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ABSTRACT: A methodology for characterizing ground water quality of watersheds using hydrochemical data that
mingle multiple linear regression and structural equation modeling is presented. The aim of this work is to analyze
hydrochemical data in order to explore the compositional of phreatic aquifer groundwater samples and the origin of
water mineralization, using mathematical method and modeling, in Maknassy Basin, central Tunisia). Principal component
analysis is used to determine the sources of variation between parameters. These components show that the variations
within the dataset are related to variation in sulfuric acid and bicarbonate, sodium and cloride, calcium and magnesium
which are derived from water-rock interaction. Thus, an equation is explored for the sampled ground water. Using Amos
software, the structural equation modeling allows, to test in simultaneous analysis the entire system of variables
(sodium, magnesium, sulfat, bicarbonate, cloride, calcium), in order to determine the extent to which it is consistent with
the data. For this purpose, it should investigate simultaneously the interactions between the different components of
ground water and their relationship with total dissolved solids. The integrated result provides a method to characterize
ground water quality using statistical analyses and modeling of hydrochemical data in Maknassy basin to explain the

ground water chemistry origin.
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INTRODUCTION

Water quality concept has been evaluated in the
last years owing to greater understanding of water
mineralization process and greater concern about its
origin (Shane and Jerzy, 2003). Water quality shows
water-rock interaction and indicates residence time and
recharge zone confirmation (Cronin et al., 2005). Thus,
water quality indicators must reflect mineralization
process, integrate reservoir properties and be sensitive
to ground water recharge rate and flow direction (Andre
et al., 2005). The concept of ground water quality seems
to be clear, but the way of how to study and evaluate it
still remains tricky. The chemical composition of ground
water is controlled by many factors that include the
composition of precipitation, mineralogy of the
watershed and aquifers, climate and topography. These
factors can combine to create diverse water types that
change in composition spatially and temporally. The
use of major ions as natural tracers has become a
common method to delineate flow paths in aquifers
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(Back, 1966). Generally, the approach is to divide the
samples into hydrochemical facies, that is groups of
samples with similar chemical characteristics that can
then be correlated with location. The observed spatial
variability can provide insight into aquifer
heterogeneity and connectivity, as well as the physical
and chemical processes controlling water chemistry.
In recent decades, multivariate statistical methods have
been employed to extract significant information from
hydrochemical datasets in compound systems. These
techniques can help resolve hydrological factors such
as aquifer boundaries, ground water flow paths, or
hydrochemical components (Liedholz and Schafmeister,
1998; Locsey and Cox, 2003; Seyhan et al., 1985; Suk
and Lee, 1999; Usunoff and Guzman-Guzman, 1989)
identify geochemical controls on composition (Adams
etal., 2001; Alberto et al., 2001; Lopez-Chicanoet al.,
2001; Reeve et al., 1996). Different techniques have
been used in attempt to evaluate water quality,
essentially based on chemical ions correlation (Piper
and sholler diagramm) and some ions rapports to predict
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the origin of the mineralization (Bennetts et al., 2006;
Pulido-Leboeuf et al., 2003). Chemometric analyses
were used to differentiate the water samples on the
basis of their composition and origin (Singh et al.,
2005). The present study attempts to establish a
mathematical water quality model. Since the data
obtained in this study had multivariate nature and
several of the variables were correlated, Principal
component analysis (PCA) analysis methods were
used for the interpretation of the data. Multiple linear
regression (MLR), based on chemical ground water
properties in phreatic aquifer level in Maknassy basin,
is given as an accurate tool to evaluate ground water
quality, since it generates a minimum data set of
indicators (Doran and Parkin, 1996). Then, all the
variables would be included simultaneously into
single model in order to test the potential interactions
between the independents variables using the
structural equation modeling (SEM). Therefore, the
results of ground water quality data analyses in a
sequential fashion have been fully integrated to
better constrain the interpretation and include the
statistical modeling in the process. Sampling and
ground water analysis were done in Minerals
Resources and Environement Laboratory, in October
2006.

