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ABSTRACT: This study investigated the prediction of suspended sediment load in a gauging station in the USA by
neuro-fuzzy, conjunction of wavelet analysis and neuro-fuzzy as well as conventional sediment rating curve models. In
the proposed wavelet analysis and neuro-fuzzy model, observed time series of river discharge and suspended sediment
load were decomposed at different scales by wavelet analysis. Then, total effective time series of discharge and
suspended sediment load were imposed as inputs to the neuro-fuzzy model for prediction of suspended sediment load
in one day ahead. Results showed that the wavelet analysis and neuro-fuzzy model performance was better in prediction
rather than the neuro-fuzzy and sediment rating curve models. The wavelet analysis and neuro-fuzzy model produced
reasonable predictions for the extreme values. Furthermore, the cumulative suspended sediment load  estimated by this
technique was closer to the actual data than the others one. Also, the model could be employed to simulate hysteresis
phenomenon, while sediment rating curve method is incapable in this event.
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INTRODUCTION
The sediment load transported in river is the most

complex hydrological and environmental phenomenon
due to the large number of obscure parameters such as
spatial variability of basin characteristics and river
discharge patterns. In most rivers, sediments are mainly
transported as suspended sediment load  (SSL) (Morris
and Fan, 1997). Many models have been provided to
simulate this phenomenon (Mirbagheri et al., 1988a, b;
Verstraeten and Poesen, 2001). Due to large number of
obscure parameters involved in this phenomenon, the
theoretical governing equations may not be of much
advantage in gaining knowledge of the overall process.
Studies have been made to develop artificial intelligence
techniques for simulation processes with limited
adequate knowledge of the physics (Rajaee and
Mirbagheri, 2009; Nourani et al., 2008a). In the previous
years, the fuzzy logic has been used in the simulation of
uncertainties in the water resources and environmental
engineering such as river pollution management (Nasiri
et al., 2007), centralized return centers location
evaluation in a reverse logistics network (Tuzkaya and
Gülsün, 2008) environmental performance evaluation of

suppliers (Tuzkaya et al., 2009) and integrated water
systems modeling (Nguyen et al., 2007). Artificial neural
networks have been successfully applied to many tasks
in environmental engineering (Bandyopadhyay and
Chattopadhyay, 2007; Rene et al., 2008). Neuro-fuzzy
modeling is another method that refers to the approach
of applying deferent learning algorithms developed in
the neural network literature to fuzzy modeling or a fuzzy
inference system (FIS) (Brown and Harris, 1994). Neuro-
fuzzy model (NF) has been applied to a number of
problems in water resources and environmental
engineering, including river flow modeling (Zounemat-
Kermani and Teshnehlab, 2008), predicting and
identifying traffic hot spots (Hadji Hosseinlou and
Sohrabi, 2009), hydrological time series modeling (Firat
and Gungor, 2008) and ecological status modeling in
surface waters (Ocampo et al., 2007). There are a few
researches in employment of fuzzy inference system and
neuro-fuzzy approaches in suspended sediment
modeling. Tayfur et al. (2003) provided a fuzzy logic
method using the rainfall intensity and slope data to
predict sediment loads from bare soil surfaces. The
research showed that the fuzzy approach performed
better under very high rainfall intensities over different
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slopes and over very steep slopes under various rainfall
intensities. Lohani et al. (2007) developed a fuzzy
inference system to simulate the stage-discharge-
sediment concentration relationship in two gauging
stations in the Narmada basin in India. Results of the
mentioned study showed that the fuzzy method was
capable to provide much better results than rating curve
method. Kisi et al. (2008) studied the accuracy of an
adaptive neuro-fuzzy computing method in monthly
suspended sediment estimation in Kuylus and Salur
Koprusu stations in Turkey. The results showed that
NF model produced better performance than artificial
neural network (ANN) and SRC models. In Rajaee et al.
(2009), NF, ANN, multi linear regression and SRC models
were examined for daily simulation of suspended
sediment concentration in two hydrometery stations.
The models were trained using daily river discharge and
sediment concentration data belonging to Little Black
River and Salt River stations in the USA. Comparison of
the models’ results indicated that the NF model was
more accurate in predicting sediment concentration in
comparison with the other models.

A wavelet analysis is a set of building blocks to build
or represent a signal or function. It has increased in
practice and popularity in latest years. Wavelet analysis,
which give information in both the time and frequency
domains of the signal, give considerable knowledge
about the physical form of the data. It supplies a time-
frequency representation of a signal at many different
periods in the time domain (Daubechies, 1990). Wavelet
transformed data of original time series improve the
ability of a predicting model by capturing useful
information on various resolution levels (Kim and Valdes,
2003). An inclusive literature overview of wavelet
analysis in geosciences can be found in Foufoula-
Georgiou and Kumar (1995) and the most recent
contributions are cited by Labat (2005). In the past few
years, wavelet analysis has been employed to problems
in water resources and environmental engineering,
including river flow modeling (Pasquini and Depetris,
2007), meteorological pollution simulation (Osowski and
Garanty, 2007), open channel wake flows analysis
(Addison et al., 2001) and groundwater level time series
modeling (Wang and Ding, 2003).

