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Dynamic behavior modeling of cigarette smoke particles inside the car
cabin with different ventilation scenarios
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ABSTRACT: Dynamic behavior of cigarette smoke particles inside the cabin of cars is investigated and the respirable
suspended particles concentration during and after smoking cigarette is predicted in this study. This model is based on
mass balance equations. Mechanisms of deposition on the surfaces and the exchange of air in the cabin are considered as
sinks for emitted particles. The coagulation is accounted as a sink for smaller particles and as a source for larger particles.
The various scenarios of smoking in the cars available in the literature are simulated in this study. Good agreement
between the results of the present model and the experimental data, as well as the predictions of other available models,
is achieved. The mean respirable suspended particle concentration in different scenarios is estimated and compared with
Environmental Protection Agency’s health-based standards in order to specify the situations with respirable suspended
particles concentrations exceeding the allowable limits. The results show that the concentration of particles due to the
smoke of a single cigarette in a stationary medium sized car with the air conditioner off is 33.6 pg/m® and nearly reaches
the limits appointed by the Environmental Protection Agency for a 24 h incremental exposure (35 pg/m?). Corresponding

values for moving cars have also been calculated and compared with the standards.

Keywords: Air change rate; Environmental Protection Agency; Mass balance; Particle coagulation, Particle

deposition, Resiprable suspended particles

INTRODUCTION

The sources of air pollution are various. Air
pollution caused by industries and vehicles is an
important threat for the respiratory system of the
residents of big cities (Omidvari and Nouri, 2009;
Salam et al., 2011). Among the air pollutants,
Respirable suspended particles (RSP) are more
scrutinized because they can penetrate deep and
deposit on the lungs of humans. Their acrodynamic
diameters are usually less than 2.5 pm (PM, ,). Tang
and Wang (2006) measured the exposure of PM_ _ to
the driver of a car during traffic congestion for
different vehicle categories and reported that the PM,
concentration with background contribution ranged
from 94 to 209 pg/m?. These concentrations, however,
as will be shown later, can be much smaller than the
maximum PM, ; concentration which may occur in a
car by smoking a cigarette. Environmental tobacco
smoke (ETS) emission is a major source of RSP in
enclosed areas, which still requires further
investigation.
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Many studies in the past decades have measured
and modeled the pollutants of cigarettes in different
indoor locations. Public lounges, restaurants, taverns,
bars, hospitals, and offices are among the most
common locations in past studies (Klepeis et al., 1996;
Ott et al., 1996; Phillips et al., 1998; Maskarinec et
al., 2000; Klepeis and Nazaroff, 2006). There still
remain indoor locations for which available studies
are not adequate to accurately evaluate the
concentration of the cigarette smoke particles as a
function of time for various particle sizes. A good
example is the cabin of cars. The high RSP
concentration after smoking a cigarette in a car poses
a threat to the health of nonsmokers, especially
children. Because of the limited volume in which the
cigarette smoke disperses, the concentration of
cigarette pollutants in cars is expected to be higher
than in other indoor places. A recent experimental
investigation published by the Ontario Tobacco
Research Unit (Sendzik et al., 2009) showed that
smoking just a single cigarette in a car can lead to a
peak level of tobacco smoke concentration that
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exceeds by several times the amount of tobacco smoke
concentration found in the smokiest bars and
restaurants.

Table | summarizes the experiments conducted on
the PM, , concentration level after smoking cigarettes
in cars from four published articles. As can be seen
from the table, different ventilation settings and
window positions of cars lead to different RSP
concentrations. Even under similar conditions, the
reported ETS emission profiles may differ. That can
be caused by various parameters such as the different
procedures of each experiment and the differences in
types and brands of the cigarettes. The emission rates
may even vary from one smoker to another as the
composition of the smoke is affected by the frequency
and duration of the puffs and how the smoker inhales
and exhales.

