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Abstract Assuming that state-of-the-art air quality

models are accurate, then the precision and accuracy of

their results directly depend on the precision and accuracy

of their geographical, meteorological and emission input

data. There are important applications, such as open pit

mining, in which emission data are the main source of

uncertainty. In such cases, historical air quality experi-

mental data are typically available. The present work

proposes a backward air quality simulation approach to

assess the accuracy of emission inventories for these

applications, with the goal of identifying sources that are

over or underestimated. This approach consists of finding

constants of the linear combination of the estimated

emission that maximize R2 and make the slope equal to one

in the linear correlation analysis when the results from the

air quality model are compared to the experimental mea-

surements of air quality. This methodology was applied to

the case of the mining region in northern Colombia. As one

of the largest open pit coal mining regions in the world, this

region consists of seven independent mines with no rele-

vant additional sources of emission. Use of the proposed

methodology allowed quantification of the amount by

which companies over or underestimated their emission, as

well as quantification of uncertainties due to sources not

considered in the model but that locally affect each mon-

itoring station.

Keywords AERMOD model � Air quality modeling �
Opencast mining

Introduction

Environmental impact assessment of future or existing

atmospheric pollutant sources generally involves air qual-

ity modeling. Such studies model the dispersion and con-

centration of pollutants in time and space at the surface

level over an area of interest. By contrasting the obtained

concentrations against local air quality standards,

researchers can determine the environmental feasibility of

implementing a new or continuing an existing project.

However, because the political and economic implications

of rejecting large projects due to environmental reasons are

costly for environmental authorities and for the overseeing

company or institution, the accuracy and precision of

negative air quality model results are frequently ques-

tioned. Accuracy refers to the nearness of estimated pol-

lutant concentrations to the true values, whereas precision

refers to the dispersion (lack of reproducibility) of the

estimated pollutant concentrations (Neter et al. 2005). To

make informed evaluations regarding the accuracy of pre-

dicted results in time and space, the results must be com-

pared with measured values in a meaningful, quantitative

way. Several metrics, including those shown in Table 1,

have been used to achieve this objective. Despite extensive

work on the development of acceptable air quality models

(USEPA 2005; Holmes and Morawska 2006) and imple-

mentation procedures (USEPA 2004), several issues in this

matter remain unresolved. Well-accepted models include

AERMOD, which is currently recommended by USEPA

for modeling point sources of emission (USEPA 2011).

This model accurately predicts long-term (*1 year)
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average concentrations, but has limitations in estimating

short-term concentrations (USEPA 2011).

For the purposes of this work, it is assumed that the model

used accurately estimates long-term average concentrations;

therefore, time is excluded from the evaluation of precision

and accuracy. Because these models are deterministic, the

results that they produce under unchanged input data have no

dispersion; thus, they are precise. Under these circumstances,

the accuracy and precision of the results reported by these

well-established models depend only on the accuracy and

precision of the geographical, meteorological, and emission

input data. There are important applications, such as in open

pit mining, in which emission data are the main source of

uncertainty, due to the fugitive nature of the sources and

impossibility of directly measuring the emissions. Geo-

graphical and meteorological data are always easy to measure

and, therefore, are reliable.

Open pit mining in northern Colombia

In 2010, the mining region in northern Colombia (which is

considered one of the largest open pit mining regions in the

world) consisted of seven open pit mines with an approx-

imate coal production of 36 Mtons/year. Figure 1 describes

the mining region, showing the location of the mines, air

quality monitoring stations, and meteorological stations.

The major air pollutants arising from the mining operations

include total suspended particulate matter (TSP) and par-

ticles with an equivalent aerodynamic diameter smaller

than 10 lm (PM10) (Chakraborty et al. 2002; Sinha and

Banerjee 1997). Table 2 lists the total mass of TSP emitted

during 2009 at each mine. The TSP and PM10 in open pit

mining regions reduce air quality and can cause silicosis,

black lung (CWP), and increased mortality. They also

reduce visibility and affect surrounding flora and fauna

(NIOSH 2005; Wheeler et al. 2000).