MATERIALS AND METHODS

The study site covers an area of about 1250 km?
located in southern central Atlas of Tunisia. In this
geographic area, climate is arid Mediterranean type.
The study basin has a three tiers aquifer system. The
shallow aquifer extending to varying depths of 30-
150 m; the deep aquifer made up by two fractured
limestone levels extending to depth between 180 and
250 m and the upper level of deep aquifer forms the
main source of water supply in the studied area. The
altitude of water table in the region varies from 180 to
320 m and movement of ground water is from east to
west and from borders to center basin (Chenini et al.,
2008). The sampling network and strategy were
collected in equilibrium state of aquifer, which
reasonably represent the ground water quality in the
study region. A total of 28 water samples were
collected in the months of October-November 2005
(Fig. 1). All the samples, collected in tight capped
high quality polyethylene bottles, were immediately
transported to the laboratory under low temperature
conditions in ice-box and stored in the laboratory at
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4 °C until processed analyses. All analyses were
completed within a week time in laboratory. The
measured variables included the characteristic water
quality parameters. Temperature was measured on the
site using mercury thermometer. All other parameters
were determined in laboratory following the standard
protocols (Apha, 1985). The ground water samples
were analyzed for parameters which include pH,
electrical conductivity (EC), total dissolved solids
(TDS), bicarbonates (HCO,), chloride (CI'), sulfate
(S0O,*), sodium (Na*), potassium (K*), calcium (Ca**)
and magnesium (Mg?). Electrical conductivity was
measured at 25 °C with a conductivity meter. pH was
measured using a pH-meter. Major anions were
analyzed using modular ion chromatograph. Among
the major cations, sodium, potassium, calcium and
magnesium were analyzed by flame photometer. TDS
were determined grametrically. The analytical data
quality was ensured through careful standardization;
the ionic charge balance of each sample was within £
5 %. The ground water ionic strength is dominated
by major cations and anions. Hydrochemistry of the
phreatic aquifer of Maknassy Basin was summarized
through the statistical analysis and mathematical
modeling of ground water properties. Before
establishing the statistical models, the detection of
outliers and the elucidation of trends, similarities and
dissimilarities among chemical properties of sampled
water were carried out according to PCA method
(Jolliffe, 2002; Muller et al., 2008). As a multivariate
data analytic technique, PCA reduces a large number
of variables to a small number of variables, without
sacrificing too much of the information (Qian et al.,
1994). More concisely, PCA combines two or more
correlated variables into one variable. This approach
has been used to extract related variables and infer
the processes that control water chemistry (Helena et
al., 2000; Hidalgo and Cruz-Sanjulian, 2001). PCA
method was performed using STATISTICA 6.0
statistical program. The general purpose of multiple
linear regressions is to quantify the relationship
between several independent or predictor variables
and a dependant variable. This method is successfully
used by different authors to establish statistical model
(Ghasemi and Saaidpour, 2007).

MLR method provides equation linking a
dependant variable Vd ([Na], [Mg], [SO,], [HCO,], [CI],
[Ca]) to the independent variable Vi using the
following form:
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Fig. 2: Flowchart of the adopted approach

1)

When the intercept B and the regression
coefficients of descriptors (B,) are determined by least
square method (Green and Carroll, 1996). V,descriptors
are used to describe water quality and cation
dependence. (n) isthe number of water samples. The
reduction in the number of descriptors (variables) is
included in the study to minimize the information
overlap in variables. The best equation is selected

VA=B+ BV, o +BLY,
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while being based on the highest multiple correlation
coefficients (R), lowest standard deviation (SD) and
F-ratio value. Relationships between variables were
established using the forward stepwise regression
method (Bernstein, 1988). The MLR modeling method
was performed by the SPSS statistical program.
Structural equation modeling is a statistical method
that takes a confirmatory fashion to the analysis of a
structural theory bearing on some phenomena (Kline,
2005). Typically this theory represents “causal”
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processes that generate observations on multiple
variables (Bentler, 1988). The SEM conveys that the
causal processes under study are represented by a
series of structural equations and that these relations
can be modeled. The model can then be tested
statistically in a simultaneous analysis of the entire
system of variables to determine to which it is
consistent with the data. Several aspects of SEM set
are apart from the older generation of multivariate
procedure (Fronell, 1982). First, it takes a confirmatory,
rather than an exploratory, approach to the data
analysis. Furthermore, SEM lends itself well to the
analysis of data for inferential purpose. In the other
hand, must other multivariate procedures are
essentially descriptive by nature, so that hypothesis
testing is difficult. Second, although traditional
multivariate procedures are incapable of either
assessing of correcting measurement error. SEM
provides explicit estimates of these error variance
parameters (Byrne, 2001). The data were input to Amos
7.0 (Arbuckle, 2006) for SEM analysis. The flowchart
of Fig. 2 summarizes the steps of the study.

