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ABSTRACT: Effect of differential trophic states on remote sensing-based monitoring and quantification of surface
water quality is an important but understudied context. Landsat ETM+ data-based multiple linear regression models
were conducted to quantify dynamics of lake surface water quality along oligotrophic-to-eutrophic gradient and to
explore the influence of trophic state on the detection of water quality dynamics by the best multiple linear regression
models. The best multiple linear regression models of dissolved oxygen, chlorophyll-a, Secchi depth, water temperature,
and turbidity had R2

adj values ranging from 36.2 % in water temperature to 93.1% in dissolved oxygen for eutrophicYenicaga
Lake and from 36.1 % in Secchi depth to 99.7 % in water temperature for oligotrophic Abant Lake. The difference in the
trophic state between Lakes Abant and Yenicaga , significantly affected the composition of the nine Landsat ETM+
spectral bands included in the multiple linear regression models as well as the predictive power of the multiple linear
regression models. Remote sensing-based monitoring of lake water quality variables appears to be promising in terms
of devising adaptive management decisions towards sustainability of water resources.
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INTRODUCTION
Monitoring and modeling the quality of surface

water in lakes is a crucial issue in making management
decisions towards sustainability of water quality
(Girgin et al., 2010). Readily available data from remote
sensing, reduces expensive and labor-intensive in situ
measurements by providing a spatially and temporally
continuous coverage of environmental processes
(Koponen, 2006; Vignolo et al., 2006; Alparslan et al.,
2007; Giardino et al., 2007). Lake water quality variables
that directly influence optical properties of water such
as turbidity, Secchi disk depth (Sdepth), chlorophyll-a
(Chl-a), suspended matter, water temperature (Tw) and
Colored dissolved organic matter (CDOM) have been
monitored using remotely sensed data by numerous
studies (Brivio et al., 2001; Dekker et al., 2002; Zhang
et al., 2003; Kutser et al., 2005; Sudheer et al., 2006;
Nouri et al., 2008). However, the related literature has a
relatively limited number of studies about remote
sensing-based monitoring of optically inactive lake
water quality variables such as total phosphorus (PO4-
P), Dissolved oxygen (DO), Biological oxygen demand

(BOD5), Total organic carbon (TOC), nitrite (NO2-N),
and nitrate (NO3-N) (Lavery et al., 1993; Dewidar and
Khedr, 2001; Wang et al., 2004; Sass et al., 2007; Nouri
et al., 2009). In the related literature, in situ measurement
values of lake water quality variables were compared
to reflectance values of spectral bands of various
satellite data without the inclusion of spatio-temporal
components in regression models (Pulliainen et al., 2001;
Bilge et al., 2003; Sawaya et al., 2003; Giardino et al.,
2007; Gitelson et al., 2008). The objectives of this study
were: 1) To monitor dynamics of multiple water quality
variables (DO, Chl-a, Sdepth, Tw, and turbidity) for Lakes
Abant and Yenicaga along oligotrophic-to-eutrophic
gradient, respectively, using Landsat ETM+ time series
data in 2009, and 2) To explore effects of trophic gradient
on detection by landsat-based Multiple linear
regression (MLR) models of dynamics of water quality
variables.

MATERIALS AND METHODS
Study areas

Lakes Yenicaga and Abant are located in Bolu in
the northwestern Black Sea region of Turkey under the
influence of a warm temperate climate regime with a
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warm Summer season and a cool and rainy Winter
season.(Fig. 1). Lake Abant (40º35’49"-40º36’54"N
latitude and and 31º16’12"-31º17’42" E longitude) at
altitude of 1350 m above sea level encompasses a basin
area of approximately 15 km2 surrounded by Abant
and Mudurnu mountain ranges. Surface area of Lake
Abant is 1.25 km2, with a maximum depth and perimeter
of 18 m and 6 km, respectively. Lake Abant is fed by
underground water, Bespoyraz and Findikli streams
and discharges water by Abant stream in the north.
Lake Abant was declared as a natural park in 1988 and
has about 1,221 plant and animal species at least 60 of
which are endemic species (Dugel et al., 2008). Major
environmental pressures on the lake include
wastewater from the surrounding tourist facilities,
erosion and sediment transport by grazing animals,
and solid wastes. Lake Yenicaga (40º46’12"-40º47’24"
N latitude and 32º00’36"-32º02’24" E longitude) consists
of a basin area of about 180 km2. Altitude of the lake is
approximately 990 m. This shallow and non-stratifying
lake has a surface area of 1.8 km2 with an average depth
of 4 m which seasonally fluctuates intermittently wetting
the surrounding reed belt and peatland. The major
environmental issues that the lake is currently facing
include mining of peatlands, agricultural runoff, dry and
wet atmospheric deposition from the nearby Ankara-
Istanbul highway, unsanitary landfill leachates and
discharges of untreated wastewater by surrounding
domestic uses, slaughterhouse and animal farms.

