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ABSTRACT: Adsorption plays an important role in water and wastewater treatment. The analysis and design of
processes that involve adsorption rely on the availability of isotherms that describe these adsorption processes.
Adsorption isotherms are usually estimated empirically from measurements of the adsorption process variables.
Unfortunately, these measurements are usually contaminated with errors that degrade the accuracy of estimated isotherms.
Therefore, these errors need to be filtered for improved isotherm estimation accuracy. Multiscale wavelet based filtering
has been shown to be a powerful filtering tool. In this work, multiscale filtering is utilized to improve the estimation
accuracy of the Freundlich adsorption isotherm in the presence of measurement noise in the data by developing a
multiscale algorithm for the estimation of Freundlich isotherm parameters. The idea behind the algorithm is to use
multiscale filtering to filter the data at different scales, use the filtered data from all scales to construct multiple
isotherms and then select among all scales the isotherm that best represents the data based on a cross validation mean
squares error criterion. The developed multiscale isotherm estimation algorithm is shown to outperform the conventional
time-domain estimation method through a simulated example.
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INTRODUCTION
Toxic heavy metal contamination of water and

wastewater is a significant problem. The presence of
these metals above the permissible limits in the
environment causes severe public health problems
(Baily et al., 1999; Naseem and Tahir, 2001). Therefore,
remediation of such water from these pollutants is
essential before it can be reused. Several water
purification methods have been utilized, and include
chemical precipitation (Henke, 1998), reverse osmosis
(Ning, 2002), electro-dialysis, ion exchange and
adsorption.

Adsorption is a mass transfer process, which
involves the contact of solid (adsorbent) with a fluid
containing certain pollutants (Reynolds and Richards,
1995; Alkan and Dogan, 2001; Chien and Shah, 2007;
Igwe et al., 2008; Shah et al., 2009). As a result of the
contact, the pollutant binds to the surface of the
adsorbent. The adsorption capacity depends on several
factors, such as the adsorbent type, its surface area,
and its internal porous structure (Abdel-Ghani and
Elchaghaby, 2007). Additionally, since the attachment
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of the pollutant can be physical or chemical, the
chemical and physical structures and the electrical
charge of the adsorbent can significantly influence the
interactions with the adsorbates and thus the
effectiveness of pollutant removal. Adsorption
processes are characterized by their kinetic and
equilibrium isotherms (Chen et al., 2010). The adsorption
isotherms specify the equilibrium surface concentration
of the adsorbate as a function of its bulk concentration.
Several mathematical models have been proposed to
describe the equilibrium isotherms of adsorption. Some
of the most popular models include Langmuir,
Freundlich, Redlich-Peterson and Sips. A summary of
these isotherms is provided in (Montgomery, 1995).
Even though most of these adsorption isotherms are
derived based on some theoretical assumptions about
the adsorption mechanism, they involve model
parameters that need to be estimated from experimental
measurements of the process variables (Abdel-Ghani
et al., 2009). For example, the Freundlich isotherm, which
is the focus of this paper, has the following form
(Adamson, 1967; Geankoplis, 1993; Seader and Henley,
1998; McCabe et al., 2001).
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Where, eC  is the equilibrium liquid phase

concentration (mg/L), eq  is the equilibrium solid

phase concentration (mg/g), fk  is the sorption

capacity, and n  is the sorption intensity. In the above
Freundlich model,  and  are model parameters to be
estimated using the initial concentration and
measurements of the equilibrium concentration, .

Unfortunately, measurements of the equilibrium
concentration are usually contaminated with
measurement noise due to random errors, human
errors, or malfunctioning sensors. The presence of
such measurement noise, especially in large amounts,
can degrade the accuracy of the estimated isotherm
parameters, which in turn limits the ability of the
isotherm to accurately predict the adsorption capacity
of the process in which the isotherm is used.
Therefore, such noise needs to be filtered for improved
estimation of the isotherm parameters.

Noise removal from data is not a simple task since
practical measurements are usually multiscale in
nature, meaning that they contain features and noise
occupying different locations in time and frequency
(Bakshi, 1999). Filtering techniques, however, usually
classify noise as high frequency features, and filter
the data by removing features with frequency higher
than a defined frequency threshold. Since multiscale
data may contain correlated noise with low frequency
as well as important features with high frequency,
noise removal from such data becomes challenging.
Thus, multiscale modeling techniques are needed in
the estimation of adsorption isotherms to account for
this multiscale nature of the data (Nounou and Bakshi,
2000).