RESULTSAND DISCUSSION

PCA was applied to the combined ground water
data set of the shallow aquifer (Table 1) to examine
relations between water properties analyzed and to
identify the factors that influence the concentration
of each one. According to PCA, the three significant
PCs are cumulatively accounted for 70 % of the total
data variance. Most of the variance is contained in
PC1 (48.4 %), which is associated with the variables
[Na], [CI], [Ca], [SO,] and TDS. PC2 explains 12.6 % of
the variance and is mainly related to [Mg] and [HCQO,].
The variables pH, [K] and T contribute most strongly
to the third component (PC3) that explains 10.2 % of
the total variance. PC1 contains hydrochemical
variable originating from weathering process and
reservoir formation dissolution, whereas PC2 and PC3
are related to bicarbonates and physical properties.
Fig. 3 shows the projection of the first two PC scores
in a scatter plot. The distribution suggests a more
continuous variation of properties of the samples. The
application of PCA reveals that the classification of
ground water sampled was achieved according to their
chemical and physical properties. The analysts
(chemical properties) were classified and presented
in a dendogram (Fig. 4). It confirms the PCA
classification, but TDS is grouped with pH, [K] and T.

[SO,] is important in water samples that’s why it can
be classified as an own class of water properties. 7
analysts were randomly selected to constitute the
training set for the construction of statistical models.
Regression analysis (SPSS 14.0) was conducted to
investigate the relationships between TDS and water
properties. The [Na], [K], [Mg], [SO,], [HCO,], [CI],
[Ca] were considered as independent variables and
TDS as a dependent variable. The best model was
derived by the application of MLR method. After
obtaining various equations with ground water
samples from the phreatic qauifer levels. An analysis
of residuals was developed and R? values were
studied. Among all candidate equations, the equation
where this ratio was closer to 1 were selected. The
descriptors and the regression coefficient of this
model are presented in Table 2. As can be seen in the
case of all the MLR regression analyses, the water
properties measures are statistically significant in
estimating TDS (P < 0.00). The multiple R coefficient
indicates that the correlation between water properties
and TDS is moderate (the multiple R >0.99). According
to R square statistic, 99 % for the total variance for
the estimation of TDS is explained by the MLR model.
The model was also checked to see if it was prone to
any multicollinearity effect. The Variance Inflation
Factor (VIF) value obtained was close to one and
thus, there was no evidence of multicollinearity (Hair
and Anderson, 1998). In terms of the relative
importance of the estimation of a dependent variable,
it can squabble that the [SO,] makes the largest
contribution across the model. An examination of t-
values also reveals an identical descending order of
the factors that contribute to the estimation of TDS
in Maknassy basin phreatic aquifer water (Bring,
1994). The positive sign of the beta coefficients and
t-values pertaining to these variables indicates that
there is a positive relationship between TDS and
elements of ground water properties ([Na], [Mg],
[SO,], [HCO,], [CI], [Ca]). The selected equation for
shallow aquifer ground water in Maknassy basin is:

TDS = 0.047 + 0.072 Mg + 0.062 Ca + 0.247 Na +
0.285 Cl +0.141 HCO, + 0.451 SO, + ¢ )

Where, £ isthe error of estimation in the statistical
regression model.

The second step of this study includes
simultaneously all the variables in a conceptual model
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Table 2: Summary of the linear regressions predicting TDS

B t-value Sig.t
Ca 0.062 5.248 0.000
Mg 0.072 3.549 0.000
Na 0.247 8.689 0.000
HCO; 0.141 18.413 0.000
Cl 0.285 11.418 0.000
SO, 0.451 23.483 0.000
Constant 0.047
Multiple R 0.977
R square 0.994
Adjusted R square 0.994
Standard error 0.058
F test statistics 5959.19
Significance 0.000

in order to test the potential interaction between them.
The structural equation modeling was used to achieve
the goal. A generalized conceptual model was
developed which isillustrated in Fig. 5. This model
hypothesizes the potential interactions between the
independents variables (Na, Mg, SO,, HCO,, Cl, Ca)
and their contribution on the dependant variable
(TDS). e1, e2, e3 and e4 are added to the statistical
model in order to reduce the error estimation of path
value (relation) between variables. TDS in ground
water sampled is constrained by [SO,], [HCO,] and
[CI] result of water-rock interaction. Thus, the
sulphated facies ground water could be remaining to
the dissolution and/or leaching of the abundant
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Table 3: Fit indices for the structural model