Ground data
Lake Abant was randomly sampled from 16 geo-

referenced measurement points each time of field visits
on 26 May 2009 and 29 July 2009, while Lake Yenicaga
was randomly sampled from 15 geo-referenced points
each time of field visits on 11 June 2009 and 14 August

2009. Water quality variables monitored in situ during
the local time of 09:00 AM to 12:00 PM in this study
include Sdepth (m), chlorophyll-a (Chl-a, µg/L), water
temperature (Tw,ºC), dissolved oxygen (DO, mg/L), and
turbidity (NTU, Nephelometric Turbidity Unit). All the
water quality variables except Sdepth were measured using
YSI 6600 V2-2 multi-parameter water quality sonde (YSI
Inc., USA) at a depth of 0.5 m beneath the water surface.
For Sdepth measurements, a standard 20 cm disk with
alternating black and white equal quadrants was used.
The standard methods of USGS were followed for
washing, preparation, specification and preservation
of sampling bottles (USGS, 2006).

Satellite data
A total of four cloud-free Landsat 7 ETM+ scenes

(path: 178/row: 32) dated 26 May 2009, 11 June 2009, 29
July 2009, and 14 August 2009 were acquired from USGS
(http://glovis.usgs.gov) temporally match the ground
data collection and the satellite overpass. Landsat 7
ETM+ images consist of six spectral bands 1 to 5 and 7
(band 1: blue-0.45-0.52 µm; band 2: green-0.52-0.60 µm;
band 3: red-0.63-0.69 µm; band 4: near infrared-0.77-
0.90 µm; band 5: middle infrared-1.55-1.75 µm; and band
7: middle infrared-2.09-2.35 µm) at a 30-m spatial
resolution and bands 6 (thermal infrared: 10.4-12.5 µm)
and 8 (panchromatic: 0.52-0.90 µm) at 60-m and 15-m
resolutions, respectively. Band 6 provides the low and
high gain settings as two separate band files (B6L and
B6H), respectively. Band 6L provides a more expanded
dynamic range and lower radiometric resolution
(sensitivity), with less saturation at high Digital number
(DN) values than band 6H does. Mean DN values of
the ground measurement points for each of the nine
Landsat band images were extracted using a window
of 3 x 3 pixels using ArcGIS 9.2 spatial analyst tool

Fig.1: Location of study areas: Lakes Yenicaga and Abant
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(ESRI Inc., 2002) and used in the development of best
MLR models. DN values were not converted to at-sensor
reflectance values in order to improve simplicity and
ease of use of remote sensing-based MLR models
constructed, given the fact that a systematic conversion
of DN values to reflectance ones does not change the
empirical relationships between independent and
dependent variables.

