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ABSTRACT: Dyestuffs removal from industrial wastewater requires special advanced technologies, 
since dyes are usually difficult to remove by biological methods. In this study nanofiltration process was 
used for removal of different dyestuffs from solutions. The rate of dye removal by spiral wound nanofiltration 
membrane in film thin composite MWCO=90 Dalton, was evaluated for four classes of dyes acidic, disperse, 
reactive and direct in red and blue dyes medium. Dye absorbance was measured by spectrophotometric 
method (2120 Standard Method 1998). Effects of feed concentration, pressure and total dissolved solids 
concentration were also studied. Results showed that increasing dye concentration lead to higher color 
removal up to 98 % and at different pressures for acidic and reactive blue were up to 99.7 %. Different types 
of dyes had no effect on dye removal and permeate flux. During 2 h.of the operation time, permeate flux 
decline was increased. Permeate fluxes for different types of red dyes were from 16.6 to 12.6 (L/m2/h.) and for 
blue dyes were from 16.6 to 10.45 (L/m2/h.). Presence of sodium chloride in dye solutions increased dye 
rejections nearby 100 %. Chemical oxygen demand removal efficiencies for reactive blue, disperse blue, 
direct and disperse red dyes were also approximately 100 %. 
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INTRODUCTION 
Textile industries produce large amounts of colored 

wastewater (Al Bastaki et al., 2007). Textile effluents 
contain many chemical substances generating from 
resizing, dyeing, printing and finishing processes. 
Moreover, textile wastewater quality is variable with 
time and may include many types of dyes, detergents, 
sulphide compounds, solvents, heavy metals and 
inorganic salts, the concentration of these chemicals 
depends on the kind of process (Lopez et al., 1999; 
Kim et al., 2000).Textile wastewater can not directly be 
discharged because it has dramatic impacts on 
receiving water body (Van der Burggen et al., 2001); 
hence, wastewater reuse and treatment in textile 
industries is necessary due to the high rate of water 

consumption and the environmental impacts (Papic et 
al., 2004). Dyes from dyeing operations are the major 
source of color in textile effluents. As a result of the 
low biodegradability of most dyes and chemicals used 
in textile industry, biological treatment by activated 
sludge does not always meet with great success and in 
fact most of these dyes resist aerobic biological 
treatment and oxidizing agents (Moulin et al., 2004).An 
advanced treatment technology is necessary, 
especially if reuse of treated wastewater and 
decolorization are objective (Rott and Minke, 1999). 
Therefore, membrane filtration can be an optimal 
solution to remove color, COD and salinity (DasGupta 
et al., 2004; Chen et al., 2002). Nanofiltration (NF) is a 
newly developed membrane technology for various 
water treatment and purification purposes (Ku et al., 
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2005; Tchobanoglous et al., 2003). Although, filtration 
techniques require high initial setup cost, reuse of salts 
and permeate recompense them. Many approaches 
have been studied to minimize membrane fouling and 
reducing the costs; these include pretreatment of feed 
water, hydrodynamic cleaning with high cross-flow 
velocity, optimization of chemical and operational 
conditions such as pH and recovery ratio and 
modification of the membrane surface (Lee et al., 2001; 
Laine et al., 1989; Jucker et al., 1994; Yuan et al., 1999; 
Hong et al., 1997). There are several appropriate 
techniques as pretreatments prior to nanofiltration 
process, including membrane process as microfiltration 
(MF) and ultrafiltration (UF). Many studies on 
decolorization of textile wastewater by nanofiltration 
processes have been carried out which some of them 
are as follows: 

Lebrun et al. investigated dye removal by electric 
field enhanced nanofiltration process by BQ01 and 
NF45 membranes. Results showed variations in dynamic 
permeability in the presence of electrolytes and 
according to the electrical potential applied. A 100 % 
dye rejection was obtained for both membranes tested 
(Lebrun et al., 2000). Fuchs et al. studied the 
performance of a membrane bioreactor (MBR) for the 
treatment of textile wastewater, and to investigate its 
capability to achieve a water quality meeting reuse 
criteria. COD removal was found to vary between 60 
and 95 % and COD levels reduced at lower volumetric 
loading rates that tested. A distinct relationship between 
sludge growth and color removal was observed (Fuchs 
et al., 2006). Das Gupta et al. studied a nanofiltration 
with MWCO = 400 Dalton to treat the effluent from a 
textile plant. Reactive black and red dyes were used 
and separations with retentions up to 94 and 92 % of 
the two dyes were achieved respectively. COD removal 
was obtained up to 94 % in cross flow cell (Das Gupta 
et al., 2003). De et al. studied unstirred batch and cross 
flow nanofiltration with MWCO = 400 Dalton to 
separate dye from aqueous solutions. Using the 
experimental results, the model parameters i.e. the 
diffusivity of the solute (D) and real retention (Rr) of 
the membrane were evaluated by optimizing the 
experimental flux and permeate concentration profiles 
(De et al., 2004).  Chaudhari et al. investigated the 
decolorisation of the commercially important azo dyes 
under anaerobic conditions in wastewater. Color 
removal was achieved up to 99 % in both the dye- 
containing reactors. COD removals of up to 95 %, 92 % 

