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ABSTRACT: The rainfall-runoff relationship is one of the most complex hydrological phenomena. In recent years,
hydrologists have successfully applied backpropagation neural network as a tool to model various nonlinear hydrological
processes because of its ability to generalize patterns in imprecise or noisy and ambiguous input and output data sets.
However, the backpropagation neural network convergence rate is relatively slow and solutions can be trapped at local
minima. Hence, in this study, a new evolutionary algorithm, namely, particle swarm optimization is proposed to train
the feedforward neural network. This particle swarm optimization feedforward neural network is applied to model the
daily rainfall-runoff relationship in Sungai Bedup Basin, Sarawak, Malaysia. The model performance is measured using
the coefficient of correlation and the Nash-Sutcliffe coefficient. The input data to the model are current rainfall,
antecedent rainfall and antecedent runoff, while the output is current runoff. Particle swarm optimization feedforward
neural network simulated the current runoff accurately with R = 0.872 and E2 = 0.775 for the training data set and
R = 0.900 and E2 = 0.807 for testing data set. Thus, it can be concluded that the particle swarm optimization feedforward
neural network method can be successfully used to model the rainfall-runoff relationship in Bedup Basin and it could be
to be applied to other basins.
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INTRODUCTION
Rainfall-runoff relationships are amongst the most

complex hydrological phenomena to understand due
to the tremendous spatial and temporal variability of
catchment characteristics and rainfall patterns (Tokar
and Johnson, 1999). The transformation of rainfall to
runoff for streamflow forecasting remains important to
hydrologists for water supply, flood control, irrigation,
drainage, water quality, power generation, recreation
and aquatic and wildlife protection issues. This
transformation involves many highly complex
components, including interception, depression
storage, infiltration, overland flow, interflow,
percolation, evaporation and meteorological conditions
of the catchment. These data are usually hard to obtain
and are not always available. All these non-stationary
and usually non-linear phenomena make difficult the
accurate estimation of runoff.

With the development of artificial intelligence (AI)
in recent years, neural networks (NN) have been
proposed to transpiration. Runoff also depends on
catchment topography, river network topology, river
cross-sections, soil characteristics and antecedent
moisture content.

Moreover, antecedent moisture conditions are
always changing and depend upon both present and
past hydrological complex processes and large volumes
of data. In particular, a backpropagation neural network
(BPNN) is useful for handling real-time, non-stationary
and non-linear natural phenomena (Nishimura and
Kojiri, 1996). The natural behavior of rainfall-runoff
systems is appropriate for the application of BPNN.
The last decade has witnessed many applications of
BPNN in water resources. These include modeling of
the rainfall-runoff process (Elshorbagy et al., 2000;
Bessaih et al., 2003); inflow estimation (Harun et al.,
1996); runoff analysis in a humid forest catchment
(Gautam et al., 2000); river flow prediction (Imrie et al.,
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2000; Dastorani and Wright, 2001); setting up stage-
discharge relations (Jain and Chalisgaonkar, 2000);
ungauged catchment flood prediction (Wright and
Dastorani, 2001) and short term river flood forecasting
(Garcia-Bartual, 2002), prediction of  carbon monoxide
as one of primary air pollutants (Abbaspour et al., 2005),
forecasting the mean monthly total ozone concentration
(Bandyopadhyay and Chattopadhyay, 2007) and
evaluating performance of immobilized cell biofilter
treating hydrogen sulphide vapors (Rene et al., 2008).

However, the major disadvantages of BPNN are its
relatively slow convergence rate (Zweiri et al., 2003)
and solutions being trapped at local minima. Basically,
BPNN learning is a hill climbing technique. Hence, it
runs the risk of being trapped in local minima, where
every small change in synaptic weight increases the
cost function. Sometimes, the network is stuck where
there exists another set of synaptic weights for which
the cost function is smaller than the local minimum in
the weight space. This made termination of the learning
process at local minima by BPNN is undesirable. Besides,
there are many elements to be considered by NN
modeler, such as the number of input, hidden and output
nodes, learning rate, momentum rate, bias, minimum error
and activation/transfer function. All these elements will
also affect the convergence of BPNN learning. Many
solutions are proposed by neural network researchers
to overcome the slow convergence rate and solutions
being trapped at local minima problems. Some powerful
optimization algorithms, that based on simple gradient
descent algorithm (Bishop, 1995) such as conjugate
gradient decent, scaled conjugate gradient descent,
quasi-Newton BFGS and Levenberg-Marquardt methods
has been devised to improve the convergence rate.
Another solution proposed by NN researcher is trying
to guide the learning so that the converge speed become
faster. The guidelines provided are including select better
functions, learning rate, momentum rate and activation
functions. Besides, new advance algorithms were
developed to hybrid with NN. Genetic Algorithm (GA)
is one of the latest algorithms proposed to determine
the learning rate and momentum rate and will produce a
set of weight that can be used for testing related data.
However, the performance of GA is less competence
compared with PSO. Lee et al. (2005) compared PSO
and GA for excess return evaluation in stock market. Lee
et al. (2005) proclaimed that PSO algorithm is better
compared to GA, where particle swarm optimization
(PSO) can reach the global optimum value with less

iteration, keep equilibrium versus GA and shows the
possibility to solve the complicated problem using only
basic equations. Meanwhile, Haza (2006) also proved
that particle swarm optimization feedforward neural
network (PSONN) is much more effective than genetic
algorithm backpropagation neural networks (GANN) for
solving the classification problems. Besides, Bong and
Bryan (2006) also optimized hydraulic transient
protection devices using GA and PSO approaches.
Results also revealed that PSO has tended to discover a
better solution than the GA approach.