MLR models
Best MLR models were selected using best subsets

procedure based on a combination of highest R2
adj

values, significant P values of each term used in a MLR
model and Mallows’ Cp values. Mallows’ Cp criterion
considers a regression model to be properly fit when Cp
value approaches the number of explanatory variables
that have entered the model and is expressed as follows
(Helsel and Hirsch, 1992):

Where n is the number of observations, p is the
number of coefficients (number of explanatory variables
plus one), Sp

2 is the Mean square error (MSE) of the
prediction model, and σ2 is the minimum MSE among the
possible models. MLR models were built using Minitab
15.1 in the following form:

Y= β0 + β1x1 + β2x2 ... βνxν + ε

Where Y refers to the response variables of Sdepth (m),
Chl-a (µg/L), Tw (ºC), DO (mg/L), and turbidity (NTU);
xnrefers to the explanatory variables of each of the
Landsat ETM+ spectral bands (mean DN values within
a window of 3 x 3 pixels), Julian Day of year (DOY),
easting (E, m) (UTM coordinate as a distance to the
east) and northing (N, m) (UTM coordinate system as a
distance to the north); βnare the regression coefficients,
and ε  is the error term. Root mean squared error (RMSE)
values were also expressed for each of the best MLR
models constructed.

RESULTS AND DISCUSSION
In situ measurements revealed that Lakes Yenicaga

and Abant differ in their trophic state in that Lake
Yenicaga is eutrophic (nutrient-rich) ecosystem,
whereas Lake Abant is an oligotrophic (nutrient-poor)
ecosystem. Tukey’s test following one-way Analysis
of variance (ANOVA) showed that Lakes Yenicaga
and Abant differed significantly in terms of DO, Chl-
a, turbidity, Sdepth, and Tw (P < 0.01) (Table 1). Landsat
ETM+ data-based regression analyses resulted in the
best MLR models with R2

adj values ranging from
36.2 % in Tw to 93.1% in DO for Lake Yenicaga and
from 36.1 % in Sdepth to 99.7 % in Tw for Lake Abant.
The resultant MLR models for Lakes Yenicaga and
Abant are as follows:

DO (mg/L) for Lake Yenicaga = -2192 - (0.06237* band
1) - (0.21934*band 5) + (0.5226*band7) - (0.0002365*E)
+ (0.0005075*N) + (0.053166*DOY)
(R2

adj=93.1 %; RMSE=0.50mg/L; n=24;P=0.001);

DO (mg/L)for Lake Abant = 839.5 + (0.02275*band 3)
-(0.02617*band 4) + (0.07607*band 5) +
(0.013989*band 6L) - (0.12285*band 7) + (0.0000803*E)
- (0.00019037*N) -(0.023993*DOY)
(R2

adj=96.7 %;RMSE=0.11 mg/L; n=24;P=0.001);

Ch1-a(µg/L) for Lake Yenicaga =  -4465 - (0.7893*band
1) + (0.7776*band 2) + (0.419*band 3) - (0.25935*band
4) + (0.889*band 6L) - (0.0022079*E) +(0.0011729*N)
- (0.07193*DOY)
(R2

adj=96.7 %; RMSE=0.11 mg/L; n=24; P=0.001);

Ch1-a (µg/L)for Lake Abant = 21.6 - (0.0368*band 1) +
(0.04391*band 2) + (0.0205*band 3) - (0.0344*band 4)
+ (0.03633*band 5) -(0.002347*band6H) +
(0.035882*DOY)
(R2

adj=97.7%;RMSE=0.16 µg/L; n=24;P=0.001);

Turbidity (NTU) for Lake Yenicaga = 2320 -
(2.846*band 1) + (4.298*band 2) - (2.383*band 3) -

(6)

Table 1: A comparison of Lakes Yenicaga and Abant for water quality (mean + standard deviation) based on one-way ANOVA
Tukey’s test

Lake water quality 
DO 

(mg/L) 
Chl-a 
(µg/L) 

Turbidity
(NTU) 

Yenicaga 10.00 + 1.91 4.24 + 2.20 8.42 + 8.2
Abant 9.18 + 0.65 1.92 + 1.08 0.59 + 0.2
Statistically significant 
difference at P < 0.01 0.05 0.001 0.00
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(0.5578*band 4) - (1.5344*band 5) - (4.038*band 6L) +
(1.509*band 6H) + (5.671*band 7) + (0.000539*E) -
(0.000488*N) - (0.0908*DOY)
(R2

adj=75.7 %; RMSE=4.0 NTU; n=24; P=0.001);