94 % were achieved in control, orange and black dye- 
containing reactors, respectively (Chaudhari et al., 
2002). The aim of this investigation is to study the 
evaluation of color, COD and TDS removal by 
Nanofiltration of dye-salt mixtures solutions produced 
by textile industries. 

MATERIALS AND METHODS 
Experiments were carried out at the department of 

Environmental Engineering laboratory at the Science 
and Research Campus of Islamic Azad University in 
Tehran, Iran and ended in 2007. In this study, synthetic 
dye solutions were used for experiments. Four classes 
of dye with the highest usage rates in Iranian textile 
industries reactive, disperse, acidic and direct in blue 
and red, were purchased from Bayer Company. 
Characteristic of these dyes are presented in Table 1. 

Chemical substances which were used for COD 
experiments were supplied by Merk Company in 
Germany. All the solutions were prepared with tap 
water. The experiments were preformed with a 
nanofiltration pilot plant as shown in Fig.1, without 
recycling of permeate. Two different microfiltration 
membranes as prefilter and one nanofilteration 
membrane were used simultaneously in the same unit. 
The commercial membranes NF 90 from Filmtec were 
used. According to the manufacturer product 
specifications, these membranes are thin film composite 
for operation at pH 2 to 11 and temperatures up to 
45 ºC. The NF 90 membrane is reported in the literature 
as having a top layer of polyamide composition (Cabral 
Goncalves et al., 2005). Polyamide compounds have 
amide and carboxyl groups bound to the aromatic rings, 
which tend to reduce membrane hydrophobicity (Cho 
et al., 1999). Characteristics of the nanofiltration 
membrane used in this work are shown in Table (2). Two 
micro filters with pure size of 5 and 1 micron were used 
in the pilot, rolled as a prefilter for nanofilteration 
membrane 90 Dalton. Permeation experiments were run 
at constant temperature 20 ± 2 º C with transmembrane 
pressures, ranging from 7.5 to 12 bars and flow rate 
was 8 L/min. Schematic diagram of nanofiltration pilot 
plant is shown in Fig. 1. 

Synthetic wastewater preparation 
Dye solutions were synthesized in three 

concentrations of 5, 50 and 100 mg/L by mixing of every 
individual dyes powder direct, disperse, reactive and 
acidic in red and blue in tap water. In this investigation, 
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Type of dyeCharacteristicsColor indexCommercial name
Disperse blueRNF 5 (300%)
Direct blueB2R
Acidic blue5 RBlue 113Cyanine 5R
Reactive blueKNBRed 60
Disperse redE3BRed 12 bRed E3B
Direct redDirect red 105
Acidic redRed88Carmozin 206
Reactive redKE3B  

Table 1: Characteristics of applied dyes used in the experiments 

Stabilized salt rejection  
                 (%) 

Product water flow rate 
(Gpd / m3/d) 

Operating pressure 
(Psi / bar) 

Nominal Active Surface 
Area  (ft2 /m2) 

Type of membrane 

>97.0 (2000)/(7.6) 70 / 4.8 82 / 7.6  NF 90 4040 

 

                Table 2: Characteristics of nanofilteration membrane 

                       Table 3: Operating condition of NF 90 

to evaluate the effect of total dissolved solids (TDS) on 
dyes removal by nanofiltration membrane, sodium 
chloride was added to the solutions in order to produce 
TDS concentration from 1000, 2000 and 3000 mg/L. 