Since the previous works revealed the performance
of PSO is better than GA and PSO is able to solve a wide
array of different optimization problems including most
of the problems can be solved by GA (Van den Bergh,
2001), a novel method that hybrid the PSO with ANNs is
developed for solving optimization problem especially
in the field of hydrology. This hybrid method is called
particle swarm optimization feedforward neural network.
This PSONN is proposed to improve the convergence
rate of NN and avoid solutions being trapped at local
minima. According to Van den Bergh and Engelbrecht
(1999), PSO is made up of particles, where each particle
has a position and a velocity. The idea of PSO in NN is
to get the best set of weight (or particle position) where
several particles (problem solution) are trying to move
to the best solution and this will avoid the solution trap
at local minima. In this study, PSONN is applied for
calibrating rainfall-runoff model to simulate current
runoff accurately.

Currently, little works has been focused on using
PSONN for solving optimization problem. Furthermore,
the application of PSONN for solving hydrological
optimization problem is really scarce. Therefore, there is
a need to propose PSONN method for solving
optimization problems particularly in calibration and
optimization of rainfall-runoff model. However, PSONN
has been successfully applied as an efficient tool in
solving classification problems in different areas. Zhang
et al. (2000) applied PSONN to solve the classification
problems in the medical domain particularly in breast
cancer and heart disease. Van den Bergh (2001) applied
the PSO to train NN for classifying iris, cancer, wine,
diabetes, hepatitis, Henan and cubic data sets. Haza
(2006) proved that PSONN is much more effective than
genetic algorithm backpropagation neural networks
(GANN) for solving the classification problems using
universal  Exclusive Or (XOR), Cancer and Iris data set,
where XOR is a logical operation on two operands that
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results in a logical value of true if and only if one of the
operands but not both has a value of true. In addition,
Eberhart and Hu (1999) used PSO to evolve a NN to be
used for analysis of human tremor, which distinguished
between normal subjects and those with tremor
including essential tremor and Parkinson’s disease. In
this study, PSONN is employed to simulate current
runoff accurately using only antecedent rainfall, current
rainfall and runoff data. Section 2 will review the
materials and methods used for model calibration that
include basic concept of PSONN, the selected study
area, model development, sensitivity of the PSONN
performance to the length of the calibration data and
related parameters using various data sets. Subsequently,
the results obtained and discussion using various
configuration of PSONN will be explained in section 3.
Sungai Bedup Basin, sub-basin of Sadong Basin, Sarawak,
Malaysia was selected for model calibration. The series
data used for PSONN calibration are daily rainfall and
runoff data ranging from 1997 to 1999.

MATERIALS AND METHODS
Particle swarm optimization feedforward neural
network
Basic PSO procedure

Particle swarm optimization, a new branch of the
soft computing paradigms called evolutionary
algorithms (EA), was developed by Kennedy and
Eberhart (1995). It is a group-based stochastic
optimization technique for continuous nonlinear
functions. It is also a simple concept adapted from
natural decentralized and self-organized systems where
all the particles move to get better results. According
to Song and Gu (2004), researchers have paid more and
more attention to PSO algorithm because of its
convenience of realization and promising optimization
ability in various problems. PSO is initialized with a
group of random particles (trial solutions), which are
assigned with random positions and velocities. The
algorithm then searches for optima through a series of
iterations where the particles are moved through the
hyperspace searching for potential solutions. These
particles “learn” over time in response to their own
experience and those of other particles in their group
(Ferguson, 2004). According to Eberhart and Shi (2001),
each particle keeps track of its best fitness position in
hyperspace that it has achieved so far. This best
position value is called personal best or “pbest”. The
overall best value obtained by any particle so far in the

population is called global best or “gbest”. During each
iteration, every particle is accelerated towards its own
“pbest” as well as in the direction of the “gbest”
position. This is achieved by calculating a new velocity
term for each particle based on the distance from its
“pbest” as well as its distance from the “gbest”
position. These two “pbest” and “gbest” velocities
are then randomly weighted to produce the new
velocity value for this particle, which will affect the
next position of the particle in next iteration (Van den
Bergh and Engelbrecht, 2000). The basic PSO
procedure is shown in Fig. 1. The advantage of the
PSO over many of the other optimization algorithms is
its relative simplicity (Van den Bergh, 2001). According
to Jones (2005), the only two equations used in PSO
are the movement equation (Eq. 1) and velocity update
equation (Eq. 2). The movement equation provides for
the actual movement of the particles using their specific
vector velocity while the velocity update equation
provides for velocity vector adjustment given the two
competing forces (“gbest” and “pbest”). The inertia
weight (ω) was introduced by Shi and Eberhart (1998)
to improve the convergence rate of PSO algorithm.

(1)

  (2)

Fig. 1: The basic PSO procedure (Haza, 2006)
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Where, Vi is the current velocity, t∆  defines the
discrete time interval over which the particle will move,
ω is the inertia weight, Vi-1 is the previous velocity,
presLocation is the present location of the particle,
prevLocation is the previous location of the particle
and rand () is a random number between (0, 1),  c1 and c2
are the acceleration constants for “gbest” and “pbest”,
respectively. Particles’ velocities are limited by a user-
specified value, maximum velocity Vmax, to prevent the
particles from moving too far from potential solution.

