 141-149, 2007
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Fig. 1: Schematic showing the ACCs for different lags pertaining to mean monthly total ozone time series over Arosa,
Switzerland between 1932 and 1971. The lags are taken in months
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Fig. 2: Schematic showing the computed from multiple linear regression (MLR) model and critical t-statistic values

RESULTS
First of all,  coefficients of determination

conventionally denoted as R2 (Comrie, 1997) are
computed for all the predictive models. It has been
mentioned earlier that R2 for multiple linear regression
(MLR) model is 0.7512. Now, R2 are computed for all
the 17 ANN models and are presented in tabular form
in Table 1. To compare the performance of different
ANN models between themselves and with MLR

model, Fig. 3 is prepared. This Fig. shows that all the
ANN models excepting H2 and H4 produce higher CD
than MLR model. Thus, H2 and H4 are discarded from
our discussion. From the rest of the models it is found
that H1 produces almost the same CD as by MLR. Thus,
a single hidden layer model with only one node does
not produce any overwhelmingly better prediction than
MLR.

Single hidden layer artificial neural network models versus multiple ...
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Fig. 3: Coefficients of determination for different ANN models and multiple linear regression model

    Models H6, H9-H17 produce significantly better
prediction than MLR but are distribute more or less
regularly around an average value. It is very important
to note that up to H8, addition of hidden nodes is
producing significant changes in the CD, but after that
the CDs did not vary drastically and all of them are
significantly lower than that produced by H8. From
here it can be inferred that after 8 hidden nodes, adding
more hidden nodes does not create any room for further
improvement in the prediction. The best CDs are
produced by H3, H5, H7 and H8. The next task is to
identify the best model among these four. Now, the
prediction error (PE) (Perez and Reyes, 2001) over the
whole test set are computed for each of the four models
mentioned above and are schematically presented in
Fig. 4. This Fig. clearly shows that the least PE is being
produced by H8. From here it can be said that H8 is the
best ANN model to forecast the mean monthly total
ozone concentration over Arosa, Switzerland. But, to
reach the final conclusion some qualitative tests are
being executed. Scatter plots for the actual and
predicted values corresponding to H3, H5, H7 and H8
are presented in Fig. 5a-d. The least square regression
fits to the models are also presented in the Figs. It is
apparent from those equations that the least y-intercept
(79.021) by the trend equation occurs for H8. The other

y-intercept values are 80.023 (H3), 83.515 (H5) and
80.865 (H7). Since for highest correlation between actual
and prediction the y-intercept becomes 0, thus, the
lowest y-intercept producing model (H8) can be
considered as the best predictive model. After all these
tests, H8 is identified as the best predictive model and
the prediction by this model with the actual values are
presented in Fig. 6. A very close association between
the actual and the prediction can be viewed from here.
The structure of the final model (H8) is presented in
Table 2.

DISCUSSION AND CONCLUSION
The rigorous study executed above leads us to

conclude some important characteristics of the time
series pertaining to total ozone time series over Arosa,
Switzerland. The autocorrelation study reveals that
mean monthly total ozone concentration over Arosa,
Switzerland follows a cyclic pattern with 6 months
cycle. Furthermore, the third month within the cycle
has less significant impact upon the sixth month.
Artificial Neural Network with Backpropagation learning
has been established to be a potent predictive tool for
the said time series. A comparative study with respect
to prediction ability reveals that single hidden layer
predicts the mean monthly total ozone concentration

Int. J. Environ. Sci. Tech., 4 (1): 141-149, 2007
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Table 1: Tabular presentation of the CD (R2) for different single hidden layer ANN models

   ANN model         R2 ANN model         R2 
H1 0.751587223 H10 0.75711867 
H2 0.749037151 H11 0.758648011 
H3 0.769796595 H12 0.75457583 
H4 0.749937679 H13 0.755545439 
H5 0.767296424 H14 0.754808694 
H6 0.759243692 H15 0.757303296 
H7 0.768768298 H16 0.755478693 
H8 0.769620271 H17 0.75292268 
H9 0.759791222     
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Fig. 4: Prediction errors (PE) for the ANN models with maximum coefficients of determination

over Arosa, Switzerland more efficiently than multiple
linear regression model. A further comparative study
among different neural net models proves that single-
hidden-layer Artificial Neural Network with 8 hidden

nodes is the best predictive model to forecast the mean
monthly total ozone concentration over Arosa using
the past data values.

Hdn1_Nrn1  0.4733 -2.3168 - 0.6795 -1.0448 -0.7702 -2.9610 
Hdn1_Nrn2  2.7856 -4.5471 - 3.6978 -0.5105 -0.5843 1.9933 
Hdn1_Nrn3  -0.8968 0.1803  0.1131 -0.7821 -0.7530 -1.0905 
Hdn1_Nrn4  3.1582 -0.8482 - 0.9615 -0.4335 -0.8715 -2.4837 
Hdn1_Nrn5  -1.2774 -1.5098  -0.6341 -1.0410 -1.3477 -0.4665 
Hdn1_Nrn6  -1.6250 1.5870  2.4146 -0.3212 -1.7871 -4.6208 
Hdn1_Nrn7  -1.0507 -0.1162  -0.2167 -0.4801 -0.6661 -0.7367 
Hdn1_Nrn8  -1.1073 -0.1166  -0.9859 0.1465 -0.7951 -0.5338  
 

Table 2: The final weight matrix obtained through Backpropagation training of a single-hidden-layer ANN with 8 hidden nodes
after 500
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Figs. 5a-d: Scatterplots of actual versus prediction. Trend equations are presented in the corners with the
coefficients of determination (R2)
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