Experimental 
Nanofiltration experiments were carried out in 

different steps: 
•  In the first step, experiments were carried out in 3 
different concentrations 5,50 and 100 mg/L  of each dyes, 
and the nanofiltration consist of single concentration 
step and solutions had TDS concentration as a solvent 
(TDS of  tap water = 400 mg/L). 
•  In second step, the nanofiltration experiments were 
carried out at different pressure 7.5, 10 and 12 bars, acidic 
and reactive blue dye was used in this stage. Dye 
concentrations in all experiments were 50 mg/L. 
•  In the third step, different TDS concentrations were 
investigated. In order to prepare the dye-salt mixture 
solutions, sodium chloride was added to tap water to 
produce TDS concentrations of 1000, 2000, 3000 mg/L. 
In this step, the temperature was kept constant, between 
20-25 ºC, dye concentration was 50 mg/L and 
transmembrane pressure was 10 bars in all runs. 

In all steps, samples were collected for analysis every 
15 minutes within 2 h. All experiments were carried out in 

2 h. to reach the steadystate condition (Koyuncu and 
Topacik, 2002). 

Sample analysis 
Samples of permeate and raw wastewater were 

collected during experiments. All the experiments were 
carried out based on Standard Method. COD was 
determined through open reflux method (5220 Standard 
Method). The color was determined spectrophot 
ometrically at a dominant wave length by 
spectrophotometric method No. 2120 Standard Method 
(Clesceri et al., 1998), using a Shimadzu UV-Vis 
spectrophotometer (UB-1201 PC). The conductivity for 
NaCl solution was measured by Horiba DF-H 
conductivity meter. pH of samples was measured by 
Horiba pH meter.  Retention factor (R) of each species is 
calculated as: 

Where R is retention factor ( % ) , Cp is concentration in 
the permeate (mg/L) , CR  is concentration in the raw dye 
solutions (mg/L) (Moulin et al., 2004). 

Description Parameters 
Polyamide Tin film 
composite 

Membrane type 

113 ºF  (45 ºC) Maximum operating temperature 
600psi (41 bar) Maximum operating pressure 
16gpm (3.6 m3/h.) Maximum feed flow 
15 psi (1 bar) Maximum pressure drop 
(2-11) pH range , continuous operation 
(1-12) pH range, short term cleaning (30 min.) 
<0.1 ppm Free chlorine tolerance 
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Where J w is the permeate flux (L/m2/h.), L/ h./ unit of 
membrane surface area, Q p is permeate flow per h; A is 
active surface area of membrane (m2) respectively. 
(Ahmad et al., 2006). 

RESULTS AND DISCUSSION 
Effect of dye concentration 

The results are shown in Figs. 2 and 3.which the 
percentage of dye removal in different dye concentration 
5. 50 and 100 mg/L were obtained as follow:  The dye 



A. H. Hassani et al. 

404 

1. Feed tank (V= 300 μL)  2. by pass valve  3. Outlet valve  4. Low pressure pump  5. Gage pressure of microfilter   6. Microfilter membrane 5μ  7. Microfilter 
membrane 1μ   8. Flow meter  9. Centrifuge pump ( - Flow = 8 L/min - Pressure head = 5-60 m -RPM = 1425-1725)  10. Nanofilter membrane housing  11. gage 
pressure of nanofilter membrane  12. Outlet valve (concentrate)  13. Permeate valve 

Fig. 1: Schematic diagram of nanofiltration pilot plant 

removal percentage for acidic red was 98.33, 99.61, and 
99.36 %; disperse red 93.57, 97.24, 99.26 %; reactive red 
were 99.07, 99.48, 99.74% and direct red 97.5, 99.46, 99.68 
%. The results for blue dye were respectively : acidic blue 
96.51, 99.74 , 99.8 %; disperse blue 97.54 , 99.24 , 99.58 %; 
reactive blue 99.07 , 99.15 ,99.62% and direct blue 98.59 , 
99.52 , 99.64%. As the results, with increasing of dye 
concentration, color removals slightly were increased. 
Different types of dyes did not have any effect on dye 
removal but color removal for disperse red was increased 
more than the other because of low solubility of dye in 
solution. Permeate flux was decreased with increasing 
dye concentration as a result of increasing the osmotic 
pressure and the polarization on the membrane surface 
(Al Bastaki et al., 2007; Koyuncu, 2002; Akbari et al., 
2002). Figs. 4 and 5 show the effects of different types of 
dyes on permeate flux decline. Permeate fluxes for all 
types of red dyes were obtained between 16.6-12.6 (L/ 
m2/h), but permute flux for all types of blue dyes were 
decreased between 16.6-10.45 (L/m2/h.). Results in 
Fig. 4 and 5 concluded that permeate flux decline for 
blue dyes obtained were higher than the red dyes. The 
Lowest permeate fluxes were obtained for direct and 
disperse blue dyes (L/m2/h.) because of low solubility 
characteristics of these dyes which resulted in membrane 
fouling in the end of operation time. Furthermore, 
permeate flux decline were increased during the 
operation time due to membrane fouling in each run. 
Membrane fouling may be caused by the dye adsorption 
on the membrane surface observed at the experimental 