PSO has been successfully applied in various fields.
Fukuyama et al. (1999) used PSO for reactive power
and voltage control considering voltage stability.
Gudise and Venayagamoorthy (2003) applied PSO to
evolve digital circuits, to solve the problem of the human
designs. Gies and Rahmat (2003) applied PSO for
configurable phase-differentiated array designed.
Besides, Lisa et al. (2003) presented an adaptive
multimodel biometric fusion algorithm using PSO,
which was a combination of Bayesian decision fusion
and PSO. Meanwhile, PSO was used as route
selection by Rajani and Lisa (2004) and optimal
scheduler by Lisa and Kalyan (2004). Besides, Song

and Gu (2004) had detailed the potential performance
of PSO on ANNs weights modification, as an
alternative to Backpropagation method because of its
convenience.

PSONN Algorithm
In this study, PSO is applied to train a feedforward

neural network for enhancing the convergence rate
and learning process. The basic element of a NN is a
neuron. Each neuron is linked with its neighbors with
an associated weight that represents information used
by the net to solve a problem. The learning process
involves finding a set of weights that minimizes the
learning error.

According to Al-kazemi and Mohan (2002), the
position of each particle in a PSONN represents a set
of weights for the current iteration. The dimension of
each particle is the number of weights associated with
the network. The learning error of this network is
computed using the mean squared error (MSE) between
the observed and simulated runoff. The particle will
move within the weight space attempting to minimize
learning error.

Fig. 2: PSONN learning process (Van den Bergh, 2001)
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of Sadong Basin, which is one of the 22 river basins in
Sarawak, Malaysia. Main boundary of the Sadong
Basin, rainfall and river stage gauging stations
within Sadong Basin, are shown in Fig. 3b. The Bedup
Basin is upstream of Batang Sadong, where it is a
non-tidal influence river basin. Fig. 3c shows the 5
rainfall gauging stations available in Sungai Bedup
Basin, namely, Bukit Matuh (BM), Semuja Nonok
(SN), Sungai Busit (SB), Sungai Merang (SM) and
Sungai Teb (ST) and one river stage gauging station
at Sungai Bedup located at the outlet of the basin.

The basin area is approximately 47.5km2 and the
elevation varies from 8 m to 686 m above mean sea
level (JUPEM, 1975). The vegetation cover is mainly
shrub, low plant and forest. Sungai Bedup Basin
has a dendritic type channel system. The maximum
stream length for the basin is approximately 10 km,
which is measured from the most remote point on
the stream network to the basin outlet.

The input data used are daily rainfall data from
the 5 rainfall stations. Observed daily mean runoff
data are converted from water level data through a
rating curve given by Eq. (4) (DID, 2004).

Where, Q is the discharge (m3/s) and H is the stage
discharge (m). These observed runoff data were used
to compare the model runoff.

Models developments
The training and testing processes of the daily

rainfall-runoff model are investigated using the
PSONN model. An optimal configuration of PSONN
is determined. According to Shi (2004), PSONN
architecture with a well-selected parameter set can
have good performance. This means the combination
of parameters will greatly affect the optimization
results of PSONN. Hence, various parameters that
affect PSONN performace are investigated for
searching the best model configuration of PSONN
for simulating daily runoff at Sungai Bedup. The
performance of PSONN was firstly investigated for
four basic parameters in PSO (Jones, 2005). These
four basic parameters are important to determine the
optimal configuration of SONN and these are:
a) Acceleration constants for “gbest” (c1)
b) Acceleration constants for “pbest” (c2)
c) The time interval (∆ t) constant
d) The number of particles

 Fig. 2 shows the learning process of PSONN. The
learning process of PSONN is initialized with a group
of random particles (step 1), which are assigned random
PSO positions (weight and bias). The PSONN is trained
using the initial particles position (step 2). Then, the
feedforward NN in PSONN will produce the learning
error (particle fitness) based on an initial weight and
bias (step 3). The learning error at the current epoch or
iteration will be reduced by changing the particles
position, which will update the weight and bias of the
network.

The “pbest” value (each particle’s lowest learning
error so far) and “gbest” value (lowest learning error
found in entire learning process so far) are applied to
the velocity update equation (Eq. 2) to produce a value
for position adjustment to the best solutions or targeted
learning error (step 4). The new sets of positions (NN
weight and bias) are produced by adding the calculated
velocity value to the current position value using the
movement equation (Eq. 1). Then, the new sets of
positions are used to produce new learning errors for
the feedforward NN (step 5). This process is repeated
until the stopping conditions, either minimum learning
error or maximum number of iteration are met (step 6).
The optimization output, which is the solution for the
optimization problem, was based on the gbest position
value. In this study, PSONN program was developed
based on Sombrero function optimization. The PSO
particle positions are represented in two-dimensional
(2D) vector of x and y values in Sombrero function. The
objective is to reach the value of 1 based on value of x
and y in Sombrero equation (Eq. 3) and the goal for the
PSO (z) is to maximize the function.

Where, x is value in x-axis, y is value in y-axis, z is
value in z-axis. Further, explanation about Sembrero
function can be referred to Ashlock (2006).

Study Area
The selected study area is Sungai Bedup Basin, a

sub-basin of Sadong Basin, Sarawak, Malaysia. This
basin is located approximately 80 km from Kuching City.
Model calibration used data series of daily rainfall and
observed runoff from year 1997 to year 1999.