Many investigator s have used mul tiscale
techniques to improve the accuracy of estimated
empirical models.  For example, Palavajjhala et al.
(1996) showed how to use wavelet representation to
design wavelet pre-filters for process modeling
purposes. Bakshi (1999) has discussed some of the
advantages of using multiscale representation in
empirical modeling and Bakshi (1998) has enhanced
the noise removal ability of the principal component
analysis (PCA) model by constructing multiscale PCA
models, which he also used in process monitoring.
Also,  Robertson et al.  (1998); Nikolaou and

Vuthandam (1998) and Nounou (2006) used multiscale
representation to reduce collinearity and shrink the
large variations in the finite impulse response (FIR)
model parameters. Finally, Nounou and Nounou (2005);
(2007) and Nounou et al. (2009) used wavelet-based
representation to enhance the accuracy of the Takagi-
Sugeno fuzzy model, the auto regressive with
exogenous variable (ARX) model and the Langmuir
adsorption isotherm.

The objective of this work is to develop a
multiscale estimation algorithm that reduces the effect
of measurement noise on the accuracy and prediction
of estimated Freundlich isotherm.

MATERIALS AND METHODS
In this section, the problem statement, the

theoretical background material and the proposed
multiscale modeling methods of the Freundlich isotherm
are presented.

Problem statement
Given the initial concentration data {C0 (1) C0 (2)...C0

(n)}and measurements of and the equilibrium
concentrations, {Ce(1) Ce (2)...Ce (n)}, which are
assumed to be contaminated with additive zero-mean
Gaussian noise, i.e.,                       where eε ~ N (0, s2), it
is desired to estimate the parameter, fk  and n , that
satisfy the Freundlich isotherm

                                ,

Note that the equilibrium uptake, eq ,  is not
measured and is calculated as follows (Abdulkarim and
Abu Al-Rub, 2004):

Where, V  is the volume of the solution and w  is
the mass of the adsorbent.

Freundlich model representation
The Freundlich isotherm shown in Eq. 2 is nonlinear

and can be linearized as follows:

Defining: ( ) ( )1 ln ek q kα = , ( ) ( )2 ln ek C kα = ,

1 1 /a n= ,  and 2 ln fa k= ,  the linearized
isotherm shown in equation (4) can be written in matrix
form as follows:

( ) ( )1/ n
e f eq k k C k= [ ]1,k n∈ (2)

( ) ( ) ( )( )o e
e

C k C k V
q k

w
−

= (3)

1/ n
e f eq k C= (1)

Ce = Ce +εe,
~

( ) ( ) ( )ln ln 1 / lne f eq k k n C k= + (4)
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which can be written more compactly as:

Isotherm estimation using least squares regression
The linearized model parameter vector, a , can be

estimated using ordinary least squares (OLS) regression
by solving the following minimization problem (Frank
and Friedman, 1993),

Which has the following closed form solution,

Once the parameters 1a  and 2a are estimated, the
original isotherm parameters can be computed as
follows:

                       and

    It can be seen from Eq. 6 that the OLS estimation method
relies on minimizing the prediction error of the model
output, Y , when estimating the isotherm parameters. This
is because it is assumed that the input matrix, X, is noise-
free. However, if the equilibrium concentration data are
noisy, then the matrix, is also noisy, which violates the
basic assumption of this approach. Therefore, in the
presence of measurement noise in the data, this noise
needs to be filtered for improved isotherm parameter
estimation. One effective way to do that is through
multiscale representation of data, which is presented next.

Multiscale data representation
A proper way of analyzing real data requires their

representation at multiple scales. This can be achieved
by expressing the data as a weighted sum of
orthonormal basis functions, which are defined in both
time and frequency, such as wavelets (Daubechies,
1988).  Wavelets are a computationally efficient family
of multiscale basis functions. A signal can be
represented at multiple resolutions by decomposing
the signal on a family of wavelets and scaling functions.

{ } ( ) ( )ˆ arg min T

a
a Y Xa Y Xa= − − (6)

( ) 1
ˆ T Ta X X X Y

−
= (7)

1ˆ ˆ1 /n a= 2ˆˆ a
fk e=

The signals in Figs. 1b, d and f are at increasingly
coarser scales compared to the original signal in Fig.
1a.  These scaled signals are determined by projecting
the original signal on a set of orthonormal scaling
functions of the form,

or equivalently by filtering the signal using a low pass
filter of length r, [ ]rhhhh ..21= , derived
from the scaling functions. On the other hand, the
signals in Figs. 1c-g, which are called the detail signals,
capture the differences between any scaled signal and
the scaled signal at the finer scale.  These detail signals
are determined by projecting the signal on a set of
wavelet basis functions of the form,

or equivalently by filtering the scaled signal at the finer
scale using a high pass filter  of length r,

[ ]1 2 . . rg g g g= , derived from the wavelet
basis functions.  Therefore, the original signal can be
represented as the sum of all detail signals at all scales
and the scaled signal at the coarsest scale as follows,

Where, j, k, J and n are the dilation parameter,
translation parameter, maximum number of scales (or
decomposition depth), and the length of the original
signal, respectively (Daubechies, 1988; Strang, 1989).