In 2006, the Colombian environmental authority initi-

ated an air quality network to monitor TSP and PM10 in the

mining region. Since 2007, this network has been reporting

readings that exceed the standards for daily and annual TSP

and PM10 concentrations in some nearby villages (Huertas

et al. 2012a). To assess the impact of mining operations on

Table 1 Metrics to evaluate the capability of air quality models to reproduce, in time and space at surface level, experimental observations

(Mosca et al. 1998; Walker et al. 1999; ASTM 2000; Li et al. 2011; Zawar-Reza et al. 2005)

Metric Definition Perfect

value

Range Meaning

Index of

agreement
d ¼ 1� RðPi�MiÞ2

R Pi�Mj jþ Mi�Mj jð Þ2
1 0 \ d \ 1 Evaluate the degree the predictions of models are error free

Bias B ¼ 1
N

P
Pi �Mi 0 -?\ B \? Average difference between paired predicted and measured

values

Fractional bias FB ¼ 2
�P � �M
�Pþ �M

0 -2 \ FB \ 2 Evaluates the sub or over estimation of the model

Geometric mean

bias
MG ¼

Q Pi

Mi

� �1=N 1 0 \ MG \? It gives the same weight to pairs showing the same ratio,

independently of the absolute value of the data

Normalize mean

square error
NMSE ¼ 1

N

P Pi�Mið Þ2
�P �M

0 NMSE [ 0 Provide information on the deviation and not on the over or

under estimations

Root of the mean

square error
RMSE ¼ 1

N

P
Pi �Mið Þ2

� �1=2 0 RMSE [ 0 Similar to NMSE. It shows the most striking differences

among models

Coefficient of

determination
R2 ¼ 1�

P
Pi�Mið Þ2P
Mi� �Mið Þ2

1 0 \ R2 \ 1 Measure dispersion. It is the proportion of the variability of

the data that is accounted by the model

FAC2 Fraction of data for which

0.5 \ Pi/Mi \ 2

1 0 \ FAC2 \ 1 It measures both dispersion and over estimations

Pi Predicted pollutant concentration at time or space i, Mi Measured pollutant concentration at time or space i, �P Average predicted pollutant

concentration, �M Average measured pollutant concentration, N Number of data points

Fig. 1 Location of mines (M), monitoring stations (ZM) and

meteorological stations in the open pit mining region in northern

Colombia
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regional air quality and to establish an appropriate clean air

program for the region, the Colombian environmental

authority developed a detailed study of the temporal and

spatial variations of the surface levels of TSP and PM10

concentrations using AERMOD. Tables 2 and 3 show the

emission inventory and the meteorological data used as

inputs. The results of the study were used to estimate the

contribution of each mine to pollution in each village

within the mining region, thereby allowing the environ-

mental authority to determine the appropriate contribution

of each mining company towards financing decontamina-

tion measures (Huertas et al. 2012a).

The accuracy of the results obtained by the Colombian

environmental authority depends directly on the accuracy

of the emission data. Masses of emitted pollutants were

estimated from the emission inventories, through the fol-

lowing equation (USEPA 2008):

Ei ¼
X

AjEf ;ij 1� gij

� �
ð1Þ

where Ei is the mass of pollutant i emitted at each mine, Aj

is intensity of the activity or operation j of the productive

process being evaluated, Ef,ij is the emission factor for

pollutant i when it is performing activity j, and gij is the

efficiency of the control measure to prevent emissions of

pollutant i in activity j.

Institutions like the USEPA have compiled emission fac-

tors (Ef,ij) for most of the activities involved in open pit mining

(USEPA 2006a, b, 2008). Such emission factors have been

Table 2 Open pit coal mine TSP emissions for 2009

Sources TSP emission intensities g/(m2 s)

M1 M2 M3 M4 M5 M6 M7

Pit 5.0681E-05 3.4910E-06 1.1912E-05 9.1367E-04 9.8477E-06 2.6908E-05 1.2887E-05

Dump 8.6049E-06 5.4693E-06 5.8058E-06 4.3629E-04 1.0434E-05 6.6505E-06 7.0641E-06

Stock 3.5024E-05 2.0435E-04 1.3037E-03 2.0729E-03 2.9833E-03 1.4394E-04 5.3191E-05

Pit-dump via 2.1887E-04 5.5485E-06 1.4318E-04 2.1503E-04 3.5172E-05 7.2359E-05 2.6565E-05

Pit-stock via 4.3951E-05 1.0493E-07 1.4638E-05 2.3989E-07 1.1574E-06 8.8889E-04 9.9652E-06

Beltway 5.4694E-05 1.4430E-07 0.0000E ? 00 9.3328E-07 3.1034E-06 4.3277E-05 3.8399E-06

Total TSP emissions g/(m2 -s) 3.5713E-04 2.1911E-04 1.4792E-03 3.6390E-03 3.0430E-03 1.1820E-03 1.1351E-04

Total TSP emissions kg/year 3.9276E?06 7.4812E?05 2.3139E?06 1.6727E?06 3.0230E?06 1.4819E?07 9.0708E?05