The locality plan of Sungai Bedup Basin was
presented in Fig. 3. Moreover, Fig. 3a shows the location
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a) Location map of Sadong Basin in sarawak, Malaysia
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Besides, these basic parameters, the effect of other
parameters to the optimization results of PSONN was
also investigated for model calibration. These
parameters include particle dimension, maximum
iteration (stopping condition), number of hidden
neurons in the hidden layer, length of input data and
number of antecedent days. In PSONN, the number of
dimensions refers to the number of weight and the
bias that depends on the training dataset and PSONN
architecture. The particle dimension relies on the
number of input neuron, number of hidden neuron in
hidden layer and number of output neuron. The
dimension of PSONN is calculated using Eq. 5.

Five models were developed for investigating the
effect of the number of antecedent days on the
performance of PSONN. These five different models

are labeled as PSONND1, PSONND2, PSONND3,
PSONND4 and PSONND5. The input data of the models
consists of antecedent rainfall, P(t-1), P(t-2),…,P(t-
n), antecedent runoff, Q(t-1), Q(t-2),…,Q(t-n) and
current rainfall, P(t). Whereas, the output is the runoff
for the current day, Q(t). The configurations of five
models with different number of antecedent days are
listed below:

PSONND1 model

PSONND2 model

PSONND3 model

 PSONND4 model

Q(t)=f[P(t),P(t-1),P(t-2),P(t-3),Q(t-1),Q(t-2),Q(t-3)]                                

Dimension = (input*hidden input?) + 
(hidden*output hidden)  
+ hidden bias +output bias 
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.

Fig. 3: Locality map of Bedup Basin, Sub-basin of Sadong Basin, Sarawak, Malaysia

   (5)  (8)

Q(t)=f[P(t),P(t-1),Q(t-1)]       (6)

Q(t)=f[P(t),P(t-1),P(t-2),P(t-3),P(t-4),
Q(t-1),Q(t-2),Q(t-3),Q(t-4)]                     

Q(t)=f[P(t),P(t-1),P(t-2),Q(t-1),Q(t-2)]                                                     (7)

  (9)
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PSONND5 model

Where, t = time (days), P = precipitation (mm), Q =
discharge (m3/s). Eqs. 6, 7, 8, 9 and 10 represent
operations to forecast discharge at current day with 1,
2, 3, 4 and 5 days of antecedent data, respectively. The
inputs were arranged sequentially as time is one of the
important factors in the model.

The rainfall and runoff data are normalized before
the PSONN computation is carried out. Normalization
will transform the original rainfall and runoff data into
the range of 0.001 to 0.999. The equation of
normalization method is by dividing all data by the
highest data value in the group as shown in Eq. 11.

Where, y is the transform series and x is the original
series of rainfall or runoff data. The objective function
used is mean squared error. This optimization objective
will ensure that MSE or learning error is getting lesser
with the increase of number of iteration as the simulated
runoff is getting closer to observed runoff. The
performance of the PSONN is measured by the
‘coefficient of correlation’ (R) and ‘Nash-Sutcliffe
coefficient’ (E2). These two criterions will measure the
overall differences between the simulated and observed
runoff. R and E2 values of 1.0 implies a perfect fit. The
formulas of these two coefficients are given in Table 1.

Learning mechanism
The PSONN is composed of three layers, namely,

the input layer, the hidden layer and the output layer.
The model is investigated with:

a) 1, 2, 3, 4 and 5 number of antecedent days.
b) Different c1 and c2 values ranging from 1.2 to 2.2.

(11)
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Where,  obs = observed value, pred = predicted value, −−

obs = mean observed values, dpre
−− = mean predicted values and j = number of values.

Table 1: Statistics for model comparison

Q(t)=f[P(t),P(t-1),P(t-2),P(t-3),P(t-4),P(t-5), 
Q(t-1),Q(t-2)  ,Q(t-3),Q(t-4),Q(t-5)]                                                                                  

 
  (10)

xmax
xy
−

=

c) Different time interval constant ranging from 0.0025
to 0.0300.
d) 16, 18, 20 and 22 number of particles.
e) Different length of training data from 11 months to 23
months and tested with 4 to 7 months of testing data.
f) Different max iteration ranging from 300 to 600.
g) Different number of hidden neuron ranging from 70
to 150.

The daily rainfall and runoff data were used for
model calibration. Daily rainfall and runoff data were
used for model validation. The model was initially
trained with 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 and 23
months of data taken from the period October 1997 to
December 1999. The calibrated model was then tested
with new data taken January 1996 to September 1997,
which is about 1/3 of length of training data.

RESULTS AND DISCUSSION
Many computations were conducted to find the

optimal configuration of PSONN. It was found the
parameters, including acceleration constants for
“gbest” (c1), acceleration constants for “pbest” (c2),
time interval (∆t), number of particle, length of training
and testing data, numbers of maximum iterations,
number of antecedent days, number of neurons in
hidden layer and number of antecedent days to the
performance of PSONN are interrelated. The effect of
each parameter to PSONN are presented below.

Number of antecedent days
The aim of investigating the effect of the number of

antecedent days is to determine the best time series to
produce the best network. As shown in Table 2, the
performance of PSONND3 consistently yields the
highest correlation and efficiency coefficients
compared to other PSONN models. This indicates that
PSONND3 is the best model for simulating daily runoff
in Bedup Basin. The number of antecedent days
determines the number of input neurons in input layer.

Int. J. Environ. Sci. Tech., 7 (1), 67-78, Winter 2010
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The network may not have sufficient degrees of
freedom to learn the process correctly when the
number of input neurons is small (PSONND1 and
PSONND2). If the number is too high, the network
will take a long time to get trained as there are too
many parameters to be estimated and may sometimes
over fit the data (PSONND4 and PSONND5).