Wavelet analysis and artificial intelligent approaches
(such as FIS and NF) are indicated to be suitable when
applied individually to environmental and water
resources problems. Recently, there has been a growing
interest in combining methods. Partal and Kisi (2007)
developed a wavelet and neuro-fuzzy conjunction model

for daily precipitation forecasting in Turkey. Their neuro-
fuzzy model is constructed with appropriate wavelet sub-
series as input and original precipitation as output. The
provided wavelet-neuro-fuzzy model well fit with the
measured data, particularly for zero and peaks
precipitation time series. Results showed that the
provided model produced significantly better results than
neuro-fuzzy approach. Nourani et al. (2008b) proposed
a combined neural-wavelet model. In their research, the
wavelet analysis was linked to ANN for prediction of
Ligvanchai watershed precipitation at Tabriz- Iran. For
this purpose, the main time series was decomposed to
some multi-frequently time series by wavelet. Then, these
time series were imposed as input data to the ANN to
predict the precipitation of one month ahead. The
obtained results showed that the proposed model can
predict both short and long term precipitation events
because of using multi-scale time series as the ANN
input layer. Wei et al. (2009) provided a wavelet network
approach for modeling of a permeate flux of cross-flow
membrane filtration. The aim of this research is to
construct a new model based on wavelet transform and
adaptive neuro-fuzzy approach for suspended sediment
load prediction in Pecos gauging station in the USA.
The purpose of combining the wavelet analysis with NF
technique is to increase the accuracy of SSL prediction.

MATERIALS AND METHODS
Study area and statistical analysis

The proposed NF and wavelet analysis and neuro-
fuzzy (WNF) models need uninterrupted time series data
pertaining to river discharge (Q) and SSL (S) at a gauging
station. The data obtained from the Pecos River near
Artesia, NM (USGS Station No: 08396500, Basin area
(sq. mi.): 15300, Latitude: 32º 50’25" and Longitude: 104º
19’ 23") was used for calibration and verification for all
the models provided in this study. The Pecos River is
situated in eastern New Mexico and western Texas. There
are primarily two major water inputs, namely snowmelt
from winter storms in the headwater region of the
southern Rocky Mountains and runoff from warm-
season monsoonal rainfall in the lower valley. This river
has been the subject of investigation by Yuan et al.,
(2007). Fig. 1 shows the state and the gauging station.

The data from October 1, 1965 to September 30, 1972
(7 years) and the data from October 1, 1972 to September
30, 1974 (2 years) were used for calibration and
verification sets, respectively. The data statistics for
training and testing sets are given in Table 1, which
contain the minimum, maximum, mean, standard
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deviation (Sd), skewness coefficient (Csx), lag 1 day
autocorrelation coefficient (R1),  lag 2 days
autocorrelation coefficient (R2) and lag 3 days
autocorrelation coefficient (R3).

From Table 1, it is obvious that the extreme values
of the available data are in the training set. When
classifying the data into training and testing subsets,
it is essential to check that the data represent the same

statistical population (Masters, 1993). Discharge and
SSL lag 1 day autocorrelation coefficients are very
adequate and relatively same in calibration and
validation data sets. Also, SSL lag 2 and 3 days
autocorrelation coefficients are satisfactory. It is seen
that the skewness coefficients are low in training and
testing sets. It is noted that the high skewnees
coefficient has a considerable negative effect on ANN

Fig. 2: Structure of ANFIS system: (a) Fuzzy inference system; (b) Equivalent ANFIS architecture

Fig. 1: (a) New Mexico State, (b) Drainage map showing the Pecos River and its adjacent areas

(a) (b) 0               30            60 mile
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Prediction of daily suspended sediment load

All data set Testing set Training set  
Q )/( 3 daym  S (ton/day) Q )/( 3 daym  S (ton/day) Q )/( 3 daym  S (ton/day) Statistical parameters 
4.15×105 1321.4 5.07×105 1475.8 3.89×105 1277.3 Mean 
8.65×105 4939.2 10.5×105 4619.2 8.02×105 5026.9 Sd 

6.065 7.075 6.304 5.312 5.663 7.458 Csx 
1097.3 0.009 6359 0.066 1097.3 0.009 Min 

149.47×105 79315 137.38×105 42768 149.47×105 79315 Max 
0.828 0.712 0.865 0.861 0.809 0.676 R1 
0.634 0.48 0.642 0.704 0.628 0.426 R2 
0.517 0.344 0.487 0.576 0.529 0.288 R3 

Table 1: Statistics analysis for training, testing and all data sets

performance (Altun et al., 2007). In general, Table 1
shows satisfactory statistics characteristics between
training and testing sets in terms of mean, standard
deviation, skewness coefficient and correlation
coefficient.