Turbidity (NTU) for Lake Abant = -339.3 - (0.05346*band
1) + (0.03704*band 2) + (0.03438*band 3) -
(0.016424*band 4) + (0.02742*band6L) - (0.0246*band
6H) + (0.00919*band 7) + (0.004305*band 8) -
(0.00001713*E) + (0.00007737*N) - (0.005491*DOY)
(R2

adj=97.5 %; RMSE=0.04 NTU; n=24; P=0.001);

Sdepth (m)for Lake Yenicaga = 112 + (0.24329*band 1) -
(0.27315*band 2) - (0.06228*band 3) + (0.05042*band
4) + (0.01556*band 5) + (0.207*band 6L) - (0.0433*band
6H) - (0.1222*band 7) - (0.000021*E) - (0.0000273*N) +
(0.00946*DOY)
(R2

adj=85.1 %; RMSE=0.23 NTU; n=24; P=0.001);

Sdepth (m)for Lake Yenicaga = 1157 - (0.03499*band 4) +
(0.12429*band 5) + (0.004761*band 6H) - (0.17181*band
7) + (0.02412*band 8) -(0.0001439*E) - (0.0002447*N) -
(0.009342*DOY)
(R2

adj=85.1 %; RMSE=0.23 NTU; n=24; P=0.001);

Tw(°C)for Lake Yenicaga = -138.61 - (0.11224*band 5) +
(0.09993*band 6H) +(0.2187*band 7) - (0.03042*band
8) + (0.0003568*E) - (0.013418*DOY)
(R2

adj=36.2 %; RMSE=0.45°C; n=24;P=0.028); and

Tw(°C)for Lake Yenicaga = 895.8 - (0.1137*band 1) +
(0.13349*band 2) + (0.01538*band 4) - (0.0583*band6L)
+ 0.05266*band 6H) -(0.0001276*E) - (0.0001869*N) +
(0.058121*DOY)
(R2

adj=99.7 %; RMSE=0.12 °C; n=24; P=0.001)

The RMSE values were consistently found to be
lower for all the MLR models of the water quality in the
oligotrophic Lake Abant than the eutrophic Lake
Yenicaga. Comparisons of model estimates versus in
situ measurements resulted in R2 values ranging from
53 % for to 99.8 % for Tw of Lakes Yenicaga and Abant,
respectively (Table 2). The best MLR models for the
two lakes revealed that the trophic state significantly
influenced not only the combination of the nine Landsat
ETM+ spectral bands but also the predictive power of
the MLR models used for the estimation of the five water
quality characteristics measured in this study. The
composition of the same independent variables used in
the MLR models of the same dependent variables is as
follows in increasing order of number of variables: Tw
(band 6H) < DO (bands 5 and 7) < Chl-a (bands 1 to 4) =
Sdepth (bands 4, 5, 6H and 7) < turbidity (bands 1 to 4 and
6L/H to 8). The difference among the MLR models of
the same dependent variables in R2

adj values is as follows
in increasing order of magnitude: DO (4 %) < Chl-a
(15 %) < turbidity (21%) < Sdepth (49 %) < Tw (64 %). The
predictive power of the MLR models was stronger in
the estimation of DO, Chl-a, turbidity, Tw and weaker in
the estimation of Sdepth for the oligotrophic Lake Abant
than the eutrophic Lake Yenicaga. The most frequently
used Landsat bands were bands 1, 5 and 7 (80 %) and
bands 4 (100 %), 6H (80 %) and 7 (80 %) for the MLR-
based estimation of the water quality of Lakes Abant
and Yenicaga, respectively.

Given the higher Sdepth value of Lake Abant (4.2 + 0.3
m) than that of Lake Yenicaga (1.7 + 0.6 m) the lower
predictive power of the MLR model for Lake Abant (R2

adj
= 36 %) than that of the MLR model for Lake Yenicaga
(R2

adj = 85 %) may be explained by the fact that Landsat
TM/ETM+ sensors can not measure deep Sdepth values
of lakes as effectively as those of shallow lakes (Nelson
et al., 2003; Brezonik et al., 2005). Sdepth for Lake Abant
had positive correlation coefficient (r) values with Chl-
a (r = 0.6; P = 0.001) and turbidity (r = 0.53; P = 0.005)
contrary to the expected relationship. This case points
to a major control over Sdepth by CDOM instead of Chl-a,
and turbidity. As reported in the related literature, high
levels of light-absorbing CDOM affects y, Sdepth, and
thus, satellite-based reflectance values (Brezonik et al.,
2005).