runs, which was indicated by the presence of color on 
membrane after filtration, and is in accordance with 
findings in other studies (Koyuncu, 2002). In this step 
TDS of dye mixtures without salt addition was measured 
in all feed samples and permeate samples. TDS rejection 
was obtained in permeate flow by nanofilteration process 
90 Dalton up to 97 % for all experiments and different 
dyes concentrations and types of dye did not have any 
effect on TDS rejection.The results of measurements for 
all experiments were the same, therefore two of them are 
shown in Figs. 6 and 7. 

Effect of pressure 
With increasing the pressure, flux is expected to 

increase accordingly due to solution – diffusion model. 
The increase in feed pressure will increase the driving 
force, overcoming membrane resistance (Chen et al., 
2002; Gholami et al., 2003). The effect of transmembrane 
pressure on dye removal in permeate flux shows a quasi- 
liner increase in flux with increasing the pressure 
(Koyuncu, 2002). In this investigation, icreasing the 
pressure from 7.5 to 10 and 12 bars leads to an increase 
in the permeate flux. Higher flux values were obtained at 
12 bars for applied dyes. The results are shown in 
Figs. 8 and 9. In this step, reactive blue and acidic blue 
dyes were used for all experiments. After 2 h., operation 
time of each run, permeate flux decline was increased 
due to concentration polarization. The mass transfer 
coefficient remains constant at low pressure and 
increased rapidly at high pressure. Both these 

Nanofiltration in textile wastewater 
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Fig. 2: Variation of dye removal at different concentration 
of red dye (Dye concentration = 5, 50, 100 mg/L, 
p=10 bar, T = 20-25 °C, TDS =400 mg/L) 

Fig. 3: Variation of dye removal at different concentrations 
of blue dye (Dye concentration = 5, 50, 100 mg/L, 
p=10 bar, T = 20-25 °C, TDS =400 mg/L) 
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Fig. 4: Variation of permeates flux with time for different 
type of red dye (Dye concentration = 50 mg/L, p=10 
bar,  T = 20-25 °C, TDS =400 mg/L) 

Fig. 5: Variation of permeates flux with time for different 
type of blue dye.Dye concentration = 50 mg/L, p=10 
bar,  T= 20-25 °C, TDS =400 mg/L) 

0.00

5.00

10.00

15.00

20.00

25.00

0 10 20 30 40 50 60 70 80 90 100

time (min.)
a c id red dis pers  re d
rea c tive  red direc t red

pe
rm

ea
te

 fl
ux

 (L
/m

2 /h
) 

pe
rm

ea
te

 fl
ux

 (L
/m

2 /h
) 

relationships imply that mass transfer is not a limiting 
factor with regards to the high operating pressure. It 
also signifies the under-development of the 
concentration polarization layer, placing little importance 
on this phenomenon. However with high salts 
concentration in the dye bath, flux dose not increases 
as rapidly as does normal water flux  (Chen et al., 2002). 
Fig. 10 shows the effect of pressure on dye removal in 
nanofilteration membrane. Dye removal increased with 
increasing pressure. Dye removal was increased up to 
99 % for both reactive and acidic blue dye and it 
increased slightly up to 100 % at 12 bars. Dye removal 
for acidic blue was obtained higher than reactive blue. 
Feed dye concentration was set at 50 mg/L in all 
experiments in this step. 

Effect of salt concentration 
Figs. 11 and 12 show the variation of permeate flux 

with time in dye-salt mixture solutions. The nature of the 
membrane material, the type and concentration of solute 

and pH are the parameters that can affect the dye removal 
in different TDS concentrations. In each case, different 
electrostatic interactions take place between dye and 
NaCl and membrane (Koyuncu et al., 2003). In the three 
runs, TDS of solutions concerns to NaCl concentration 
was set at 1000, 2000 and 3000 mg/L respectively for 
both reactive and acidic blue dye. The concentration of 
dye was fixed at 50 mg/L and pressure was fixed at 10 
bars. All the experiments were carried out for 2 h.. to 
reach the steady state conditions. As expected, 
increasing the salt concentration resulted in a lower 
permeate flux (Al Bastaki et al., 2007).  Permeate flux is 
directly related to the feed pressure and osmotic pressure 
differences. Osmotic pressure increases with increasing 
salt concentration which leads to decreases of permeat 
flux. Flux decline at high salt concentration was lower 
than the flux decline at low salt concentration (Koyuncu 
et al., 2003).  Fig. 11 shows the results of variation 
permeate flux decline with salt concentration. 