Neuro-Fuzzy approach
An special algorithm in neuro-fuzzy development is

the adaptive neuro-fuzzy inference system (ANFIS). It
is a network statement of Sugeno-type fuzzy models
and is introduced by Jang (1993). The structure of an
ANFIS is shown in Fig. 2. Fig. (2a) shows the fuzzy
reasoning mechanism for the Sugeno model to derive
an output function f from a given input vector [x,y].
The corresponding equivalent ANFIS construction is
showed in Fig. (2b). As an example, a fuzzy inference
system with two inputs x and y and one output f was
considered. For the first order Sugeno fuzzy model, a
typical rule set with two fuzzy If-Then rules can be
expressed as:

Rule 1: If  x is A1 and y is B1 , then f1=p1 x+q1 y+r1        (1)

Rule 2: If  x is A2 and y is B2 , then f2=p2 x+q2 y+r2        (2)

Where, A1, A2 and B1, B2 are the membership
functions for inputs x and y, respectively; p1, q1, r1 and
p2, q2, r2 are the parameters of the output function. The
functioning of the ANFIS is as follows:
Layer 1: The node output l

iOP is defined by:

)(xOP Ai
l

i µ=  for i=1,2  or                                           (3)

)(2 yOP Bi
l

i −= µ  for i=3,4                                           (4)

Where, x (or y) is the input to the node; Ai (or Bi-2) is
a linguistic label (such as ‘low’ or ‘high’) associated
with this node, characterized by the form of the

( ) ib
ii

Ai
l

i
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xOP 2/)(1
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−+
== µ (5)

membership functions in this node and can be any
suitable functions that are continuous and piecewise
differentiable such as Gaussian, trapezoidal shaped,
generalized bell shaped and triangular shaped
functions. The membership functions for A and B are
usually described by generalized bell functions. The
output l

iOP can be computed as:

Where, {ai, bi, ci} is the parameter set.
Layer 2: Every node in this layer multiplies the incoming
signals:

),()(2 yxwOP BiAiii µµ==    , i=1,2.           (6)

Layer 3: The ith node of this layer calculates the
normalized firing strengths as:

21

3

ww
wwOP i

ii +
== ,   i=1,2.                          (7)

Layer 4: Node i in this layer calculates the
contribution of the ith rule towards the model output:

)(4
iiiiiii ryqxpwfwOP ++==                          (8)

Where, w  is the output of layer 3 and {pi, qi, ri} is
the parameter set.

Layer 5: The single node in this layer calculates the
overall output of the ANFIS as (Jang and Sun, 1995;
Nayak et al., 2004; Aqil et al., 2007):

∑ ∑
∑

==
i

i
i

i
ii

iii w

fw
fwOP5                                          (9)

The optimization parameters in an ANFIS are the
premise and consequent parameters. The learning
algorithm is a hybrid algorithm, which is a
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combination of the gradient descent and least-squares
approach. Firstly, in the forward pass of the learning
technique, node outputs pass forward until layer (4)
and the consequent parameters are established by
the least-squares approach. In the backward pass, the
error signals propagate backward and the premise
parameters are updated by gradient descent. The
consequent parameters thus identified are optimal
under the condition that the premise parameters are
fixed (Jang and Sun 1995; Aqil et al., 2007). A
recommended literature for the NF model contains
Jang and Mizutani (1996).

Wavelet analysis
The time-scale wavelet transform of a continuous

time signal, x(t), is defined as:

( ) ∫
+∞

∞−

∗ ⎟
⎠
⎞

⎜
⎝
⎛ −

= dttx
a

btg
a

baT ).(1,
                        (10)

Where, * corresponds to the complex conjugate and
g(t) is called wavelet function or mother wavelet. The
parameter a acts as a dilation factor, while b corresponds
to a temporal translation of the function g (t) (Mallat,
1998). The original signal may be reconstructed using
the inverse wavelet transform as:

∫∫
∞+∞

∞−

−
=

0 2
.),()(11)(

a
dbdabaT

a
bta

ac
tx

g

                   
(11)

A discretization of Eq.10 based on the trapezoidal
rule maybe is the simplest discretization of the
continuous wavelet transform. This transform produces
N2 coefficients from a data set of length N; hence
redundant information is locked up within the
coefficients, which may or may not be a desirable
property (Addison et al., 2001). To overcome on the
mentioned redundancy, logarithmic uniform spacing
can be used for the a scale discretization with
correspondingly coarser resolution of the b locations,
which allows for N transform coefficients to completely
describe a signal of length N. Such a discrete wavelet
is shown as follow:

)(1)(
0

00

0
, m

m

mnm a
anbtg

a
tg −
=                                           (12)

Where, m and n are integers; b0 is the location
parameter and a0 is a specified fined dilation step. The
most common choice for parameters are a0 = 2 and a0 =

1. This power of two logarithmic scaling of the
translation and dilation is known as the dyadic grid
arrangement (Szilagyi et al., 1996). The dyadic wavelet
can be written in more compact notation as:

)2(2)( 2
, ntgtg mm
nm −= −−

                                                                                       (13)

For a discrete time series, xi, the dyadic wavelet
transform becomes:

∑
−
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2
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mm
nm xnigT                                              (14)