The notations SS and MS used in Table 1 refer to
sidestream and mainstream smokes, respectively. The
mainstream is the smoke inhaled and exhaled by taking
a puff on a lit cigarette and the sidestream is the smoke
emitted from the burning end of the cigarette on its
own without any interference made by the smoker.
The cigarette consumption time is variable for each
experiment and is in the range of 5 to 8 min when
smoked by a real smoker and may last up to 10 min
when smoldering on its own. The highest level of
concentration shown in Table 1 exceeds 5000 pg/m?
and corresponds to a parked car with closed windows
and no ventilation (Sendzik et al., 2009). Note that
this RSP concentration is much higher than those
caused by other sources such as tailpipe emissions
of neighboring cars during traffic congestion (Fruin
etal.,2004; Pirjola et al., 2004; Tang and Wang, 2006).

Most of the mathematical models presented to
predict the pollutant concentration in enclosed areas
are based on the mass balance equation. Nazaroff and
Cass (1989) developed a numerical model to simulate
the evolution of particle size distributions and to
predict the concentration of different particle sizes as
a function of time. They validated their results using
the experimental data of Offermann ez al. (1985) ina
room with a low air change rate of 0.05 ACH (Air
Changes per Hour). Later, this model was incorporated
with an analytical model of the two-zone environment
(Miller and Nazaroff, 2001) and linked with a multi-
zone airflow model (Sohn ez al., 2007) to predict ETS
particle transport in multi chambers.

Ott et al. (1992) developed a Sequential cigarette
exposure model (SCEM) to calculate the pollutant
concentration time series in well-mixed environments.
They validated the model predictions with their
experiments for carbon monoxide and RSP in a chamber
and an automobile. The mathematical model of Ott et
al. (1992) was extended later as a multiple-smoker model
for predicting time-averaged pollutant concentration
in public lounges (Klepeis ef al., 1996) and incorporated
with a mathematical trend correction term to estimate
the RSP concentration in a sports tavern (Ott ef al.,
1996). In the current study, the behavior of cigarette
smoke particles in chambers with high air change rates
similar to those occurring in cars is simulated. The
cigarette emission is taken into account as a source.
Deposition on the surfaces and the exchange of air are
considered as sinks. The coagulation of particles is
considered as a sink for smaller particles and as a source
for larger particles. This research was carried out from
2008 to 2010 at the K. N. Toosi University of technology
in Tehran, Iran.

MATERIALS AND METHODS

Most of the presented models in literature for
predicting the RSP concentration in enclosed areas are
based on the mass balance equation and well-mixed
assumption ( Nazaroff and Cass, 1989; Otter al., 1992).
Assuming uniform mixing of the pollutant emitted from
apoint source in large places like rooms and apartments
can lead to considerable errors compared with
measurements made several minutes after the smoking
has stopped. However, in cars with closed windows,
because of the limited space (usually ranged from 2 to
6 m?) the errors generated by this simplification are
insignificant. The rate of the change in particle mass
concentration for each size category is a result of all
sources and sinks. The basis of this modeling is given
by a first order differential equation as follows:
dC,
7; =G~ @f,i (1

The index i refers to the size categories starting
from i=1 for the smallest particles to i=n for the largest
category. The generation (Cg’l.) and removal (C ) rate
for each size category is specified from the cigarette
emission profile, ventilation rate, filtration efficiency,
coagulation of particles and deposition rate on
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Cigarette smoke particles inside cars

surfaces. The details of these parameters are discussed
in the following sections.

Cigarette RSP emission profile

The main source term in the mass balance equation
is the emission of RSP from the cigarette. Nazaroff and
Klepeis (2003) have summarized the generation rates
of RSP during smoking for cigars and cigarettes
reported by various investigators. According to their
report, the SS+MS mass emission rate during cigarette
smoking varies from 0.76 to 3.6 mg/min in different
studies. For example, the measured mass emission rates
for the top 50 brands of cigarettes in the USA presented
by RJ Reynolds Tobacco Company have been reported
by Repace (2007) to vary from 7.5 to 22.5 mg during 11
min of smoking. This corresponds to emission rates
ranging from about 0.68 to 2.04 mg/min.