RMR AGFI GFI PGFI NFI CFI IF1 TLI RFI RMSEA
0.000 0.934 0.988 0.176 0.996 0.998 0.998 0.992 0.984 0.063
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Fig. 5: A conceptual model of factors influencing TDS

gypsum in geological formations and soil in
Maknassy basin.

Fig. 5 depicts the causal relationship among
exogenous and endogenous variables. An exogenous
variable’s causes lie outside the model. In these
causes, [Na], [Mg] and [HCO,] are the exogenous
variables in the structural model. In contrast to
exogenous variables, the postulated causes of
endogenous variables are included in the model. In
the current model (Fig. 6), TDS, [Ca], [SO,] and [CI]
are all endogenous variables. All factors loadings that
were tested had t-values greater than 1.96 and all of
the path coefficients were significant. The goodness
of fit indices for the structural model that are shown
in Table 3 indicated the model has a good fit of the
data. The root mean square (RMR) residual represents
the average value across all standardized residuals
and ranges from 0 to 1; in a well-fitting model this
value will be smaller than 0.05. Turning to Table 3, it
can be seen that the RMR value for this model is
0.000. It is concluded that the model fit the data well.
The adjusted goodness of fit index (AGFI) differs from
the goodness of fit index (GFI) only in the fact that it
adjusts for the number of degree of freedom in the
specified model. They address the issue of parsimony
by incorporating a penalty for the inclusion of
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Fig. 6: A structural model of factors influencing TDS