Where, T m,n is wavelet coefficient for the discrete
wavelet of scale ma 2=  and location nb m2= . Eq. 14
considers a finite time series, ix , 1,...,2,1,0 −= Ni  and
N is an integer power of 2: MN 2= . This gives the
ranges of m and n as respectively, 120 −<< −mMn
and Mm <<1 . At the largest wavelet scale (i.e., 2m

where m=M) just one wavelet is needed to cover the
time interval and only one coefficient is created. At the
next scale )2( 1−m , two wavelets cover the time interval,
therefore two coefficients are created and so on down

to m=1. At m=1, the a scale is 21, i.e. 2M-1 or 2
N

coefficients are needed to describe the signal at this
scale. The total number of wavelet coefficients for a
discrete time series of length MN 2= is then

12...8421 1 −=+++++ − NM  (Addison et al., 2001).
A signal smoothed component, T , is left, which is

the signal mean. Therefore a time series of length N is
broken into N components, i.e., with zero redundancy.
The inverse discrete transform is given by:
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or in a simple format as:

∑
=

+=
M

m
mi tWtTx

1

)()(                                                          (16)

Where, )(tT  is called approximation sub-signal at
level M and )(tWm  are details sub-signals at levels

Mm ,...,2,1,= . The wavelet coefficients, )(tWm ,
Mm ,...,2,1,= , provide the detail signals, which can

capture small features of interpretational value in the
data; the residual term, )(tT ,  represents the
background information of data. Because of simplicity
of )(...,),(),( 21 tWtWtW M , ),(tT  some exciting properties
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can be determine easily by means these components.
Recommended literatures for the wavelet beginner
contain Mallat (1998) and Labat et al. (2000).

Proposed Wavelet-Neuro-Fuzzy model
To construct the model, firstly measured river

discharge and SSL time series were decomposed to
some multi-frequently time series )(...,),(),( 21 tQtQtQ didd ,

)(tQa  and )(...,),(),( 21 tStStS didd , )(tSa  by discrete
wavelet transform (DWT). Which )(...,),(),( 21 tQtQtQ didd

and )(tQa  are the details and approximation (or
background) river discharge time series, respectively;

)(...,),(),( 21 tStStS didd  and )(tSa  are the details and
approximation SSL time series, respectively; di shows
the level i decomposed time series and a denotes

Fig. 3: Observed and decomposed river discharge sub-time series
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Fig. 3 (continued): Observed and decomposed river discharge sub-time series

Discharge discrete 
wavelet components 

Correlation between 
1)( −tiDDW  and tS  

Correlation between 
2)( −tiDDW  and tS  

SSL discrete wavelet 
components 

Correlation between  
1)( −tiSDW and tS  

Correlation between 
2)( −tiSDW  and tS  

DDW 1 -0.087 -0.043 SDW 1 -0.144 -0.038 
DDW 2 0.054 -0.233 SDW 2 0.13 -0.218 
DDW 3 0.32 0.124 SDW 3 0.381 0.152 
DDW 4 0.25 0.191 SDW 4 0.330 0.278 
DDW 5 0.293 0.279 SDW 5 0.387 0.387 
DDW 6 0.248 0.236 SDW 6 0.273 0.258 
DDW 7 0.282 0.282 SDW 7 0.305 0.305 
DDW 8 0.2198 0.221 SDW 8 0.249 0.249 
DDW 9 0.1126 0.1124 SDW 9 0.121 0.121 
DDW 10 0.0855 0.0852 SDW 10 0.105 0.105 
DDW App. 0.03 0.0296 SDW App. 0.059 0.058 

Table 2: The correlation coefficients of the discrete wavelet components with the measured SSL (St)
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Fig. 4: Observed and decomposed SSL sub-time series
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approximation time series. These time series play
various roles in the original time series and the
behavior of each is distinct. The measured river flow
and SSL time series was decomposed using different
scales, from 1 to 10 (i.e. into 10 wavelet decomposition
levels (2-4-8-16-32-64-128-256-512-1024 days). The
river discharge time series of 2-day mode (DDW 1), 4-
day mode (DDW 2), 8-day mode (DDW 3), 16-day
mode (DDW 4), 32-day mode (DDW 5), 64-day mode
(DDW 6), 128-day mode (DDW 7), 256-day mode
(DDW 8), 512-day mode (DDW 9), 1024-day mode
(DDW 10) and approximate mode (DDW App.) are
shown in Fig. 3. Also, the decomposed SSL time series
(SDW) of the mentioned modes are illustrated in
Fig. 4. The discrete wavelet transform belongs to the
multi resolution analysis (Mallat, 1989; Daubechies,
1990). It decomposes the time series into a set of basis
functions of various frequencies. In this study, the
river discharge and SSL time series are constructed
by a very irregular signal form. Therefore, an irregular
wavelet, the Daubechies wavelet of order 4 (db4)
(Daubechies, 1992), was selected for employing in this
paper. The aim of this research is to substitute the
prediction of the observed SSL of high variability by
the prediction of its summed wavelet coefficients on

various levels of reduced variabilities. Remaining
issues contain determining which wavelet levels are
most effective in SSL prediction. In this part, in order
to select the forceful wavelet components in
prediction, the correlation coefficients between
decomposed river discharge and SSL with original
SSL time series are calculated and illustrated in Table
2. Since majority of the decomposed time series are of
lower variability  prepared for the increase of the
prediction precision.