Although flux values were high for low salt 
concentrations, it decreased with time (Koyuncu et al., 
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Fig. 6: Variation of TDS removal with time for different 
type of red dye in dye solutions without salt(Dye 
concentration = 50 mg/L p=10 bar, T = 20-25 °C, 
TDS =400 mg/L) 

Fig. 7: Variation of TDS removal percent with time for 
different type of blue dye (Dye concentration = 50 
mg/L p=10 bar, T = 20-25 °C, TDS =400 mg/L) 

Fig. 8: Variation of permeate flux with time for reactive blue 
dye in different pressure (Dye concentration = 50 
mg/L T = 20-25 °C, TDS =400 mg/L) 

Fig. 9: Variation of permeate flux with time for acidic blue 
dye in different pressure (Dye concentration = 50 
mg/L, T = 20-25 °C, TDS =400 mg/L) 

Fig. 10: Variation of dye removal with different pressure for 
acidic and reactive blue dyes (Dye concentration = 
50 mg/L, T = 20-25 °C, TDS =400 mg/L) 
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2003). One of the reasons for flux decline in high salt 
concentrations was decreasing of dyes solubility 
resulted in increasing of dye aggregation (Koyuncu et 
al., 2003). However, there was almost no variation in 
flux decline with time for the high NaCl concentrations. 
Dye removals in all experiments were obtained up to 99 
%. It was evident that the presence of NaCl has resulted 
in a higher color removal; this might be due to the 

concentration polarization layer formed by the salt that 
acts as an additional barrier to the passage of the color 
together with the barrier formed by the dye 
concentration polarization layer (Al Bastaki et al., 2007). 
In spite of previous studies, Fig. 13 shows that, with 
increasing NaCl concentration, dye removal percentage 
did not change in all the experiments and most of the 
results were obtained up to 99 %. 

COD removal 
Results were shown in Fig.14, COD removal for blue 

dye were obtained higher than red dye and results 
showed that COD could be removed completely by 
nanofilteration membrane for some dyes reactive and 
disperse blue, disperse and direct red. It is concluded 
that nanofiltration system has been proven to be well 
suited for the treatment of high dye and salt 
concentration of textile wastewater and the parameters 
in steps were optimized. The process allowed the 
production of permeate with great reutilization 
possibilities and permeate fluxes can be considered 
suitable for possible reuse or further polishing. Dye 
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Fig. 11: Variation of permeate flux with time for acidic blue dye 
in different TDS concentration (Dye concentration = 
50 mg/L, T = 20-25 °C, TDS =400 mg/L) 

Fig. 12: Variation of permeate flux with time for reactive blue 
dye in different TDS concentration (Dye concentration 
= 50 mg/L, T = 20-25 °C, TDS =400 mg/L) 

Fig. 13: Variation of dye removal with different TDS 
concentration for acidic and reactive blue dyes (Dye 
concentration = 50 mg/L, T = 20-25 °C, p =10 
bars) 

Fig. 14: Variation of COD removal at different classes of 
dye (Dye concentration = 50 mg/L, P= 10 bar, T= 
20 – 25 ºC, TDS = 400 mg/L) 
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removals in different dye concentrations were obtained 
up to 98% for all types of dyes. As a result, with increasing 
dye concentration, color removal slightly increased. 
Different type of dyes did not have any effect on dye 
removal. Flux depended on osmotic pressure effects, thus 
with increasing dye concentration, permeate flux was 
decreased. Increasing the pressure leads to increasing 
the permeate flux. Higher flux values were obtained in 
pressure 12 bars for applied dye. Dye removal was 
increased with increasing the pressure and maximum dye 
removal percentage was obtained nearby 100% in 12 bars. 
Dye removal for acidic blue was higher than reactive blue. 
As a result, the presence of NaCl had resulted to a higher 
color removal that concerns to the concentration 
polarization layer and in the most of experiments, dye 
removal percent was obtained up to 99 %. Permeate flux 
was declined (L/m2/h.) in high salt concentrations due to 
dye aggregation so that minimum permeate flux, 11.9 and 
8.3 (L/m2/h.), was obtained for both of reactive and acidic 
blue dye in TDS concentration of 3000 mg/L respectively. 
Chemical oxygen demand was completely removed by 
nanofilteration membrane for reactive blue, disperse blue, 
disperse and direct red dyes. 
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