Despite the fact that there are differences in values
of ETS emission rates reported by various investigators,
from a qualitative perspective, however, the emission
profiles obtained from different studies seem to be
demonstrating the same trend of variations of particle
concentrations with particle sizes. In fact, once particle
concentrations are plotted against the logarithmic scale
of particle sizes, a normal distribution is observed. Two
sets of data, one reported by Klepeis et al. (2003) and
the other presented by Sextro ef al. (1991) (reported in
Nazaroff et al., 1993) seem to be among the most
comprehensive ones. While both data sets follow a
lognormal profile, a larger total amount of emission rate
has been reported by the latter. To be more conservative
and stay on the safer side in comparing the model
predictions with the Environmental Protection Agency
(EPA) allowable levels of ETS for indoor spaces, the
data of Sextro ef al. (1991) has been used in the present
study to represent the size-resolved emissions data for
ETS.

The cigarette RSP emission profile reported by Sextro
et al. (1991) consists of the mass emission rate of 2.4
mg/min with a mass median diameter of 0.48 um for
sidestream plus mainstream smokes based on the
experiments in which three cigarettes were smoked over
a 6-h period. The distribution of the emission rate as a
function of the particle size is shown in Fig. 1. The RSP
emission range has been divided into 8 size categories
and the size intervals are set in such a way that the
mass of the largest particle in each category is greater
than twice the mass of the smallest particle in that
category. The emission rate profile is used as the source
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term to calculate the concentration of the particles in
each size category according to the following equation.
dcC, .
[ S . — i

dt =

@

Where E, (mg/min) is the emission rate for each size
category (i =1 to n), n is the number of size categories
and V' (m?) is the volume of the cabin.

Ventilation and filtration
The ventilation system and air exchange through
the vents and windows of the cars act as the main
sinks for cigarette pollutants. Selecting between the
fresh air mode, passive ventilation or the recirculation
mode are the key settings in most of the ventilation
systems in cars and can influence the rate of air
exchange especially in moving cars. The ranges of air
change rates reported in literature for different car
movement cases, window positions, ventilation
conditions, fan settings and vent settings are
summarized in Table 2. For example, for stationary cars
with closed windows depending on the ventilation
conditions, fan setting and vent setting of the cabin,
the air change rate ranges from very small values close
to zero up to 77.3 ACH. This variation in the air change
rate of cars shows the influence of the ventilation
settings on the exposure of the nonsmokers to cigarette
pollutants in cars. The following equation is used to
calculate the effect of the removal rate of the particles
of a specific concentration category caused by
ventilation and filtration:
_1.9,..C,
V

dC[- — niQﬁ-thour,i _ Qexi[ci
dt V V

€

Where ¢, is the filtration efficiency for each size
category which deals with the fresh air and recirculated
air in the first and third terms of the right hand side of
the equation respectively. Filtration efficiency is the
ratio of number of separated particles in filter to the
number of particles in the inlet air for a specified size of
particles. The collection efficiency of Heating,
Ventilation, and Air conditioning (HVAC) systems in a
typical car is above 70 % for 0.3 pm particles (Reinhardt
and Kobori, 2006). C,, , (m*/min) is the concentration
of particles in freshair. O, | (m*/min) and Q, . (m*/min)
are the volumetric flow rates of fresh air and exiting air
which are equal to each other. O (m’/min) is the
volumetric flow rate of recirculation.
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Deposition model

A number of models have been proposed by
various researchers to predict the rate of deposition
of particles on indoor surfaces. The deposition model
of Lai and Nazaroff (2000) has been widely applied
and further developed in several studies (Thatcher et
al.,2002; Lai, 2005; Lai and Nazaroff, 2005; Gao and
Niu, 2007; Zhao and Wu, 2007). In another study, Lai
and Nazaroff (2005) measured the deposition velocity
of particles (in the range of 0.9 - 9 um) onto smooth
and rough vertical chamber surfaces and concluded
that the effect of particle size is much larger than the
effect of surface roughness. Thus, in the present
study the surface of seats, the dashboard, the
windows, the roof and the floor in cars are assumed
to be smooth surfaces. The experiments of Lai and
Nazaroff (2005) also indicated an increase of the
deposition velocity for particles larger than 3 pm. That
is while the predicted deposition velocity on smooth
surfaces by the model of Lai and Nazaroff (2000)
shows a monotonic decrease with the increase of
particle sizes. Since cigarette smoke particles are
usually smaller than 3 um, implementation of the
deposition model of Lai and Nazaroff (2000) is
expected not generating any inaccuracy in this regard
and seems to be well suited to the current study.