Fast wavelet transform algorithms of O(n) complexity
for a discrete signal of dyadic length have been
developed (Mallat, 1989). For example, the wavelets
and scaling functions coefficients at a particular scale
(j), jd  and ja ,can be computed in a compact fashion
by multiplying the scaling coefficient vector at the finer
scale,  -1ja , by the matrices, Gjand Hj, respectively..

( )-( ) 2 2 -j j
jk t t kφ φ −= (8)

( )-( ) 2 2 -j j
jk t t kψ ψ −= (9)

( )
-2 2

1 1 1
( ) ( )

J jn J n

Jk Jk jk jk
k j k

x t a t d tφ ψ
−

= = =

= +∑ ∑ ∑ (10)

Y= Xa

( )
( )

( )

( )
( )

( )
{

1 2

1 2
1

2

1 2

1 1 1
2 2 1

. . .

. . .
1

a

Y X

a
a

n n

α α
α α

α α

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦14243 14243

(5)

-1j j ja H a= and -1j j jd G a=i.e.

- - 1

1

1

1 2 2

. 0 0
0 . 0
. . . . .
0 0 . j j

r

r
j

r n n

h h
h h

H

h h +×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

where and

(11)

IJEST
Placed Image




M. N. Nounou; H. N. Nounou

512

MS estimation of Freundlich isotherm

Fig. 1:  A schematic diagram of data representation at multiple scales

Note that the length of the scaling and detail signals
decreases dyadically at coarser resolutions (higher j).
In other words, the length of scaled signal at scale (j),
is half the length of scaled signal at the finer scale, (j-
1). This is due to down-sampling, which is used in
discrete wavelet transform. Just as an example to
illustrate the multiscale decomposition procedure and
to introduce some terminology, consider the following
discrete signal, oY , of length (n) in the time domain
(i.e., 0j = ),

the scaled signal approximation of  oY  at scale ( j ),
which can be written as:

can be computed as follows:

( ) ( ) ( ) ( )1 2 . .
T

o o o o oY y y y k y n= ⎡ ⎤⎣ ⎦ (12)

Note that this decomposition algorithm is batch,
i.e., it requires the availability of the entire data set
beforehand. An on-line wavelet decomposition
algorithm has also been developed and used in data
filtering (Nounou and Bakshi, 1999).

Multiscale data filtering
Multiscale filtering using wavelets is based on the

observation that random errors in a signal are present
over all wavelet coefficients while deterministic
changes get captured in a small number of relatively
large coefficients (Cohen et al., 1993; Donoho and
Johnstone, 1994; Donoho et al., 1995; Bakshi, 1999;
Nounou and Bakshi, 2000). Thus, stationary Gaussian
noise may be removed by a three step method (Donoho
et al., 1995):

1)  Transform the noisy signal into the time-frequency
domain by decomposing the signal on a selected
set of orthonormal wavelet basis functions;

2)  Threshold the wavelet coefficients by suppressing
coefficients smaller than a selected value;

3)  Transform the thresholded coefficients back into
the original domain.

Donoho and coworkers have studied the statistical
properties of wavelet thresholding and have shown
that for a noisy signal of length n , the filtered signal
will have an error within O (log n) of the error between
the noise-free signal and the signal filtered with a priori

( ) ( ) ( )1 . . 2
Tj

j j j jY y y k y n −⎡ ⎤= ⎣ ⎦
(13)

-1 -1 1...j j j j j oY H Y H H H Y= = (14)

(c)
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signal

(e)
second detail

signal

(g)
third detail

signal
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- - 1

1

1
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⎢ ⎥
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knowledge about the smoothness of the underlying
signal (Donoho and Johnstone, 1994).