According to the Table 2, DDW 1, DDW 2, DDW 9,
DDW 10 and DDW App. show low correlation with
original SSL, therefore DDW 3, DDW 4, DDW 5, DDW
6, DDW 7 and DDW 8, were selected as effective
wavelet components and were summed together to
obtain total discharge discrete wavelet (TDDW). In
this manner, SDW 1, SDW 2, SDW 10 and SDW App.
show low correlation with original SSL, thus SDW 3,
SDW 4, SDW 5, SDW 6, DDW 7, DDW 8 and SDW 9
which have high correlation, were chosen as forceful
wavelet components and summed together to provide
total sediment discrete wavelet (TSDW). In Fig. 5, the
TDDW and TSDW are shown.

The correlation coefficients between discharge,
TDDW and TSDW with original SSL )( tS  to have first

Fig. 4 (continued): Observed and decomposed SSL sub-time series
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hand knowledge about the suitability of NF and WNF
models input construction are calculated and shown
in Table 3. According to Table 3, correlation coefficient
between SSL )( tS and 1−tQ  is 0.616, while it is 0.654 for

1−tTDDW  and correlation coefficient between SSL and
2−tQ  is 0.424, but it is 0.537 for 2−tTDDW . Also, SSL lag

1 day autocorrelation coefficient is 0.712 (Table 1), while
it is 0.8 for 1−tTSDW  and SSL lag 2 days autocorrelation
coefficient is 0.48, but it is 0.648 for 2−tTSDW . It is
obvious that the wavelet analysis is extremely useful
when employed before correlation coefficient
assessment to extract effective sub-time series in SSL
prediction. In Fig. 6 the construction of the proposed
WNF model is shown. Wavelet transforms provide
useful decompositions of main time series, so that

wavelet-transformed data improve the ability of a
predicting model by capturing useful information on
various resolution levels. Hence a hybrid WNF model
which uses summed multi-scale signals as input data
may present more probable prediction rather than a
single pattern input.

Sediment rating curve (SRC) method
In many rivers a main part of the sediment is

transported in suspension. Almost of this load
contained of silt and clay, i.e. wash load. Thus, it can
be concluded that wash load plays an important role in
the sediment transport in rivers (Asselman, 2000). The
primary data collected to determine the suspended
sediment discharge of a river are wQ  and C. )/( 3 smQw

Fig. 5: TDDW and TSDW time series

Fig. 6: Construction of the proposed WNF model
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Time series Correlation coefficient with St 

tQ  0.819 
1−tQ  0.616 
2−tQ  0.424 

TDDWt 0.712 
TDDWt-1 0.654 
TDDWt-2 0.537 
TSDWt 0.863 
TSDWt 0.8 
TSDWt 0.648 

 

Table 3: The correlation coefficients between discharge, TDDW
and TSDW with observed SSL (St)

is the instantaneous river discharge and measured with
a current meter or taken from a stage-discharge curve
for the gauging station. C is the instantaneous
suspended sediment concentration in mg/L or ppm.
Concentration is measured by analysis of water samples.
Finally, the instantaneous suspended sediment
discharge (ton/day) is calculated from wQ  and C. As the
finest fraction of the SSL often is a non-capacity load, it
cannot be predicted using stream power related sediment
transport models. Instead, empirical relations such as
sediment rating curves often are applied (Asselman,
2000). The establishment of a SRC is an important object
of hydrology. Since the measurement of sediment is
costly and time-consuming, usually discharge is
measured per day. The SRC is used to assess the
sediment discharge corresponding to the measured flow
discharge. Usually, the SRC has the form b

waQS =  where
S is the suspended sediment load or discharge and a
and b are constants. Thus, the SRC has important
bearing on correct assessment of SSL. As a SRC can be
considered a ‘black box’ type of model, the coefficients
a and b, have no physical meaning. However, some
physical interpretation is often ascribed to them. The a-
coefficient shows an index of erosion severity. High a-
values demonstrate intensively basin materials. The b-
coefficient shows the erosive power of the stream, with
large values being indicative for streams where a small
increase in river discharge results in a strong increase in
erosive power of the stream (Sarma, 1986; Morgan, 1995).

RESULTS AND DISCUSSION
Application of NF, WNF and SRC models

The performance of NF, WNF and SRC models in
prediction of SSL in one day ahead is the subject of
this research. Time series simulation is fundamentally
various from the conceptual simulation and modeling
of systems in several aspects. Although, a time series
can be interpreted as an output of a system, it is, by
definition, an output of an unknown system (Lopez et
al., 1996). With respect to statistics analysis in Tables
1 and 3, the following combinations that contain various
values of river discharge and SSL are regarded in the
input layer to predict the single SSL in one day ahead
at time t )( tS  in the output layer for NF model.