3.5 4

2.5 A

L5 A

Emission rate dE/d(log[dp]) (mg/min)

0.5 -

To calculate the deposition velocity of particles on
interior surfaces of cars, the volume of the cabin and
the area of the surfaces must be determined. A typical
sedan automobile (a Daewoo Cielo car) has been used
in this study. The dimensions of the car were measured
simply by measuring tape. The interior space of the
cabin was approximated by 25 bricks and prisms. The
total volume of the cabin was estimated by simply
adding the 25 volumes. To calculate the total area of
the interior surface, those sides of the bricks and prisms
that represent seats, windows, doors, the roof, the floor,
and the dashboard of the car were considered. The
results of the measurements show that the cabin volume
of a Daewoo Cielo car is approximately 2.15 m® and
the total area of the interior surface is around 15.77
m?. These values indicate that the surface-to-volume
ratio of the car under study is A/V'="7.33/m. The share
of each of the vertical, upward horizontal, and
downward horizontal surfaces are 4.05V, 1.64) and
1.64V, respectively. Note that the slanted surfaces have
been broken up into vertical and horizontal directions
to facilitate calculation of the deposition rate. Note
also that for enclosed areas with relatively high
surface-to-volume ratios, like cabins of cars, the rate
of deposition of the particles on interior surfaces can
be quite significant.

001 0.1

Particle diameter (pm)

Fig. 1: Assumed RSP emission rate profile of sidestream plus mainstream (SS+MS) cigarette smoke based on the reported data of

Sextro et al. (1991)
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Cigarette smoke particles inside cars

Deposition of the aerosol particles on the interior
surfaces of cars is highly dependent on the flow
turbulence inside the car. The friction velocity is the
key input parameter in the deposition model of Lai and
Nazaroff (2000) that characterizes the nature and
intensity of near-surface turbulent flow. For chambers
with low air change rates, the friction velocity is in the
order of 0.1 m/s (Lai and Nazaroff, 2005), however in
the cabin of cars with high air change rates, the friction
velocity is much larger and needs to be determined.
The experimental data of Ott ez al. (2008) are employed
to obtain the friction velocity in each ventilation
scenario as explained below.

Ott et al. (2008) reported the deposition rate of the
PM,  particles for different air change rates in two types
of cars (2005 Ford Taurus and 1999 Jeep Cherokee) and
found a relationship between the deposition rate (4)
and the air change rate of the cabinas @ = 1.3 x ACH.
To estimate the friction velocity, an arbitrary correlation
between the friction velocity and the air change rate as
the initial guess is used to start with. Next, the
deposition velocity for each size category is obtained
as the output of the deposition model for various
ventilation scenarios. These values are used to calculate
the overall deposition rate, the details of which are
explained in the next paragraph. The difference
between the calculated value of the total deposition
rate and the corresponding experimental data of Ott et
al. (2008) suggests the correction of the initial guess
for the equation relating the friction velocity and the
air change rate. This iterative process continues until
the calculated value of the total deposition rate matches
the experimental data.