additional parameters. The GFI and AGFI can be
classified as absolute index of fit (Bentler, 1990).
Although, both indices range from 0 to 1, with values
close to 1 being indicative of good fit. For Joreskog
and Sorbom (1993) this two indices is impossible for
them to be negative. Fan et al. (1999) further cautioned
that GFI and AGFI values can be overly influenced
by sample size. Based on GFI and AGFI values reported
in Table 3 (0.988 and 0.934, respectively), it can be,
once again, concluded that this model fits the sample
data fairly well. Parsimony goodness fit index (PGFI),
was introduced to address the issue of parsimony in
SEM. The PGFI takes in to account the complexity
(i.e., number of estimated parameters) of the
hypothesized model in the assessment of overall
model fit, as such, to logically interdependent pieces
of information. The goodness of the fit of the model
as measured by the GFI and the parsimony of the
model, are represented by a simple index (PGFI),
thereby providing a more realistic of evaluation of
the model (Mulaik et al., 1989). Typically, parsimony
based indices have lower than the threshold level
generally perceived as acceptable for other normed
indices of fit. Thus these findings of a PGFI value of
0.176 would seen to be consistent with fit statistics.
Normed fit index (NFI) has been the practical criterion
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of choice, as evidenced in large part by the current
classic of status of its original paper (Bentler, 1992).
However, addressing evidence that the NFI has shown
a tendency to under estimate fit in small samples,
Bentler (1999) revised the NFI to take sample size into
account and proposed the comparative fit index (CFI).
Values for both the NFI and CFI range from 0O to 1.
Each provides a measure of complete covariation in
the data, although a value > 0.90 was originally
considered representative of a well fiting model. A
revised cut off value close to 0.95 (Bentler, 1992) has
recently been advised (Hu and Bentler, 1999). As
shown in Table 3, both the NFI (0.996) and CFI1 (0.998)
were consistent in suggesting that the model
represented an adequate fit of the data. The relative
fit index (RFI) represents a derivative of the NFI and
the CFI (Bollen, 1989). The RFI coefficient values
range from 0 to 1 with values close to 0.984 indicating
superior fit (Hu and Bentler, 1999). The incremental fit
index was developed by Bollen (1986)to address the
issue of parsimony and sample size which were known
to be associated with the NFI. As such its computation
is basically the same as the NFI, except that degree of
freedom are taken into account. Thus, it is not
surprising that finding of IFl = 0.998 is consistent
with that the CFI in reflecting a well fitting model.
Finally, the Tucker Lewis index (TLI) (Tucker and
Lewis, 1973), consistent with the other index noted
here, yield values ranging from 0 to 1 (Bollen, 1989).
The root mean square error of approximation
(RMSEA) is one of the most criteria in covariance
structure modeling. It takes into account the error of
approximation. Values less than 0.05 indicates good
fit (Browne and Cudeck, 1993). Turning to Table 3, it
is clear that the RMSEA value for this model is 0.063;
thus it is concluded that the model fits the data well.
The chemical composition of ground water is
controlled by many factors that include the
composition of precipitation, mineralogy of the
watershed and aquifer, topography and climate. These
factors can combine to create diverse water types that
change in composition spatially and temporally. The
general purpose of this study was to investigate
simultaneously the interaction between the different
chemical components of the ground water of the
phreatic aquifer of Maknassy basin. TDS is used as a
factor defining general ground water salinity (Grassi
and Cortecci, 2005).
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Significant interpretations have been extracted from
hydrochemical data using multivariate statistical
methods to evaluate ground water quality. Chemical
ions correlations (Bennetts et al., 2006), some ions
rapports and chemometric analysis were used to
explore water samples quality in the bases of their
composition. These studies often use parameters
variations or samples variations, but to date none
has fully integrated the results of analyzed parameters
in a mathematical model to better constrain the
interpretation and include the possible interactions
between the parameters. In this studies, first PCA is
applied to identify the most important variables that
control chemical variability; a dendogram show
possible association between variables. Then, MLR
is generated on the basis of chemical variables
previously identified; it constitutes an accurate tool
to evaluate relationship between TDS and other
chemical properties of the ground water. Finally, using
AMOS, the SEM allows to test in a simultaneous
analysis the entire system of variables (TDS, [Na],
[Mg], [SO,], [HCO,], [CI] and [Ca]), in order to
determine the extent to which it is consistent with the
data. Once it is verified that the model fits the data
well, the relationship between water properties are
explored (variables). Table 4 reports the coefficients
for the path in the model. They represented the
strength of the direct effect of an exogenous variable
on an endogenous variable and that of one
endogenous variable on another. Bollen (1989) noted
that the direct and indirect effects can help to answer
important questions regarding the influence of one
variable on another, but it is the total effect that is
more relevant. He explained that the direct effect could
be misleading when the indirect effect has an opposite
sign, for in such cases the total effect may not be as
strong as the direct effect shows. Direct effects,
according to Bollen (1986), are the influence of a
variable on another that is not mediated by any other
variable. Indirect effects are ones that are mediated
by at least one other variable and the total effects are
the sum of direct and indirect effects. Indirect effects
are calculated by multiplying all the path coefficients
for each route of indirect influence. If an independent
variable has more than one route of indirect influence
on a dependent variable, then the indirect effects for
each path are summed to calculate the overall indirect
effects of the independent variable on the dependent
variable (Bollen, 1986). Fig. 6 indicates that [Na],
[SO,], [HCO,], [CI] and [Ca] had a direct effect on
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TDS (0.001), [Na], [Mg], [SO,], [HCQ,], [CI] and [Ca].
In addition, [Na], [Mg], [SO,], [HCO,] and [Ca] also
indirectly influenced TDS.

[SO,] isdirectly influenced by [Ca] and [Na] while,
[Mg] indirectly influenced [SO,].

Itis clear that TDS is dominated by [Ca] and [Mg]
for cations and [SO,] for anions.

[Ca] to [SO,] ratio is lower than 1 since [Ca]
participate to the process of basic exchange with clay
during ground water flow; Therefore, [Ca] largely
influenced [SO,] (4.471).

The correlation between [Na] and [CI] and the [Na] to
[Cl] ratio in close proximity to 1 may be two indicators of
halite dissolution during ground water transit. It is
confirmed by a largely direct path influencing [Na] to
[C1].