Acceleration constants c1 and c2

According to Eberhart and Shi (2001), the acceleration
constants c1 and c2 represent the stochastic acceleration
that pulls each particle towards “pbest” and “gbest”
positions. The c1 constant affects the influence of the
global best solution over the particle, whereas the c2
constant affects how much influence of the personal
best solution has over the particle. The performance of
PSONN improved as c1 and c2 values increased from
1.2 to 2.0. This is because the particles are attracted
towards “pbest” and “gbest” with higher acceleration
and abrupt movements when c1 and c2 values increased
from 1.2 to 2.0 since c1 and c2 parameters are determining
the particles acceleration. At c1 and c2 values of 2.2,
PSONN was unable to converge. The best c1 and c2
values for PSONN are 2.0 where the values of R and E2

were 0.872 and 0.7754 for training, 0.900 and 0.8067 for
testing, respectively. The results for PSONN trained with
different c1 and c2 values are tabulated in Table 3.

Time interval (∆t) constant
The ∆t parameter defines the time interval over

which movement takes place in the solution space.
Decreasing this parameter provides higher granularity
movement within the solution space and a higher ∆t
value performs lower granularity movement (greater
distance achieved in less time). The performance of
PSONN is increased as ∆t increases from 0.0025 to

Training Testing c1 and 
c2 
values R E2 R E2 

1.2 0.700 0.5871 0.771 0.6638 
1.4 0.665 0.7100 0.718 0.6618 
1.6 0.626 0.7070 0.827 0.6212 
1.8 0.778 0.7088 0.704 0.6454 
2.0 0.872 0.7754 0.900 0.8067 
2.2 0.646 0.6244 0.756 0.7161 

 

Table 3: Performance of PSONND3 according to different c1
and c2 Values

Table 4: Performance of PSONND3 according to different
time interval (∆t) constant

Training Testing ∆t 
constant 
values R E2 R E2 

0.0025 0.775 0.6340 0.841 0.5894 
0.0050 0.814 0.8164 0.781 0.6861 
0.0100 0.872 0.7754 0.900 0.8067 
0.0150 0.744 0.6780 0.816 0.6891 
0.0200 0.639 0.7713 0.859 0.6644 
0.0250 0.749 0.6983 0.646 0.6544 
0.0300 0.774 0.6284 0.729 0.7357 

 

Note: PSONN calibrated with c1 and c2 values of 2.0, 20 number of particles,
∆t of 0.01, 21 months of training data, 7 months of testing data, 500 numbers
of max iteration and 100 numbers of hidden neurons

Training Testing Different 
antecedent 
days R E2 R E2 

PSONND1 0.680 0.6439 0.797 0.6516 
PSONND2 0.826 0.7358 0.819 0.7590 
PSONND3 0.872 0.7754 0.900 0.8067 
PSONND4 0.773 0.6838 0.795 0.6656 
PSONND5 0.687 0.7448 0.681 0.6588 
 

Table 2: The performance of PSONN with different number
of antecedent days

Note: PSONND3 trained with c1 and c2 values of 2.0, 21 months of training
data, 7 months of testing data, 20 numbers of particles, 500 max iteration and
100 numbers of hidden neurons

0.01. PSONN is unable to converge at ∆t of 0.0025 due
to the high granularity movement within the solution
space. Then, the PSONN performance is decreased as
∆t decreases from 0.01 to 0.03 due to the low granularity
movement within solution space. Results show that
the optimal Ät for PSONN in this study is consistently
given as 0.01. Table 4 represents the performance of
PSONN when trained and tested with different ∆t
values.

 Number of particles
The number of particles in the simulation or swarm

represents the amount of space that is covered in the
problem. The performance of PSONN is increased with the
increase of number of particles from 16 to 20. PSONN is
unable to simulate well with 16 particles because the space
covered in the problem is not sufficient. Then, at 22 numbers
of particles, the PSONN performance starts decreasing
(Table 5) due to the space covered in solving the problem
being too wide. The best number of particles was found to
be 20. It was observed that the optimization period was
getting longer with the increase of number of particles.
This is because when more particles are presented, the

Note: PSONND3 trained with 21 months of training data, 7 months of testing
data, ∆t of 0.01, 20 numbers of particles, 500 max iteration and 100 numbers
of hidden neurons
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Length of training and testing data
The performance of PSONN is increased as the length

of training is increased. It was found that a minimum of 21
months of training data was required to achieve best
accuracy and yielded R = 0.872 and E2 = 0.7754 values for
the training data set and R = 0.900 and E2 = 0.8067 for
validation data set. Table 5 shows that when more data are
used, PSONN may performs better (produces higher
coefficient results), because a more accurate determination
of the synaptic weights is made by the PSONN. However,
when the calibration using 23 months of training data, the
accuracy of results obtained was not improved
compared to 21 months of training data. Therefore, 23
months of training data is not selected in this study.
The results of PSONN calibration with different length
of training and testing data are tabulated in Table 6.