 1) 1−tS                                4) 11, −− tt SQ

 2) 21, −− tt SS                       5) 211 ,, −−− ttt SSQ

 3) 321 ,, −−− ttt SSS             6) 2121 ,,, −−−− tttt SSQQ

The provided NF model in this study used a fuzzy
inference algorithm of Sugeno type, in which the
membership function parameters were achieved to fit a
given input-output set by the hybrid optimization
algorithm. In this model, each rule includes some
parameters of membership functions (MFs) and each
variable may have some values (in terms of rules). For
instance, if each variable has two rules and each rule
includes three parameters, then there are 6n [n
(variables) × 2 (rules) × 3 (parameters)] parameters for
the distinction in layer 1 in Fig. 2. The model calibrates
these MFs in relation to training data. These rules create

n2  nodes in layer 3. Taking the number of MFs for
each input expresses the complexity of NF technique
for stating parameters. The most important benefit of
the neuro-fuzzy over traditional models is that it does
not need an explicit relation of the complicated nature
of the underlying process in a mathematical scheme. It
is essential that the construction of the model matches
the data. In this paper, the structures of the NF models
are determined employing a trial and error approach to
produce the best NF construction. Model performance
was examined for each input combination (1-6) for the
number of MFs varying from 2 to 4.

In the current study, the Gaussian membership
function has been used, because the most common
approach to neuro-fuzzy model is to use the Gaussian
membership function (Jaradat et al., 2008; Chuang et
al., 2009). Also, in a fuzzy system having Gussuian
membership functions, product inference rule and
weighted average defuzzifier is constructed and has
become the standard method in most application
(Wang, 1994). Comparing the Gaussian, triangular and
trapezoidal membership functions have been showed
that triangular and trapezoidal membership functions
boundary are straight lines, which cause the response
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difference quite a lot in the boundary. As for Gaussian
membership function hypothesis, because, is curve
boundary situation compared to the triangular and
trapezoidal thus improved the model efficiency (Chang
and Lin, 2007; Hidalgo et al., 2009). According to Fig. 6,
in WNF model the total decomposed time series were
entered to the NF model for prediction of SSL in one
day ahead. The aim of discrete wavelet analysis is to
decompose observed time series into a finite summation
of wavelets at various levels of expansion. In WNF
model, the following combinations that include different
values of TSDW and TDDW are considered in the
input layer to predict the single SSL in one day ahead
at time t in the output layer.
1) 1−tTSDW

2) 21, −− tt TSDWTSDW

4) 11, −− tt TDDWTSDW

3) 321 ,, −−− ttt TSDWTSDWTSDW

5) 121 ,, −−− ttt TDDWTSDWTSDW

6) 2121 ,,, −−−− tttt TDDWTDDWTSDWTSDW
Also, the sediment rating curve was fitted to the
calibration data and equation 17 was obtained.

7975.19108 QS −×=                                                      (17)
Then, the predictive capability of the SRC model

was tested with the testing data set.

Performance evaluation
Some conventional performance evaluations such

as correlation coefficient (R), coefficient of determination,
root mean square error (RMSE) and sum of square error
(SSE) and so on, were reviewed by Legates and McCabe
(1999). The authors illustrated that the correlation
coefficient is unsuitable for model evaluation. They
indicated a perfect evaluation of model performance
should include at least one ‘goodness-of-fit’ or relative
error measure (e.g. ) and at least one absolute error
measure (e.g., RMSE or mean absolute error (MAE)).
Nash and Sutcliffe (1970) described  which ranges from
minus infinity to 1.0, with higher values describing better
agreement. Also, this method of evaluation was used
by Nourani et al., (2009). In this study, SSE and RMSE
were calculated for various predictions by utilized
models. SSE computes the sum of square difference
between measured and predicted SSL, RMSE calculates
residual between actual and predicted SSL and clarifies
the relation between original and predicted values

(Appendix). The best model was selected based on the
highest  and lowest SSE or RMSE.

Models evaluation
NF, WNF and SRC models were employed in the

time series simulation of SSL for all input combinations
and the results are shown by Table 4.

According to the Table 4, in various structures of
the NF model, combination 3 is the best model that
uses 321 ,, −−− ttt SSS as inputs and four Gaussian
membership functions. Also, in WNF model,
combination 2 that employs 21, −− tt TSDWTSDW  as NF
model inputs shows the best result. In sediment-river
discharge relationship, it is established that sediment
is the output and river discharge is one of the inputs.
This is also validated from the SRC approach provided
for the station. Combinations 1 and 2 are similar to
combinations 4 and 5, respectively, except for the river
discharge term )( 1−tQ . In NF model, the input
combination 4 suitably executes in contrast of the
combination 1. Besides, the combination 5 satisfactory
performs as compared to the combination 2. The WNF
model prepares similar  results just for  input
combinations 1 and 4. For NF models, insertion of 2−tQ
to the combination 5 increased the model performance
(combination 6). The results obtained by NF models
illustrate that the inclusion of 1−tQ  and 2−tQ  in the
model inputs agreement influences to the models
performance. The cross-correlations computed
between discharge and SSL in Table 3 express the
relation between river flow and SSL time series and
confirm the results. The amount of 2R , SSE and RMSE
for NF models are in the ranges of 0.622-0.67,