CONCLUSION

Ground water datasets of the phreatic aquifer of
Maknassy basin in central Tunisia was investigated
for their chemical composition differences with a
dominance of [SO,], [HCO,] and [CI]. PCA were used
to differentiate the water samples on the basis of their
chemical compositions. Although, PCA rendered
considerable variable reduction and clearly
distinguish between variables group. Then, MLR was
used to evaluate relationship between TDS and other
chemical water properties. Moreover, SEM provides
an adequate explanation of the simultaneously
interaction between the variable included in the
conceptual model. It is a complementary tool to MLR
result testing the potential interaction between
variables. SEM infers that the ground water quality in
the phreatic aquifer of Maknassy basin is dominated
by [SO,], [HCO,], [CI] and [Mg] result of water-rock
interaction (carbonate and halite dissolution). Results
of the study support the previous hydrochemical
interpretation using ions correlations and ions rapport
to evaluate the possible origin of the ground water
mineralization. The integration of PCA, MLR analysis
and structural equation modeling to evaluate ground
water quality of the phreatic aquifer of Maknassy
basin showed that water chemistry is related to water-
rock interaction and/or dissolution of evaporitic
formation from where dominance of [SO,]. It appears
that the methodology illustrated in this paper allows
to incorporate hydrochemical information (variables)
into a statistical model that takes in consideration all
possible interactions between the variables. The

model offers statistical integration of hydrochemical
variables producing a more robust interpretation. The
procedure is aimed to explore ground water quality. It
is possible to identify the major process controlling
hydrochemical variation in studied aquifer. Moreover,
the proposed methodology can be useful in many
typical aquifers where hydrochemical data are
available. Although, the illustrated approach exhibits
the limitation that results of the study only verify
that the proposed relationships among variables in
the conceptual model were supported by the sample
data collection (number of the analystes). Goodness
of fit of this model can be worked by multiplying water
sample and analyzed parameters.

REFERENCES

Adams, S.; Titus R.; Pietersen, K.; Tredoux, G.; Harris, C.,
(2001). Hydrochemical characteristics of aquifers near
Sutherland in the western Karoo, South Africa. J. Hydrol.,
241, 91-103 (13 pages).

Alberto, W. D.; Del Pilar, D. M.; Valeria, A. M.; Fabiana, P. S.;
Cecilia, H. A.; De los Angles, B. M., (2001). Pattern
recognition techniques for the evaluation of spatial and
temporal variations in water quality, A case study: Suquia
River basin (Cordoba-Argentina). Water Res., 35, 2881-
2894 (14 pages).

Andre, L.; Franceschi, M.; Pouchan, P.; Atteia, O., (2005).
Using geochemical data and modeling to enhance the
understanding of ground water flow in a regional deep aquifer,
Aquitaine Basin, south-west of France. J. Hydrol., 305, 40-
62 (23 pages).

APHA, AWWA, WEF, (1985). Standard methods for the
examination of water and wastewater (18" Ed.). American
Water Works Association, Washington DC. 373-412.

Arbuckle, J. L., (2006). Amos (Version 7.0). Computer
program. Chicago, SPSS.

Back, W., (1966). Hydrochemical facies and ground water flow
patterns in the northern part of the Atlantic Coastal Plain;
U.S. Geological survey professional paper 498-A, 42.

Bennetts, D. A.; Webb, J. A.; Stone, D. J. M.; Hill, D. M.,
(2006). Understanding the salinisation process for ground
water in an area of south-eastern Australia, using
hydrochemical and isotopic evidence. J. Hydrol., 323 (1-4),
178-192 (15 pages).

Bentler, P. M., (1988). Causal modeling via structural equation
system. Handbook of multivariate experimental psychology.
2m- Ed., New York, Plenum, 317-335.

Bentler, P. M., (1990). Comparative fit indexes in structural
models. Psychol. Bull., 107 (2), 238-246 (9 pages).

Bentler, P. M., (1992). On the fit of models to covariances
and methodology to the bulletin. Psychol. Bull., 112 (3),
400-404 (5 pages).

Bernstein, I. H., (1988). Applied multivariate analysis. New
York, Springer.

Bollen, K. A., (1986). Sample size and Bentler and Bonett’s
non normed fit index. Psychometrika, 51(3), 375-377

(3 pages).

517



I. Chenini, S. Khmiri

Bollen, K. A., (1989). Structural equation with latent variables.
New York, Wiley.