Number of maximum iteration
The performance of PSONN was also investigated

using different numbers of maximum iterations ranging

Table 5: Performance of PSONND3 according to numbers of
particles

Training Testing Number 
of 
Particles R E2 R E2 

16 0.711 0.6501 0.757 0.7105 
18 0.848 0.7325 0.843 0.7229 
20 0.872 0.7754 0.900 0.8067 
22 0.690 0.6529 0.802 0.6613 

 

from 300 to 600. When R is used as the criterion of
performance, the best maximum number of iterations
obtained was 500 and yielded R=0.872 and R=0.900 for
training and testing, respectively. When E2 is used as
the criterion, the best maximum iteration is 550 with
E2 = 0.8433 and E2 = 0.8222 for training and testing,
respectively. The best maximum number of iterations
adopted was 500 to avoid over training and over fitting of
model. Once over trained, PSONN will only simulate
accurately for trained data, but unable simulate for different
sets of input data accurately. The number of maximum
iterations will determine if a network is well or efficient
trained, under trained or over trained. If the maximum
number of iterations is not sufficient (from 300 to 450), the
network is under trained and unable to approximate any
continuous function to any degree of accuracy. In
contrast, when too many iterations are used (at maximum
iteration of 550 and 600), PSONN may be over trained and
sometimes may over fit the data. Table 7 compares the
effects of various maximum iterations to PSONND3.

Table 6: Performance of PSONND3 according to length of
training and testing data investigated

Training Testing Length of 
training data 

R E2 
Length of 
testing data R E2 

11 months 0.815 0.6971 3 months 0.820 0.8156 
12 months 0.640 0.6711 4 months 0.650 0.6741 
13 months 0.687 0.7734 4 months 0.838 0.8010 
14 months 0.839 0.7150 4 months 0.851 0.7076 
15 months 0.802 0.6078 5 months 0.722 0.6291 
16 months 0.779 0.7734 5 months 0.814 0.7928 
17 months 0.762 0.6963 5 months 0.772 0.7213 
18 months 0.859 0.7575 6 months 0.814 0.7865 
19 months 0.811 0.7655 6 months 0.878 0.8639 
20 months 0.808 0.7221 6 months 0.831 0.7245 
21 months 0.872 0.7754 7 months 0.900 0.8067 
23 months 0.800 0.7654 7 months 0.855 0.7652 
 
 

Note: PSONND3 trained with c1 and c2 values of 2.0, 21 months of training
data, 7 months of testing data, ∆t of 0.01, 500 max iteration and 100 numbers
of hidden neurons

Note: PSONND3 calibrated with c1 and c2 values of 2.0, 20 number of
particles, ∆t of 0.01, 500 max iteration and 100 numbers of hidden neurons

Table 7: The performance of PSONND3 with different
maximum iteration

Training Testing Maximum 
Iteration R E2 R E2 

300 0.811 0.6366 0.785 0.7606 
350 0.770 0.6777 0.654 0.6176 
400 0.872 0.7375 0.858 0.7702 
450 0.845 0.7713 0.893 0.8028 
500 0.872 0.7754 0.900 0.8067 
550 0.822 0.8433 0.840 0.8222 
600 0.809 0.7855 0.801 0.7988 

 Note: PSONND3 calibrated with c1 and c2 values of 2.0, 20 number of
particles, ∆t of 0.01, 21 months of training data, 7 months of testing data and
100 numbers of hidden neurons.

Training Testing Different 
Hidden 
Neurons 

R E2 R E2 

70 0.776 0.6111 0.826 0.7359 
80 0.673 0.6482 0.826 0.6571 
90 0.779 0.6940 0.831 0.7960 
100 0.872 0.7754 0.900 0.8067 
110 0.790 0.7315 0.784 0.7910 
120 0.832 0.7309 0.827 0.7281 
130 0.800 0.7177 0.797 0.6909 
140 0.770 0.7194 0.709 0.6776 
150 0.721 0.6653 0.687 0.6653 

 Note: PSONND3 calibrated with c1 and c2 values of 2.0, 20 number of
particles, ∆t of 0.01, 21 months of training data, 7 months of testing data and
500 numbers of max iteration

Table 8: Performance of PSONND3 according to different
number of hidden neurons investigated
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Number of hidden neurons
The investigation initially was started from 10 hidden

neurons. However, it was observed that 10 to 60 hidden
neurons are unable to produce accurate results. Thus,
the simulations reported here have been carried out
with 70 to 150 hidden neurons in the hidden layer.
Increasing the number of hidden neurons from 70 to
100 increases the accuracy of simulation results as
shown in Table 8. However, the performance of
PSONND3 is decreased from 125 hidden neurons to
150 hidden neurons. This is because when the number
of hidden neurons is small, the network may not have
sufficient degrees of freedom to learn the process
correctly. In contrast, if the number is too high, the
network will take a long time to get trained and may
sometimes over fit the data. Moreover, if the hidden
layer has too many neurons, then there are too many

parameters to be estimated and this can cause network
convergence problems. With sufficient hidden neurons,
PSONN is able to approximate any continuous function
to any degree of accuracy by performing efficient
training. In this study, the optimal PSONN model uses
100 hidden neurons.

Best configuration
PSONN have shown encouraging and promising

results in terms of simulating daily runoff. The optimal
configuration of PSONN for modeling daily rainfall-
runoff relationship was found to be:
a)  3 antecedent days
b)  c1 and c2 values of  2.0
c)  time interval of 0.0100
d)  20 number of particles
e)  21 months of training data and 7 months of testing data

(a) Training data set

Fig. 4: Comparison between simulated and measured runoff for the optimum PSONN investigation
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f)  500 max iteration
g)  100 hidden neurons

The comparison between simulated and measured
runoff for the optimum PSONN is presented in Fig. 4.
The results show the simulated runoff generated by
optimum PSONN is successful in approaching the
highest peak of measured runoff for both training and
testing data. However, the simulated runoff generated
by PSONN is less successful in calculating low runoff
especially the runoff that are approaching 0 m3/s.