Total coal production ton/year 1.8148E?06 1.038E?06 5.984E?06 6.000E?05 4.730E?06 1.840E?07 1.600E?06

Pit, dump, stock and pit-dump via, pit-stock via and beltway are the area sources considered within mine (M’s)

Table 3 Meteorological

information used to simulate

TSP and PM10 dispersion in the

study area

Name: Borrego Calenturitas Cerrolargo Agustı́n Codazzi

Type: Automatic Automatic Automatic Observatory

Location (UTM km)

x 668.4 665.6 689.24 690.1

y 1,059.5 1,067.3 1,056.9 1,089.3

Primary parameters

Velocity H H H –

Direction H H H –

Max velocity H H H –

Max direction H H H –

Temperature H H H –

Pressure H H H –

Radiation H H –

Rainfall H H H H

Humidity H H H –

Evaporation H H H –

Cloud cover – – – H

Resolution

Minutes 30 15 30 3 readings per day

% Availability 98.8 99.7 99.7 99.6
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obtained for open pit mines in the western region of the United

States (Axetell and Cowherd 1981; Muleski 1990; USEPA

1994; Zeller et al. 1979). However, the applicability of these

emission factors has been questioned for open pit mining in

tropical areas such as northern Colombia, where the emission

rate should be different due to differences in geological and

climatic conditions, mining conditions, site practices, and

mitigation practices (Ghose 2004). Furthermore, there are no

emission factors reported for subactivities in mine operations,

such as handling and storage in piles and transportation over

unpaved roads. In these cases, emission factors from similar

activities are used as an approximation. These circumstances

have raised additional questions.

To address these issues, the present paper reviews sev-

eral alternatives to evaluate the accuracy and precision of

emission inventories and proposes an additional alterna-

tive. As a case study, the proposed methodology was

applied to the mining region in northern Colombia. This

research work was developed at Tecnológico de Monterrey

(México) and Texas A&M University (USA) during 2010

and 2011. It is out of the scope of the present work to adjust

the available emission factors to local conditions.

Approaches to evaluate atmospheric emission

inventories

Previous studies have utilized aggregating uncertainties

and bootstrap methods to evaluate the precision of emis-

sion inventories. In aggregating uncertainties, the uncer-

tainty of an expression f ¼ f ðxiÞ is expressed by the error

propagation equation (Neter et al. 2005):

Df ¼
X of

oxi
Dxi ð2Þ

For the case of Eq. 1, this expression becomes:

DEi ¼
X

Ef ;ijð1� gijÞDAj þ Ajð1� gijÞDEf ;ij

þ Ef ;ijAjDgij ð3Þ

where DEi is uncertainty in the total emissions of pollutant

i for a given mine, DAj is the uncertainty in the intensity of

the activity or operation j, DEf ;ij is the uncertainty in the

emission factor for pollutant i when it performs activity j,

and Dgij is the uncertainty in the efficiency of the control

measure to prevent emissions of pollutant i in activity j.

Alternatively, the following equation can be used (EEA

2009):

DEi¼
Q
ðEf ;ijð1�gijÞDAjþAjð1�gijÞDEf ;ijþEf ;ijAjDgijÞ2

h i1
2

P
Ef ;ijAjð1�gijÞ

ð4Þ

The bootstrap method uses Monte Carlo resampling of

Aj, Ef,ij and gij from their respective distribution functions

to estimate the uncertainty of the emission inventory Ei.

This method requires thousands of samplings. Uncertainty

is expressed as the range (confidence interval) in which

there is a 95% probability that the actual value of Ei be

within that range. It can be used with any type of

distribution function for these three input variables (Neter

et al. 2005; Ramirez et al. 2008).

Methods to enhance the accuracy of emission invento-

ries include standardizing procedures for preparing emis-

sion inventories and the comparative analysis of similar

emission inventories. Use of standardizing procedures

consists of establishing a unified or standard procedure to

prepare and report the emission inventories for a specific

application. The most well-known examples are MOVES,

which is the USEPA-recommended protocol to estimate

emissions from a fleet of vehicles (USEPA 2010), and the

guidelines for the elaboration of greenhouse gas emission

inventories (EEA 2009). Use of standardizing procedures

does not necessarily ensure accurate results, but does make

them comparables and reduces uncertainties. For the case

of open pit mining, Huertas et al. (2012b) reported a unified

methodology for performing TSP and PM10 emission

inventories.