Bring, J., (1994). How to standardize regression coefficients.
Am. Stat., 48 (3), 209-213 (5 pages).

Browne, M. W.; Cudeck, R., (1993). Alternative ways of
assessing model fit. Sociologic. Meth. Res., 21(2), 230-
258 (29 pages).

Byrne, B. M., (2001). Structural equation modeling with
AMOS. (Eds) Lawrence Erlbaum associates, publishers,
Mahwah, New Jersey, USA.

Chenini, I.; Ben Mammou, A.; Turki, M. M.; Mercier, E.,
(2008). Ground water resources in Maknassy Basin (central
Tunisia): Hydrological data analysis and water budgeting.
Geosc. J., 12 (4), 385-399 (15 pages).

Cronin, A. A,; Barth, J. A. C.; Elliot, T.; Kalin, R. M., (2005).
Recharge velocity and geochemical evolution for the
Permo-Triassic Sherwood sandstone, Northern Ireland. J.
Hydrol., 315 (1-4), 308-324 (17 pages).

Doran, J. W.; Parkin, T. B., (1996). Quantitative indicators
of soil quality: a minimum data set. In Doran, J. W.; Jones,
A. J. Eds. Methods for assessing soil quality. Madison, WI:
SSSA, Special publication, 49, 25-37.

Fan, X.; Thompson, B.; Wang, L., (1999). Effects of sample
size, estimation methods and model specification on
structural equation modeling fit indexes. S. E. M. Multidisci.
J., 6 (1), 56-83 (28 pages).

Fronell, C., (1982). A second generation of multivariate
analysis. Methods, New York, Praeger Vol. 1.

Ghasemi, J.; Saaidpour, S., (2007). Quantitative structure—
property relationship study of n-octanol-water partition
coefficients of some of diverse drugs using multiple linear
regression. Anal. Chim. Acta, 604 (2), 99-106 (8 pages).

Grassi, S.; Cortecci, G., (2005). Hydrogeology and
geochemistry of the multilayered confined aquifer of the
Pisa plain (Tuscany — central Italy). Appl. Geochem., 20
(1), 41-54 (14 pages).

Green, P.; Carroll, J., (1996). Mathematical tools for applied
multivariate analysis, Student Ed., Academic Press, New
York, USA.

Hair, J. F.; Anderson, R. E.; Tatham, R. L.; Black, W. C.,
(1998). Multivariate data analysis with reading, 5" Ed.
Upper Saddle River (NJ: Prentice-Hall).

Helena, B.; Pardo, R.; Vega, M.; Barrado, E.; Fernandez, J.
M.; Fernandez, L., (2000). Temporal evolution of ground
water composition in an alluvial aquifer (Pisuerga River,
Spain) by principal component analysis. Water Res., 34
(3), 807-816 (10 pages).

Hidalgo, M. C.; Cruz-Sanjulian, J., (2001). Ground water
composition, hydrochemical evolution and mass transfer
in a regional detrital aquifer (Baza Basin, southern Spain).
Appl. Geochem., 16 (7-8), 745-758 (14 pages).

Hu, L. T.; Bentler, P. M., (1999). Cutoff criteria for indexes
in covariance structure analysis: Conventional criteria
versus new alternatives. Struct. Eq. Modl. Multidisci. J., 6
(1), 1-55 (55 pages).

Jolliffe, 1. T., (2002). Principal component analysis, Springer-
Verlag, 520.

Joreskog, K. G.; Sorbom, D., (1993). LISRELS8: Structural
equation modeling with the SIMPLIS command language:
Scientific software international, Chicago.

518

Kline, R. B., (2005). Principles and practice of structural
equation modeling. New York, Guilford Press.

Liedholz, T.; Schafmeister, M. T., (1998). Mapping of
hydrochemical ground water regimes by means of
multivariatestatistical analyses. In Proceedings of the
fourth annual conference of the International Association
for Mathematical Geology, October 5-9, Ischia, ltalay,
Ed. A. Buccianti, G. Nardi and R. Potenza, Kingston,

Ontario, Canada: International Association for
Mathematical Geology, 298-303.
Locsey, K. L.; Cox, M. E., (2003). Statistical and

hydrochemical methods to compare basalt and basement
rock-hosted ground waters: Atherton Tablelands, north-
eastern Australia. Environ. Geol., 43, 698-713 (16 pages).