CONCLUSION
A new type of neural network algorithm (PSONN) is

successfully developed for solving the optimization
problems particularly calibrating the rainfall-runoff
model relationship for Bedup Basin, Malaysia. This
was revealed by the results where PSONN displays a
promising ability to simulate daily runoff accurately.
The best model is found to be PSONND3 with the
configuration of c1 =2.0, c2 = 2.0, time interval of 0.0100,
20 number of particles, 21 months of training data and
7 months of testing data, 500 max iteration and 100
hidden neurons. The optimal results obtained are R =
0.872 and E2 = 0.7754 for training and R = 0.900 and
E2 = 0.8067 for testing data.

This study shows that it is not necessary to include
the lag time as input. The PSONN tested did
demonstrate the ability to adapt to the respective lag
time of each gauge through training. For catchment in
tropical region, rainfall and runoff are sufficient as
inputs to develop rainfall-runoff model. Inclusion of
more parameters such as temperature, moisture content,
evaporation will make the PSONN more complex, the
learning time very long and this may decrease the
performance of PSONN.

The research for PSONN in hydrology is still in the
nascent stage. Basic PSO algorithm was adapted to
hybrid with NN in this study. The future research
directions of PSONN would be adapting newly
developed PSO techniques to hybrid with NN, such as
modified dynamic neighborhood PSO algorithm,
guarantee convergence PSO algorithm, multi-objective
PSO optimization algorithm to enhance the
convergence speed and obtain better  accuracy
simulation results.

REFERENCES
Abbaspour, M.; Rahmani, A. M.; Teshnehlab, M., (2005).

Carbon monoxide prediction using novel intelligent network.

Int. J. Environ. Sci. Tech., 1 (4), 257-264 (8 pages).
Al-kazemi, B.; Mohan, C. K., (2002). Training feedforward

neural network using multi-phase particle swarm
optimization. Proceedings of the 9 th. International
Conference on Neural Information Processing, New York.

Ashlock, D., (2006). The evolutionary computation for
modeling and optimization.Springer. Germany.

Bandyopadhyay, G.; Chattopadhyay, S., (2007). Single hidden
layer artificial neural network models versus multiple linear
regression model in forecasting the time series of total
ozone. Int. J.  Environ. Sci. Tech.,  4 (1), 141-150
(10 pages).

Bessaih, N.; Mah, Y. S.; Muhammad, S. M.; Kuok, K. K.;
Rosmina, A. B., (2003). Artificial neural networks for daily
runoff simulation. Faculty of Engineering, University
Malaysia Sarawak, Charles River Media Inc.

Bishop, C. M., (1995). Neural networks for pattern
recognition. Oxford University Press. Chapter 7, 253-294.

Bong, S. K.; Bryan, W. K., (2006). Hydraulic optimization
of transient protection devices using GA and PSO
approaches. J . Water Res. PL-ASCE., 132 (1), 44-52
(10 pages).

Dastorani, M. T.;  Wright, N. G., (2001). Artificial neural
network based real-time river flow prediction. School of
Civil Engineering, University of Nottingham, Nottingham
NG7 2RD, UK.

DID, (2004). Hydrological Year Book. Department of
Drainage and Irrigation Sarawak, Malaysia.

Eberhart, R.; Hu, X., (1999). Human tremor analysis using
particle swarm optimization. Proceedings of IEEE Congress
on Evolutionary Computation, CEC. Washington.

Eberhart, R.; Shi, Y., (2001). Particle swarm optimization:
Developments, application and resources. IEEE., 1, 81-86
(6  pages).

Elshorbagy, A.; Simonovic, S. P.;  Panu, U. S., (2000).
Performance evaluation of artificia l neural networks for
runoff prediction. J.  Hydrologic Eng., 5 (4), 424-427
(4  pages).

Ferguson, D., (2004). Particle swarm. University of Victoria,
Canada.

Fukumaya, Y.; Takamaya, S.; Nakanishi, Y.; Yoshida, H.,
(1999). A particle swarm optimization for reactive power
and voltage control in electric power systems. Proceedings
of the Genetic and Evolutionary Computation Conference
Orlando, Florida, USA.

Garcia-Bartual, R., (2002). Short term river flood forecasting
with neural networks. Universidad Politecnica de Valencia,
Spain, 160-165.

Gautam, M. R.; Watanabe, K.; Saegusa, H., (2000). Runoff
analysis in humid forest catchment with artificial neural
networks. J. Hydrol., 235 (1-2), 117-136 (20 pages).

Gies, D.; Rahmat-Samii,  Y.,  (2003). Particle swarm
optimization for reconfigurable phase-differentiated array
design. Micro. Opt. Tech. Lett., 38 (3), 168-175 (8 pages).

Gudise, V. G.; Venayagamoorthy, G. K., (2003). Evolving
digital circuits using particle swarm. Proceedings of the
International Joint Conference on Neural Networks.

Harun, S.; Kassim, A. H.; Van, T. N., (1996). Inflow estimation
with neural networks. 10th. Congress of the Asia and Pacific
Division of the International Association for Hydraulic
Research, 150-155.

Int. J. Environ. Sci. Tech., 7 (1), 67-78, Winter 2010

77

IJEST
Placed Image



         K. K. Kouk et al.

Haza, N.,(2006). Particle swarm optimization for neural
network learning enhancement. M.Sc. Thesis, University
Technology of Malaysia.