The comparative analysis of similar emission invento-

ries focuses on comparing the emission inventory results

for the same application. This alternative requires an

identification of a proper metric of comparison. For the

case of open pit coal mining, the proposed metric is the

kilograms of TSP or PM10 emitted per ton of coal extrac-

ted. Small natural variations in this metric are expected,

because open pit mining always involves the same opera-

tions, and mine companies have implemented similar

emission control technologies. Large variations may be

attributed to errors in the calculation of the emission

inventories. Huertas et al. (2012b) compared emission

inventories for the case of the mining region in northern

Colombia. They reported that, on average, a mine company

generates 0.726 kg of TSP and 0.180 kg of PM10, respec-

tively, per Mg of coal produced.

Previous methods have sought to quantify and reduce

the uncertainty of emission inventories. However, these

methods cannot quantify how inaccurate the data are.

Therefore, it is desirable to create a method to quantify the

accuracy of atmospheric emission inventories.

Materials and methods

The proposed methodology to assess the accuracy of

emission inventories of a given pollutant compares exper-

imental data of pollutant concentration with concentrations

obtained through an air quality model that use emissions

inventory in a backward modeling approach.
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Let n be the number of emission sources in the region of

interest. This method consists on affecting the estimated

emission of each source Ei by a constant Ai, where Ai [ 0.

The resulting emission inventory E ¼
Pn

i AiEi

� �
is used as

data input of a well-established air quality model to obtain

the pollutant concentration at the j points where that pol-

lutant has been measured for a long period of time. Then,

the correlation between the numerical results (Pt,,j) and

experimental values (Mt,j) was statistically evaluated in

terms of long-term averages (Mj vs. Pj). The sets of con-

stants Aif g are changed systematically to determine the set

of constants Aif gmax that maximizes R2 and simultaneously

makes the slope = 1.

The obtained set of constants Aif gmax measures the

inaccuracy of each emission inventory. A value of Ai [ 1

indicates that the corresponding emission inventory was

underestimated by that amount. The expression 1 - R2

quantifies the relative no systematic contributions to the

measured pollutant concentration of the sources of pollu-

tants that were not included in the model. The difference

between the measured background concentration (MB) and

the constant of the linear regression (b) determines the

systematic contribution to the measured pollutant concen-

tration of all sources of pollutants that were not included in

the model.

This methodology makes the following assumptions: (1)

all of the relevant sources of emission in the region are

included in the emission inventory; (2) historical air quality

experimental data exist for at least 1 year at several points

([3) within the regions of interest; and (3) the air quality

model estimates correctly the dispersion of the pollutant

under consideration.

The proposed methodology differs from the receptor

models in that receptor models do not use pollutant emis-

sion, meteorological data, or chemical transformation

mechanisms to estimate the contribution of sources to

receptor concentrations. Instead, receptor models use the

chemical and physical characteristics of gases and particles

measured at the source and receptor to identify the pres-

ence of and to quantify source contributions to receptor

concentrations (USEPA 2011).

Results and discussion

The empty blue circles in Fig. 2 show the base case sce-

nario, which compares the measured annual geometric

mean TSP concentration against the estimated TSP con-

centration at 9 points within the mining region. Estimated

TSP concentrations were obtained using AERMOD with

meteorological data for the year 2009, as reported by the

Calenturitas station. Additionally, this case used emission

inventories reported by each of the seven mines operating

in the region for the same year. The unified methodology

described in Huertas et al. (2012b) was used, except for the

cases of mines 1 and 6, for which a third methodology was

used.

As shown in Table 4, a correlation between the exper-

imental and estimated TSP concentrations exists for the

base case scenario, with a confidence (1 - p) = 99.7%.

The level of this correlation is r = 0.856. The slope of the

linear correlation indicates that the estimated TSP con-

centration is underestimated by m = 8.238. The coefficient

of determination R2 = 0.733 measures the dispersion of

the data around the line of tendency, and quantifies the

mean error between each data point and the line of ten-

dency. According to these results, 1 - R2 = 26.7% of the

measured pollutant concentration cannot be explained by

the model. Assuming that the model and the geographical

and meteorological data are reliable, then the underesti-

mation and dispersion of the estimated results with respect

to the measured TSP concentrations could be due to inac-

curacies of the emission inventories and to the existence of

additional sources of pollution that were not considered in

the model (e.g., existence of nearby agricultural activities,

unpaved roads, or uncovered land exposed to wind

erosion).