Selecting the proper value of the threshold is a
critical step in the rectification process, and several
methods have been devised. For good visual quality
of the filtered signal, the Visushrink method
determines the threshold as:

Where, n  is the signal length and jσ  is the
standard deviation of the errors at scale j , which
can be estimated from the wavelet coefficients at that
scale by

Other methods for determining the threshold are
described in (Nason, 1996).  The wavelet coefficients
may be thresholded by hard or soft thresholding.
Hard thresholding eliminates coefficients smaller than
a threshold, whereas soft thresholding also shrinks
the larger coefficients towards zero by the value of
the threshold.  Hard thresholding can lead to better
reproduction of peak heights and discontinuities, but
at the price of occasional artifacts that can roughen
the appearance of the filtered signal, while soft
thresholding usually gives better visual filtering
quality and fewer artifacts (Coifman and Donoho,
1995).  In this work, soft thresholding will be used in
filtering adsorption data.

Multiscale formulation of Freundlich estimation
problem

The main objective here is to reduce the effect of
measurement noise in the data on the estimation of
the Freundlich isotherm parameters using multiscale
filtering. Therefore, the idea is to filter the measured
equilibrium concentration data using different
decomposition depths, estimate multiple isotherms
using the filtered data from these scales, and finally
select among all estimated isotherms the one that
provides the best prediction.
Denoting the filtered equilibrium concentration data

at scale depth ( j ) as ( ),e jC k , [ ]1,k n∈ , the

isotherm obtained using the fi lter ed data at
decomposition scale (j) can be expressed as:

2 logj jt nσ= (15)

{ }1
0.6745j jkmedian dσ = (16)

Where, the equilibrium uptake can be computed using
the equilibrium concentration and the initial
concentration as follows:

Multiscale Freundlich isotherm estimation
The linearized form of the isotherm shown in Eq.

17 at scale ( j ) can be written as follows:

Defining: ( ) ( )1, ,lnj e jk q kα = , ( ) ( )2, ,lnj e jk C kα = ,

1 , 1 /j ja n= , and 2 , ,lnj f ja k= , equation
(19) can be expressed in matrix form as:

Which can be written more compactly as follows:

The linearized isotherm parameter vector at scale ( j ),
aj, can be estimated using least squares regression as
follows:

Once the parameters 1, ja  and 2, ja are estimated,
the original isotherm parameters can be computed as
follows:

and,

Mult iscale Freundlich isotherm est imat ion
algorithm

The multiscale Freundlich isotherm estimation
algorithm can be outlined as follows:( ) ( )1/

, , ,
jn

e j f j e jq k k C k= (17)

( )
( ) ( )( ),

,
o e j

e j

C k C k V
q k

w
−

= (18)

( ) ( ) ( ), , ,ln ln 1 / lne j f j j e jq k k n C k= + (19)

( )
( )

( )

( )
( )

( )
{

1, 2,

1, 2,
1,

2,

1, 2,

1 1 1
2 2 1

. . .

. . .
1

j

j j

j j

j j
j

j

a

j j

Y X

a
a

n n

α α
α α

α α

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦14243 1442443

(20)

j j jY X a= (21)

( ) 1
ˆ T T

j j j j ja X X X Y
−

= (22)

1 ,ˆ ˆ1 /j jn a= (23)

2 ,ˆ
,

ˆ ja
f jk e= (24)
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earlier is illustrated through a simulated example, where
15fk =  and 5n = . Eq. 1 is used to generate data,

which are assumed to be noise-free. Then, the
equilibrium concentration data are contaminated with
zero mean Gaussian noise. Two different levels of noise

are used (σ2 = 10, 30, and 50), which correspond to eC
approximate signal-to-noise ratios of 127, 56, and 25,
respectively. In this example, the “Daubechies-2”
wavelet and scaling function filters are used in filtering.
To make statistically valid conclusions about the
performances of the time domain and multiscale
estimation methods, a Monte Carlo simulation of 500
realizations is performed and the results are presented
in Tables 1 and 2.

Table 1 compares the estimated parameters and
uptake prediction mean squares errors obtained using
the time domain and the multiscale estimation
algorithms. These mean squares errors are computed
with respect to the noise-free values. Table 1 shows
that there is a clear advantage of the multiscale
algorithm over the time domain method for both the
parameters and uptake prediction. Table 2, on the other
hand, presents the estimation mean squares errors at
multiple scales also for the Freundlich isotherm
parameters and predicted uptake. Table 2 shows that
there is an improvement in the estimation accuracy at
coarser scales up to a certain scale after which the
estimation quality deteriorates. That’s why it is
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(1)   Filter the measured equilibrium concentration
data, eC , using different decomposition depths ( j ),

(2) Using the filtered data from each decomposition
depth;

(a)  Compute the adsorption uptake using the filtered
equilibrium concentration data using Eq. 18;

(b) Construct a linearized model of the adsorption
isotherm as shown in Eq. 21;

(c)  Estimate the linearized model parameters using least
squares regression as shown in Eq. 22;

(d) Compute the original model parameters using the
estimated linearized model parameters using Eqs.
(23) and (24);

(e) Compute the cross validation mean squares error
as follows (Nason, 1996).

where,

(3)   Select among all scales, the adsorption model with
the minimum CVMSE as the optimum isotherm.