Imrie, C. E.; Durucan, S.;  Korre, A., (2000). River flow
prediction using artificial neural networks: Generalization
beyond the calibration range. J. Hydrol., 233, 138-153
(16 pages).

Jain, S. K.; Chalisgaonkar, C., (2000). Setting up stage-discharge
relations using ANN. J. Hydro. Eng., 5 (4), 424-433
(10 pages).

Jones M. T., (2005). AI application programming. 2nd. Ed.
Hingham, Massachusetts.

JUPEM (1975). Jabatan ukur dan pemetaan Malaysia. Scale 1,
50 ,000.

Kennedy, J.; Eberhart, R. C., (1995). Particle swarm
optimization. Proceedings of the IEEE International Joint
Conference on Neural Networks, IEEE Press. 1942–1948.

Lee, J. S.; Lee, S.; Chang, S.; Ahn, B. H., (2005). A comparison
of GA and PSO for excess return evaluation in stock markets.
Springer-Verlag, 221-230.

Lisa, A. O.; Kaylan, V., (2004). Optimal scheduling in sensor
network using swarm intelligence. CISS, Princeton, New
Jersey.

Lisa, A. O.; Veeramachaneni, K.; Varshney, P., (2003). Adaptive
multimodel biometric fusion algorithm using particle swarm.
Proceedings of SPIE Vol. 5099.

Nishimura, S.; Kojiri, T., (1996). Real-time rainfall prediction
using neural network and genetic algorithm with weather
radar data, 10th. Congress of the Asia and Pacific Division of
the International Association for Hydraulic Research, 204-
211 (8 pages).

Rajani, M.; Lisa, A. O., (2004). Decision making in a building
access system using sensor using swarm intelligence and
POSets. CISS, Princeton, New Jersey.

Rene, E. R.; Kim, J. H.; Park, H. S., (2008). An intelligent

neural network model for evaluating performance of
immobilized cell biofilter treating hydrogen sulphide vapors.
Int. J. Environ. Sci. Tech., 5 (3), 287-296 (9 pages).

Shi, Y., (2004). Particle swarm optimization. IEEE Neural
Network Society: 8-13.

Shi, Y.; Eberhart, R. C., (1998). A modified particle swarm
optimizer. Proceedings of the 105 IEEE Congress on
Evolutionary Computation, 69–73.

Song, M. P.; Gu, G. H., (2004). Research on particle swarm
optimization: A Review. Proceedings of the 3rd. International
Conference on Machine Learning and Cybernectics.
Shanghai, China.

Tokar, A. S; Johnson, P. A., (1999). Rainfall-runoff modeling
using artificial neural networks. J. Hydro. Eng., 4 (3), 223-
239 (17 pages).

Van den Bergh, F.; Engelbrecht, A. P., (1999). Particle swarm
weight initialization in multi-layer perceptron artificial
neural networks. ICAI. Durban, South Africa.

Van den Bergh, F.; Engelbrecht, A. P., (2000). Cooperative
learning in neural networks using particle swarm optimizers.
S. Afr. Comput. J., 26, 84-90 (7 pages).

Van den Bergh, F., (2001). An analysis of particle swarm
optimizers. Ph.D dissertation,University of Pretoria. South
Africa.

Wright, N. G.; Dastorani, M. T., (2001). Effects of river basin
classification on artificial neural networks based ungauged
catchment flood prediction, Proceedings of the 2001
International Symposium on Environmental Hydraulics.

Zhang, C.; Shao, H.; Li, Y., (2000). Particle swarm optimization
for evolving artificial neural network. IEEE, 2487-2490
(4 pages).

Zweiri, Y. H.; Whidborne, J. F.; Sceviratne, L. D., (2003). A
three-term backpropagation algorithm. Neurocomputing,
50, 305-318 (14 pages).

                    Feedforward neural network for modeling runoff

78

AUTHOR (S)  BIOSKETCHES
Kuok, K. K., Ph.D. Candidate, Department of Hydraulics and Hydrology, Faculty of Civil Engineering, University Technology Malaysia,
81310 UTM, Johor, Malaysia. Email: kkkuok100@yahoo.com.sg

Harun, S., Ph.D., Associate Professor, Department of Hydraulics and Hydrology, Faculty of Civil Engineering, University Technology
Malaysia, 81310 UTM, Johor, Malaysia. Email: sobriharun@gmail.com

Shamsuddin, S. M., Ph.D., Full Professor, Department of Computer Graphics and Multimedia, Faculty of Computer Science and Information
System, University Technology Malaysia, 81310 UTM, Johor, Malaysia. Email: mariyam@utm.my

How to cite this article: (Harvard style)
Kuok, K. K.; Harun, S.; Shamsuddin, S. M., (2009). Particle swarm optimization feedforward neural network for modeling runoff. Int.
J. Environ. Sci. Tech., 7 (1), 67-78.

IJEST
Placed Image


	Particle swarm optimization feedforward neural network for
	INTRODUCTION
	MATERIALS AND METHODS
	Particle swarm optimization feedforward neural
	Basic PSO procedure
	PSONN Algorithm

	Study Area
	Models developments
	Learning mechanism

	RESULTS AND DISCUSSION
	Number of antecedent days
	Acceleration constants c1 and c2
	Time interval (∆t) constant
	Number of particles
	Length of training and testing data
	Number of maximum iteration
	Number of hidden neurons
	Best configuration

	CONCLUSION
	REFERENCES
	AUTHOR (S) BIOSKETCHES
	How to cite this article: (Harvard style)