In the related literature, surface water temperature is
generally estimated using simple regression models of
the thermal infrared band (band 6) of Landsat ETM+
(Zhang et al., 2002; Kay et al., 2005; Giardino et al.,

(10)

(11)

(12)

 Lake Performance 
test 

DO 
(mg /L) 

Chl-a 
(µg /L) 

Turbidity 
(NTU) 

Sdepth 
(m) 

Tw 
(oC) 

Yenicaga R2 (%) of 
estimated  
vs. observed 
values 

94.9 88.7 88.4 92.2 52.8 

Abant R2 (%) of 
estimated  
vs. observed 
values 

97.7 98.6 98.6 55.7 99.8 

 

Table 2: Comparisons of Landsat ETM+ data-based best multiple
linear regression (MLR) models of dissolved oxygen
(DO), chlorophyll-a (Chl-a), turbidity, Secchi depth
(Sdepth), and water temperature (Tw) for Lakes Yenicaga
and Abant against in situ measurements (n = 24)

(9)

(7)

(8)
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2007; ). However, in this study, a MLR model using a
combination of the nine Landsat ETM + bands was
developed to estimate Tw. The higher R2

adj value
(99.7 %) of the MLR for Tw of Lake Abant than that
(36 %) of the MLR model for Lake Yenicaga may be
attributed to the closeness of Lake Yenicaga to the
highway with heavy traffic connecting the biggest two
Turkish cities of Istanbul and Ankara as well as to
settlements with a population size of around 5000
thereby, to negative impacts of atmospheric pollutants
such as aerosols generated by these activities on the
remotely sensed data. Atmospheric particles such as
dust, ash, and smoke directly and adversely affect remote
sensing of water quality due to backscattering and
absorbing solar radiation (Slater et al., 2004). Although
a considerable number of atmospheric correction
algorithms are suggested to remove the effects of
atmospheric particles (aerosols and molecules), an
evaluation of their practical value and contribution based
on comparisons of atmospherically corrected satellite-
derived reflectance and in situ measurements-derived
reflectance showed inadequacies in atmospheric
correction algorithms over water bodies (Hadjimitsis et
al., 2004; Hadjimitsis et al., 2010).

CONCLUSION
Remote sensing-based environmental modeling and

monitoring assist in better understanding and capturing
spatio-temporal variations in both optically active and
inactive lake water quality variables. The present study
applies this technique in order to detect the best linear
combinations of Landsat ETM+ spectral bands in
elucidating spatio-temporal changes in water quality
along trophic gradient. Coupling of readily available
satellite-based time-series data and MLR models can
facilitate in situ measurements that are expensive and
labor-intensive and enable adaptive management
practices to be devised in response to spatially and
temporally changing conditions in lake water. The
Landsat ETM+-based MLR models developed for Lakes
Yenicaga and Abant along the eutrophic-to-oligotrophic
gradient appeared to perform considerably well in
accounting for variation in spatio-temporal dynamics of
the water quality variables except for Sdepth (R

2
adj = 36 %)

and Tw (R2
adj = 36 %) of Lakes Abant and Yenicaga,

respectively. The inclusion of spatio-temporal
components in the MLR models in this study is first of
its kind for the remote sensing-based quantification and
monitoring of lake water quality in this region. A
comparison of the Landsat-based MLR models for the

two lakes indicated that the trophic gradient significantly
altered the composition of the nine ETM+ spectral bands
included in the MLR models and the predictive power
of the MLR models for the estimation of the water quality
characteristics. Using of remotely sensed time series
data over a longer period and a wider spatial coverage
of lakes and exploration of non-linear relationships
among possible combinations of the independent
variables are most likely to assist in further refining
accuracy of remote sensing-based multiple regression
models as well as in better devising adaptive
management practices for water resources.
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