RESULTS AND DISCUSSION
In this section, the performance of the multiscale

Freundlich isotherm estimation algorithm described

[ ]1,j J∈

( ) ( ) ( )( )2
*

1

1 ˆ
n

e e
k

C VM SE j C k C k
n =

⎡ ⎤= −⎢ ⎥⎣ ⎦∑

(25)( ) ( ) ( )* 1 1 1
2e e eC k C k C k= − + +⎡ ⎤⎣ ⎦

Table 1: Parameter and qe prediction mean square errors obtained using the time-domain and multiscale estimation methods

σ2 = 10  σ2 =30  σ2 =50  
Estimation 
method 

kf n qe  kf n qe  kf n qe 

Time-
Domain 

1.14 0.232 0.537  5.51 1.249 1.610  12.57 3.272 2.643 

multiscale 0.62 0.093 0.175  1.39 0.215 0.485  2.38 0.363 0.740 

 
Table 2: Parameters and qe prediction mean square errors at multiple scales (numbers in parenthesis indicate the percentage each

scale is selected as optimum)

σ2 = 10  σ2 =30  σ2 =50 Scale kf n qe  kf n qe  kf n qe 
0 1.14 0.232 0.537 (0) 5.51 1.249 1.610 (0) 12.57 3.272 2.643 (0) 
1 0.63 0.099 0.248 (3) 1.59 0.259 0.738 (6.2) 2.95 0.493 1.123 (9.2) 
2 0.62 0.092 0.168 (97) 1.36 0.211 0.466 (93.6) 2.32 0.354 0.697 (90) 
3 0.74 0.110 0.159 (0) 1.46 0.219 0.383 (0.2) 2.58 0.374 0.558 (0.8) 
4 1.11 0.153 0.295 (0) 2.06 0.326 0.523 (0) 3.60 0.538 0.723 (0) 
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important to make a good selection of the estimation
scale. Table 2 also lists in parenthesis the percentage
each scale is selected as optimum using the cross
validation error criterion shown in Eq. 25. These
numbers indicate that reasonable approximation of the
optimum scale is achieved by the CVMSE criterion.

The improvements in parameters estimation and
uptake predictions are also illustrated in Figs. 2 and 3

for the case where σ2 = 30. Fig. 2 shows histograms of
the estimated parameters at different scales and Fig. 3
shows the predictions of the adsorption uptake at
different scales. Figs. 2 and 3 show the advantages of
multiscale estimation of the Freundlich isotherm, and
the reason behind this improvement is the noise removal
abilities of multiscale filtering, which is illustrated in
Fig. 4 also for the case where σ2 = 30.

Fig. 2: Comparison between the estimated isotherm parameters at multiple scales for the case where σ2 = 30

10             15                        20

10             15                        20

10             15                        20

10             15                        20

10             15                        20

0

20

40

0

20

40

0

20

40

0

20

40

0

20

40

0

20

40

0

20

40

0

20

40

0

20

40

Kf n

4        6             8                10

4        6              8                10

4        6              8                10

4        6              8                10

4        6              8                10

Sc
al

e 
= 

4
Sc

al
e 

= 
3

Sc
al

e 
= 

2
Sc

al
e 

= 
1

tim
e 

-d
om

ai
n

IJEST
Placed Image




M. N. Nounou; H. N. Nounou                           Sorption behavior of nine Cr(III)

516

Fig. 3: Comparison between the uptake prediction at multiscale and its prediction in the
time-domain for the case where σ2 = 30

Fig. 4: Multiscale filtering of adsorption data at different scales for the case where σ2 = 30
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CONCLUSION
In this research, a new multiscale algorithm is

developed to improve the estimation and prediction
accuracies of the Freundlich adsorption isotherm from
noisy measurements. The algorithm relies on denoising
the data using multiscale filtering at different
decomposition depths, constructing multiple isotherms
at all scales, and then selecting among all scales the
optimum Freundlich isotherm based on a cross
validation error criterion. The performance of the
developed multiscale estimation algorithm is illustrated
through a simulated example that shows its advantages
over the time-domain estimation method.
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