The total deposition rate may be obtained from the
deposition velocities of all size categories and surface
orientations as follows. According to Corner and
Pendlebury (1951) the deposition of particles on each
surface (vertical, upward horizontal and downward
horizontal) is considered to be independent of each
other. In the first step, the overall deposition rate for
each size category (i =1 to n) can be obtained by the
following equation (Lai and Nazaroff, 2000):

ﬂ- _ Vd v,iAV + vd uh,iA“h + Vd dh,iAdh (4)
’ 4

Where the deposition rate for each size category d,

is the rate at which the particles deposit on the surface

(s"). The quantities v, ,v, . .andv,,  are the deposition

velocities on vertical, upward horizontal and downward

horizontal surfaces, respectively. 4, 4 , and 4, are
the total vertical, upward horizontal and downward
horizontal surfaces in the cabin of car. In the second
step, the overall deposition rate of RSP is calculated
based on the portion of each size category in the mass
emission rate profile of cigarette smoke as expressed
earlier in Fig. 1. The mass emission-weighted average
of the deposition rate is estimated by:

> BE,
_ =l
E

total

Where d is the overall deposition rate and £, is
the total mass emission rate of RSP as discussed in
section 3.2.

In Fig. 2, the results of the deposition model and
the experimental data of Ott e a/. (2008) are compared
with each other. The correlation of friction velocity
and the air change rate is chosen on a least mean
squared basis. It is found that with the linear correlation
expressed below, the calculated deposition rate is best
fitted to the experiments and the linear regression of
reported data. Using a regression analysis the standard
deviation of the results of the current model from the
above relation has been minimized to obtain a
correlation between the friction velocity and the air
change rate. By trial and error, the following equation
is reached:

B ®

Air Change Rate (s™') ©)

Surface—to—Volume Ratio (m™")

u' (L) =5256 x
N
+45 (4
s
The effect of the deposition term on the
concentration of each size category can be expressed

by the following equation:

i

dc,  C,

dt V

(vd v,iA" v, uh,iAuh v, h,iAclh) ™

Coagulation model

In this study, the coagulation of the particles is
calculated based on the same approach that was
incorporated by Nazaroft and Cass (1989). At first, the
collision frequency between two particles is calculated
and then these probabilities are integrated to obtain
the generation and removal rate for each size category
based on the approach developed by Gelbard and
Seinfeld (1980).
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The coagulation of submicron particles which mostly
occurs by Brownian motion and other mechanisms like
gravitational coagulation can be ignored for particles
generated by cigarette smoke (Drossinos and
Housiadas, 2006). For calculating the collision
frequency of particles through Brownian motion, the
interpolation formula of Fuchs (1964) is used. After
calculating the collision frequency between each two
particles, the sectional coagulation model of Gelbard
and Seinfeld (1980) is used to determine the source
and sink terms in each size category. The mechanism
of coagulation acts as a sink for smaller particles and
as source for larger particles. More details on this
procedure are available in Gelbard and Seinfeld (1980).

Solving the equations
Once the sink and source terms which are caused
by the emission, ventilation, filtration, deposition and
coagulation of the particles in the cabin of the cars are
specified, the concentration rate for each size category
is calculated by the sum of these factors. The general
form of the differential equation for each size category,
based on the assumptions made in current study, can

be expressed as below:

dc,
dt

n i—1
+2a4,,CC 42, a5,,C,C,
j=1 j=1

= SE,i + al,ici + aZ,iCiZ + a},iciz—l 8)

160 -

, 02 307 T4, A
coefficients that were calculated based on the Egs. 2-7.

Since the differential equations of concentration in
categories i=1-n are coupled to each other, these
equations must be solved simultaneously. A two-stage
implicit Runge-Kutta formula that was proposed by
Hosea and Shampine (1996) was used to solve the 8
non-linear differential equations corresponding to the
8 size categories. The density of the particles is assumed
tobe 1.1 g/cm? for all particle sizes (Lipowicz, 1988).

Wherea,,,a,, ,a,, ,a ; and a; ,; are the constant

RESULTS AND DISCUSSION

The cabin volume, cigarette emission scenario and
ventilation settings for available data in literature
(Table 1) are simulated by the present model and the
results are compared against the experiments. In most
experimental studies in cars, only the total PM,
concentration has been measured and reported. Thus,
the predicted concentration of each size category can
be integrated over the entire range of particle sizes
up to 2.5 um to obtain a value comparable with the
total PM, ; concentrations in the literature.