Lopez-Chicano, M.; Bouamama Vallejos, M. A.; Pulido, B.
A., (2001). Factors which determine the hydrogeochemical
behaviour of karstic springs: A case study from the Betic
Cordilleras, Spain. Appl. Geochem., 16 (9-10), 1179-1192
(14 pages).

Mulaik, S. A.; James, L. R.; Vanaltine, J.; Bennett, N.; Lind,
S.; Stilwell, C. D., (1989). Evaluation of goodness-of-fit
indices for structural equation models. Psychol. Bull., 105
(3), 430-445 (16 pages).

Muller, J.; Kylandern, M.; Martinez-Cortizas, A.; Wust, R. A.
J.; Weiss, D., Blake, K.; Coles, B.; Garcia-Sanchez, R.,
(2008). The use of principle component analyses in
characterising trace and major elemental distribution in a
55 kyr peat deposit in tropical Australia: Implications to
paleoclimate. Geochim. Cosmochim. Ac., 72 (2), 449-463
(15 pages).

Pulido-Leboeuf, P.; Pulido-Bosch, A.; Calvache, M. L.;
Vallejos, A.; Andreu, J. M., (2003). Strontium, SO4 2"/CI”
and Mg?*/Ca? ratios as tracers for the evolution of seawater
into coastal aquifers: The example of Castell de Ferro aquifer
(SE Spain). C. R. Geosci., 335 (14), 1039-1048 (10 pages).

Qian, G.; Gabor, G.; Gupta, R. P., (1994). Principal
components selection by the criterion of the minimum
mean difference of complexity. J. Multivariate Anal., 49
(1), 55-75 (21 pages).

Reeve, A. S.; Siegel, D. I.; Glaser, P. H., (1996). Geochemical
controls on peatland pore water from the Hudson Bay
Lowland: A multivariate statistical approach. J. Hydrol.,
181 (1-4), 285-304 (20 pages).

Seyhan, E.; van-de-Griend, A. A.; Engelen, G. B., (1985).
Multivariate analysis and interpretation of the
hydrochemistry of a dolomitic reef aquifer, northern ltaly.
Water Resour. Res., 21 (7), 1010-1024 (15 pages).

Shane, S.; Jerzy, J., (2003). Hydrochemistry and isotopic
composition of Na—HCO3-rich ground waters from the
Ballimore Region, Central New South Wales, Australia.
Chem. Geol., 211 (1-2), 111-134 (24 pages).

Singh, K. P.; Malik, A.; Singh, V. K.; Mohan, D.; Sinha, S.,
(2005). Chemometric analysis of ground water quality data
of alluvial aquifer of Gangetic plain, North India. Anal.
Chim. Acta., 550 (1-2), 82-91 (10 pages).

Suk, H.; Lee, K. K., (1999). Characterization of a ground
water hydrochemical system through multivariate analysis:
Clustering into ground water zones. Ground Water, 37 (3),
358-366 (9 pages).



Int. J. Environ. Sci. Tech., 6 (3), 509-519, Summer 2009

Tucker, L. K.; Lewis, C., (1973). A reliability coefficient for

maximum likelihood factor analysis. Psychometrika, 38
(1), 1-10 (9 pages).

Usunoff, E. J.; Guzman-Guzman, A., (1989). Multivariate
analysis in hydrochemistry: An example of the use of factor
and correspondence analysis. Ground Water, 27 (1), 27-34
(8 pages).

AUTHOR (S) BIOSKETCHES
Chenini, 1., Associate professor in hydrogeology, Minerals resources and Environement Laboratory, Department of Geology, Faculty of
Sciences of Tunis, 2092 Tunis El Manar, Tunisia. Email: chenini_ismail@yahoo.fr

Khemiri, S., Senior lecturer and Ph.D. research candidate in U.R. Structural and applied geology, Department of Geology, Faculty of
Sciences of Tunis, 2092 Tunis EI Manar, Tunisia. Email: fantsam01@yahoo.fr

This article should be referenced as follows:

Chenini, I.; Khemiri, S., (2009).Evaluation of ground water quality using multiple linear regression and structural equation modeling.
Int. J. Environ. Sci. Tech., 6 (3), 509-519.

519