91072.4 × - 91088.5 ×  and 2543-2837.7, respectively,,
whereas the mentioned statistical parameters are in the
ranges of 0.716-0.867, 91007.2 × - 91042.4 ×  and
1685.6-2459.6, respectively for the WNF models and
they are 0.44, 91078.8 ×  and 3467.1, respectively, for
SRC approach. Results reveal that the WNF models
which use sum of effective decomposed data (with high
correlation coefficient) have shown better performance
than NF models which use row data (with low correlation
coefficient). In WNF model by selecting different
decomposition levels for each variable, it may be
considered many different levels including long,
intermediate and short levels. According to the Table 4,
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Models WNF NF SRC 
Combination 1 2* 3 4 5 6 1 2 3* 4 5 6 - 
MF number 4 4 4 4 4 4 4 4 4 4 4 4 - 

2R  0.796 0.867 0.847 0.806 0.843 0.716 0.622 0.642 0.67 0.645 0.659 0.665 0.44 
SSE×109  
(ton/day)2 3.17 2.07 2.38 3.01 2.44 4.42 5.88 5.56 4.72 5.52 4.97 4.88 8.78 
RMSE 
(ton/day) 2082.8 1685.6 1805.3 2030.9 1828.2 2459.6 2837.7 2760.5 2543 2750.5 2608.7 2585.2 3467.1 

  Row Date Observed (ton/day) NF (ton/day) WNF (ton/day) SRC (ton/day) 
1 23-Sep-74 42768 28329 35561 48752.6 
2 22-Sep-74 39053.7 808.96 20345 15503 
3 20-May-73 38029.8 21920 28780 7361.6 
4 17-May-73 36661.3 13905 21149 7874.3 
5 18-May-73 34100.4 25302 25619 8617.7 
6 19-May-73 32864.8 22081 30636 8617.7 
7 24-Sep-74 32558.1 27402 32022 54135.8 
8 27-Jul-73 24952.8 3965.9 11154 3436.9 
9 22-May-73 20418.7 11731 17487 3957.5 
10 16-May-73 20120.4 11529 17882 4633.1 
11 21-May-73 19091.6 25604 23156 4449.7 
12 23-May-73 18657.2 14540 7980.3 3637.5 
13 15-May-73 16916.9 11679 14790 3329.6 
14 14-May-73 16455.1 7856.6 11503 3637.5 
15 01-Aug-73 16039.3 5023.2 8031.9 1781.8 
16 28-Jul-73 15545.8 18057 10274 1781.8 
17 28-May-73 12026.9 8342.7 8087.7 3527.5 

  R2   -1.21 0.21 -2.91 
SSE ×109 (ton/day)2   3.56 1.28 6.29 
RMSE (ton/day)   14472.1 8664.8 19235.6 

Table 5: Utilized models in SSL prediction in verification period for values greater than 12000 (ton/day)

Table 4: R2 SSE and RMSE in SSL prediction by NF, WNF and SRC models for testing period

the proposed WNF model was able to improve the SSE
and RMSE values of NF model by about 56.14 % and
33.72 %, respectively. Also, the WNF was able to improve
the mentioned parameters for SRC method by about 76.42
% and 51.38 %, respectively. According to the mean and
variance values of the SSL (Table 1), it is obvious that
the river discharge, sediment yield budget and their
variations in Pecos River station are sensible. Therefore,
it is expected that the performance of WNF model
(because of its capability) would be more accurate than
the NF and SRC models. Due to the inherent nonlinearity
and complexity of the SSC phenomenon, linear model
(i.e. SRC) does not show considerable efficiency. The
SRC model tends to under-predict high and over-predict
low SSL; as there are relatively only a few highs (storm
events) compared with a large number of lows (base
flow) in the data set. For support the all above results
by visual inspection, the time series of measured and
predicted SSL employing NF, WNF and SRC models for
verification period are plotted in Figs. 7 to 9. Furthermore,
the scatter plot of SSL predictions by the models were

plotted against observed SSL. The both NF and WNF
models underestimate the peaks, but WNF predictions
are closer to the high SSL values than the NF
predictions. It is seen that the WNF model gives better
performance than NF approach for prediction of low,
medium and high SSL values in all testing period. It
can be seen that the WNF predictions is closer to 45 °
straight line than NF predictions in all testing domains.
SRC approach employs all river discharge and SSL
calibration data as a regression method, while in
training set, most river discharge and SSL values are
low; hence, this model underestimates the SSL values
for validation period. As it is raised from Figs. 3 and 4,
the observed discharge and SSL are varying during
the periods of this research. The number of patterns,
including high values of river flow and especially SSL
is sufficiently less than the number of patterns
including low and medium values of discharge and SSL
for calibration period. Thus, the predicted SSL based
on the calibration set have a bias towards the low and
medium SSL in NF and WNF models.
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Fig. 9: Observed and predicted SSL using SRC model in verification period
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Fig. 7: Observed and predicted SSL using NF model in verification period

Fig. 8: Observed and predicted SSL using WNF model in verification period
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Fig. 11: NF, WNF and SRC performances in hysteresis phenomenon modeling for verification period

Prediction of high suspended sediment load values
In Table 5, the NF, WNF and SRC performances in

SSL prediction have shown in verification period for
values greater than 12000 (ton/day). According to the
Table 5, the amount of 2R , SSE and RMSE for WNF
model are 0.21, 1.28 × 109 and 8664.8, respectively. The
proposed WNF model was able to improvement of
RMSE values of NF and SRC models by about 40.1 %
and 55 %, respectively.