The scenarios of smoking in cars in various
experiments shown in Table 1 (Ott et al., 1992; Ott et
al., 2008; Sendzik et al., 2009) are simulated and the
results are shown in Figs. 3, 4 and 5. The details of the
test conditions may be found in Table 1 as well as from
explanations on the figures themselves. It can be seen

uo
2o
= 10 -
=
= 80 -
3
m
60 |
40
20
0 - T T T
0 10 20 30

Deposition mo del Lai and Nazaroff (2000)

40 50 60 70 80 90

ACH (I/hr)
L u*=5256*V(m 3)/A (m 2)*A CH (Us }4.5

& Deposition rate in 2005 Ford Taums (Oftt et al., 2008)
A Deposition rate in 999 Jeep Cheroke e (Ott e al., 2008)

Linear regression based on the experiments

Fig. 2: Prediction of Lai and Nazaroff (2000) deposition model and the measured deposition rate for

different air change rate in cars
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from Fig. 4 and Fig. 5 that the current model predicts
the maximum PM_ . concentration and also the decay
rate of concentration satisfactorily. The experiments
of Sendzik ef al. (2009), used in Fig. 5 to evaluate the
model predictions, do not include the air change rate
for different ventilation scenarios. The air change rate
data to be used in the current model are extracted from
the reported data of other studies listed in Table 2.
This may be responsible for some disagreements
appearing between the experiments and model
predictions in Fig. 5.

In Fig. 3 the predicted RSP concentrations by the
mathematical model of Ott ez al. (1992) are also shown.
Their model is based on the mass balance equation
and predicts a bit higher concentration in comparison
with the results of the current study. In Fig. 6, the results
of the present model are compared with the predicted
RSP concentrations by the USEPA Indoor air quality
model (IAQ) in a one hour driving simulation presented
by Park et al. (1998). That model is also based on the
mass balance equation and predicts higher
concentrations in comparison with the current study.
The similar trend of the variations of RSP concentration
suggested by different models shown in Fig. 3 and
Fig. 6 may be considered as a qualitative verification of
the models’ predictions. The minor quantitative
discrepancies are most likely due to different emission

4000
3500
3000
2500
2000

1500

Concentration (1g/m®)

1000

500

0 T T T

rates of cigarette smoke being incorporated in the
various models.

TIAQ model in a one hour driving simulation. The
ventilation scenario and car movement cases changed
during the smoking and after quitting the smoking. The
volume of the car is assumed to be 3.24 m>.

Based on resulting estimates, the extent of health
risks due to cigarette smoke in high air change rate
chambers like cars may be evaluated for a wide range
of ventilation settings and car movement cases. In each
case study the value of the air change rate is needed
to be specified as an input data for the mathematical
model. For this purpose the reported ACH in the
literature (Table 2) for different cases of car movement,
window positions, and ventilation settings have been
used. ACH is equivalent to the number of times per
hour that the air volume of a given space exchanges
with the fresh air. The mean and maximum RSP
concentrations due to 6 min of smoking a cigarette in
an ordinary car (cabin volume = 3 m®) have been
calculated. The results are listed in Table 3.

To specify the conditions leading to health threats
of passengers in cars, the mean RSP concentration is
compared with the EPA health-based standard. The
recent EPA health-based PM, , standard is 35 igm”
averaged over 24 h. The predicted mean RSP
concentration in each case for a specified period (during

20 30

40 50 60 70

Time (min)

3 cigarette s moked in 986 Mazda (Ot et al., 1992)

P res ent model

SCEM model (Ott er al., 1992)

Fig. 3: Comparison of the predicted PM,, mass concentration in 1986 Mazda with experimental data and the mathematical
exposure model of Ott ef al. (1992). Three cigarettes were smoked when car was driven at 20 mph with closed windows

and the air conditioning was set on recycling mode
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Fig. 4: Comparison of the predicted PM, , mass concentration in 2005 Ford Taurus with experimental data at different speed and
ventilation scenarios
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Fig. 5: Comparison of the predicted PM, ; mass concentration in a car with experimental data in 18 different four-door cars (the

cabin average size = 2.6 m?®). One cigarette was smoked in 25 min of sampling in different car movement cases and
ventilation scenarios
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and after the smoking time until RSP concentration
vanishes) is converted into a 24-h incremental exposure
(/E£,,) by the following equation (Ott ez al., 2008). The
calculated values of /E,, are also listed in Table 3.