Cumulative suspended sediment load estimation
Estimation of cumulative suspended sediment load

which is an essential component in any reservoir
engineering problems was also considered as another
comparison criterion. The actual cumulative SSL in
testing period was 1077361 ton. It was estimated
1253370, 1083997 and 362204 ton by NF, WNF and SRC
models, respectively. The NF and WNF models have
overestimated by 16.3 % and 0. 6 %, respectively, while

SRC has underestimated by 66.4 %. Observed and
estimated cumulative SSL for the verification period
are shown in Fig. 10. It is clear that the cumulative SSL
estimated by the WNF model is much closer to the
actual values than the other models. The SRC technique
has quite underestimated.

Hysteresis simulation
In the scatter plot of river flow discharge and

sediment, after some values, a decrease in suspended
sediment data is obvious with the increasing river
discharge. This property is known as hysteresis and in
application, it may come problem for hydrologists,
because it denotes to a complicated and unpredicted
relation between the suspended sediment and river
flow. Tawfik et al. (1997) and Cigizoglu (2004) mentioned
this issue and illustrated the various models
performances in capturing this event. The NF, WNF
and SRC performances in hysteresis phenomenon
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Fig. 10: Measured and estimated cumulative SSL for verification period
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regeneration for testing period are shown in Fig. 11. As
it is seen, NF and WNF models simulated the hysteresis
event better than SRC method. The NF and WNF models
simulated the hysteresis form and its modeling rather
unlike than the observed data. The SRC approach was
not able in hysteresis regeneration. This technique
presents sediment rising by increasing the river flow in
all conditions, because of employing a power law relation
between them. The Hysteresis phenomenon is observed
in the gauging station, strongly suggests that the
progressive decline mechanism is dominant in sediment
supply in the watershed. The hystersis trend of floods
owing to the washout of fine loose material from basin.
A postulated cause of hysteresis in the study area is a
depletion of available sediment before the water
discharge has peaked.

CONCLUSION
In this study a new model by conjunction of wavelet

analysis and NF approach was applied to daily
suspended sediment load prediction in a gauging station
in the USA. In the best of the authors’ knowledge, this
paper is the first application of wavelet-neuro-fuzzy
hybrid model for prediction of SSL. In the provided WNF
model, at first the observed time series of river discharge
and suspended sediment load were decomposed to
some sub-time series at different scales by discrete
wavelet analysis. Then, effective sub-time series were
summed together to obtain useful river discharge and
SSL time series in prediction. In the WNF model, selection
of appropriate decomposed time series is important in
model performance. Afterwards, these total time series
were imposed as inputs to the NF model for SSL
prediction in one day ahead. The paper presents a
comparative study on convenient classic and new
generation hybrid intelligence approaches in SSL
modeling. Therefore, it will be of particular utility to
researchers that require time-series of SSL, but do not
have the resources to support sampling or turbidity
monitoring and are deciding between various models
that predict the needed data from discharge values. This
research prepares prediction benchmarks for SSL
prediction in the type of numerical and visual contrast
between NF, WNF and SRC models. Results indicate
that the WNF model is suitable in predictions and
improve the NF and SRC performances. Also, the WNF
model can satisfactory estimate cumulative suspended
sediment load and predict high SSL values by this model
show better fitting to the observed data than the other

models. The NF approach is in reasonable agreement
with the actual SSL data than the SRC technique, but
the errors demonstrate that some contributions of the
physics are disguised. WNF model goes someway
towards including this unknown physics and thus
improve the prediction accuracy. Non-stationary time
series wavelet decomposition into various sub-series
prepares an interpretation of the signal construction and
extracts important knowledge about its history with the
employ of just a few coefficients. The WNF model
considers periodic and stochastic characteristics of
suspended sediment phenomenon and may provide
suitable constructions not clearly seen in the suspended
sediment event. Data pre-processing technique warrants
further investigation. In fact, it should be noted that in
general and in Pecos River basin in particular, river
discharge and SSL time series are characterized by high
non-linearity and non-stationarity. NF models may
simply be unable to cope with these two different
features if preprocessing of the input and/or output data
is not performed. Tests undertaken on data preprocessed
using a wavelet transformation showed that the best
results were obtained with the WNF model. Overall these
results provide evidence of the promising role of
combining data clustering and discrete wavelet
transforms in SSL prediction. The results illustrated the
advantage of WNF model to NF approach in simulation
of suspended sediment time series. Reasonable
contributions are presented to the water resources and
environmental engineering literature by this article.
However, more study should be conducted to achieve a
confident hypothesis in this particular field until WNF
approach be a feasible and reliable model in suspended
sediment time series simulation. In order to complete the
current research, it is suggested to model the SSL process
by considering other variables (e.g. temperature or
precipitation intensity). Also as a plan for the future
study, the presented approaches can be used to simulate
monthly and event based SSL time series.

Appendix
The correlation coefficient (R) between two

variables x and y, whose n pairs are available, is defined
as:

Prediction of daily suspended sediment load
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Where, the bar denotes the mean of variable.
Determination coefficient, SSE and RMSE are defined
as:
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Which, S is suspended sediment load and n is the
number of data points.
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