IE,, =X,, = (Mean concentration) )

ETS Exposure period (min)
(24 h/day)(60 miw h)

Recirculation of air inside the cabin without major
intake of fresh air does not affect the RSP concentration
significantly. Another interesting result related to the
RSP concentration in stationary cars may be found in
the 3" and 4" lines of the data in Table 3. It can be seen
that once the AC is operating on fresh air mode, the
time at which the RSP concentration decreases to its
initial value (i.e., before smoking starts) is less than 10
min. however, the time in which the RSP concentration
decreases to its initial value for a car with an open
window and the AC off reaches 15 min.
Correspondingly, the maximum, mean and /E,, values
of'the RSP concentrations are smaller in the case of the
AC on fresh air mode compared with the case of a
window open and the AC off.

For cars in motion, the predicted 24-h incremental
exposures due to smoking one single cigarette are
generally less than EPA limits. The speed of the car
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4500 -
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20mph
closed
3000 4 20mph
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stop

closed
pen 20mph

closed
stop
closed
20mph
closed
sto

o
stop
open

2500 -

2000 {20mph
pen

1500 4

Concentration (1g/m®)

1000 4

closed
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closed

has an important effect on RSP concentrations,
especially for open windows and for passive
ventilation. The highest RSP concentration values in
moving cars are obtained for cases where the ventilation
settings are on recirculation. Note that the RSP
concentrations listed in Table 3 are calculated based
on the smoke emissions of one single cigarette. The
values in the table may be multiplied by the number of
cigarettes smoked to estimate approximately the
concentration of particles. For example, at the speed
of 15 to 30 mph with the windows closed and the
cabin under passive ventilation, /E,, value
corresponding to one cigarette smoke is 10.5 pg/m?.
It means that smoking four cigarettes under same
conditions will make /E,, reach approximately
42 ig/m’, which is above the EPAPM, | limit.

The application of the present model may also
enhance our understanding about particle levels and
size distributions in automobiles. The predicted mass
concentration for each size category when a cigarette
is smoked (lasting for 6 min, SS+MS) is shown in
Fig. 7. The effect of the cabin ventilation is not
considered in this graph and only the mechanisms of
emission, deposition and coagulation are taken into
account. As shown in Fig. 7, very small (dp <0.1 um)
and very large (dp > 2 um) particles have negligible
contributions to ETS concentrations during smoking.
The midsize particles with (0.4 um< dp < 0.6 um) remain

20mph ph
closed ed

stop
20mph closed

closed
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closed
stop

closed
stop

20mph closed

closed 20mph
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closed
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closed
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Fig. 6: Comparison of the predicted PM,, mass concentration with the results of USEPA indoor air
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to be the most common particles from the beginning
until the end of smoking. This group of particles, as
was evident from Fig. 1, has the largest emission rate
keep their highest level throughout, and that the
deposition and coagulation mechanisms, as sink terms,
can not change this order. The size category particles
0of 0.6 um< dp <1 um which are shown in Fig. 8 to have
the second highest concentrations, however, are not
the second most emitted particles as seen in Fig. 1. A
simultaneous look at Fig. 1 and Fig. 7 may yield more
interesting results as for the group of 1 um< dp <2 um
particles which have the third highest concentration
until the end of the first minute of smoking.

Nevertheless, the sink terms seem to be more effective
on this relatively heavy group of particles so that their
concentration, as can be seen in Fig. 7, reduces to fifth
place.

For better appreciation of particles’ behavior shown
in Fig. 7, the term concentration rate £ (ug/s) is defined
for each size category as:

dcC

—Zixy
dt

(10
E' =

In Fig. 8, the variations of the concentration rate,
defined above, are plotted for the 8 size categories as a
function of time during which a cigarette is smoked in
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Fig. 7: Predicted mass concentration for 8 size categories after smoking a cigarette in a Daewoo

Cielo car as a function of time
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the cabin of the car. As expected, as the concentration
of the particles during smoking increases, the
concentration rate decreases with time. The sink term
of deposition on the interior surface is proportional to
the concentration and increases accordingly. It can
also be seen in Fig. 8 that the slope of decrease in the
concentration rate is greater for larger particles
(compare the graph for 0.2-0.3 um particles with that of
1-2 pm particles). This can be explained in terms of the
deposition rate of particles with different diameters.
The reported experiments in the literature (Xu et al.,
1994; Long et al., 2001) show a U-shaped type of
variations of the deposition rate of particles with the
particle size for indoor areas. The smallest deposition
rate was reported to occur for particles in the range of
0.2-0.3 pm. This is quite consistent with the results
shown in Fig. 8 in which both the smaller and the larger
particle groups demonstrate a steeper gradient of
concentration decrease due to greater rates of particle
deposition than the 0.2-0.3 um range.

CONCLUSION

In this study, the dynamic behavior of cigarette
smoke particles in a chamber with a high air change
rate similar to that of a car has been mathematically
modeled. The mathematical model is based on the mass
balance equation and the mechanisms of deposition,
air exchange, and coagulation of particles are also taken
into account. The maximum, mean and /E,,
concentrations of respirable particles were predicted
as functions of time and the size of the particles.
Experiments on various smoking scenarios in cars
reported by different investigators have been simulated
by the current model. In most cases, good agreement
between the model predictions and experimental data
were reached. Available studies on air change rates for
various car speeds, window positions, and ventilation
settings are included in the present model. The
exposure of the passengers in cars is compared with
EPA health-based PM,  standards to evaluate probable
health risks. Some conclusions reached in this study
are as follows:

® In high air change rate chambers like cars, the high
friction velocity (i.e., high turbulence intensity) near
the walls causes a higher order of deposition
velocity in comparison to low air change rate
chambers like rooms.
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® Based on various ventilation scenarios, the time
required for the RSP concentration to return to its
initial value before the smoking had started varied
between 10 to 60 min. For example, the RSP
concentration due to the smoke of a single cigarette
in a stationary medium sized car with the AC off
becomes negligible after about 1 h. The high RSP
concentration in this period of time almost reaches
the EPA limits for a 24 h incremental exposure.
Apparently, smoking more than one cigarette under
the same conditions will cause a passenger to be
exposed to a PM, | concentration above the EPA 24
h standard.

® Recirculation of the air inside the cabin without major
intake of fresh air does not affect the RSP
concentration significantly and can not reduce the
IE, effectively.

® In stationary cars, when the AC is operating on fresh
air mode, the RSP concentration decreases to its

initial value faster than when a window is open and
the AC is off.

® The predicted 24-h incremental exposure due to
smoking one single cigarette in a moving car is
less than the EPA limit for most ventilation
scenarios. However, if the number of cigarettes
smoked is greater than one, the RSP concentration
may exceed the EPA limit. The allowable number of
smoked cigarettes can be estimated simply by
dividing the EPA limit for /E,, concentration by the
calculated 24-h incremental exposure in each case.

® The rate of the particle concentration during
smoking a cigarette in cars decreases with time
due to the effect of the deposition on the surfaces.

Since the deposition rate of particles on indoor

surfaces shows U-shaped curves and is minimum

for particles in the range of 0.2-0.3 pm, the
concentration rate decreases more rapidly for both
smaller and larger particles than this range.

More investigation on the efficiency of the filtration
in cars and its effect on removing the pollutants is
needed. Currently improving ventilation system of cars
is being investigated by R&D departments of many
car manufacturers. Furthermore, in the current study
it has been assumed that the concentration of
particulate matter resulting from smoking cigarettes
is evenly distributed within a car cabin. More studies
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which do not make such an assumption are
suggested.
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