To evaluate the accuracy of each independent emission

inventory, the methodology described in the previous

section was implemented. The TSP emission inventory of

each mine was affected by a constant. As a first step, each

constant was individually varied to find a set of values that

maximized R2. Emissions from mines 4 and 5 were kept

constant since previous studies indicated that, due to their

location, their contribution to the pollution in the area of

interest is negligible.

The solid red circles in Fig. 2 show the results obtained.

Figure 3 shows that by affecting, one at a time, the emis-

sion inventory by a constant, there is a value for that

R 2  max & m=1
y = x - 3E-13
R² = 0.750

R 2  max
y = 6.646x + 48.23

R² = 0.750Base case
y = 8.238x + 42.10

R² = 0.733
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constant which maximizes R2 and, for all of the cases, R2

decreases as the constant moves away from that point.

There are no local maximums. These facts indicate that R2

is a convex function with respect to these constants.

Therefore, there exists a unique set of constants that will

allow R2 to reach its global maximum. However, that R2

max is unlikely to be 1, because there will always be

unpredicted or unconsidered situations affecting each

monitoring station.

Figure 3 and Table 4 also show that, when the condition

for R2 maximum is reached, the constants affecting mines 1

and 6 are both 1. The emission inventories of these 2 mines

were elaborated by the same consulting firm. Mine 6 is, by

far, the largest source of emission. Thus, when the condi-

tion of maximum R2 is reached, the set of constants

obtained indicates the relative inaccuracy of each source

relative to the dominant source of emissions.

Table 4 shows that m = 6.65 for the previous results.

Therefore, as a second step, all of the emission sources

must be affected by the same constant, in such a way that

m = 1. This step does not change R2. According to the

sensitivity analysis reported by Huertas et al. (2012a), this

constant should be approximately 6.65. In this step, the

background concentration is also considered, such that

MB - b & 0.

Table 4 lists the set of constants that make R2 maximum

(R2 = 0.75), m = 1, and b = 0 (when including the

background concentration). Those constants specify the

degree of under or overestimation of each emission source.

The results show that mine 2 overestimated its emission by

1/0.66 = 1.52 and the other mines underestimated their

emissions by a factor between 6.65 and 13.29.

The air quality network uses station ZM11 to track the

background concentration in the region. In 2009, this sta-

tion reported an annual mean concentration of 48 lg/m3.

Therefore, the result of MB - b = 0 indicates that the

model accurately predicted the background concentration,

and that the main sources of pollutants systematically

affecting all of the monitoring stations were included in the

model.

The result that 1 - R2 = 25.0% indicates that there are

relevant circumstances that locally affect each monitoring

station and that they were not included in the model. As

stated before, these circumstances could be additional

sources of emissions located nearby the monitoring station

or calibration problems. Stations ZM9 and ZM14 exhibited

the largest dispersion.

The use of R2 and m as metrics to evaluate accuracy of

the emission inventories has a drawback: leverage data

points may cause large changes in the linear regression

Table 4 Results of the metrics to evaluate the accuracy of air quality model results when applied to the case of the open pit mining in northern

Colombia in 2009, using AERMOD, Calenturitas meteorology, air quality data from nine stations and results expressed as annual mean

geometric TSP concentrations

Base M1 M2 M3 M6 M7 R2 max R2 max and m = 1

A N/A 6.65 0.66 13.29 6.65 9.97 N/A N/A

1 - p 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7

m 8.24 1.24 1.29 0.99 1.24 1.20 6.65 1.00

b 42.10 -17.68 -19.60 0.98 -17.68 -16.66 48.23 0.00

R2 0.7336 0.7336 0.7357 0.7437 0.7336 0.7352 0.7501 0.7501

r 0.8565 0.8565 0.8577 0.8624 0.8565 0.8574 0.8661 0.8661

d 0.26 0.87 0.86 0.91 0.87 0.88 0.26 0.92

Bias -93.79 -5.24 -7.20 -0.17 -5.24 -3.25 -93.00 0.00

FB -1.74 -0.05 -0.07 0.00 -0.05 -0.03 -1.71 0.00

MG 0.06 0.98 0.96 1.02 0.98 1.00 0.06 1.02

NMSE 14.15 0.05 0.06 0.04 0.05 0.05 12.47 0.04

RMSE 100.97 22.82 23.60 20.75 22.82 22.15 99.89 20.49

FAC2 (%) 0 100 100 100 100 100 0 100

0.65
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Fig. 3 Variations of the metrics of correlation as function of Ai
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coefficients when they are not included in the analysis.

Leverage points, which occur when a monitoring system is

located near a large source of emissions, can be identified

using the partial leverage metric (Neter et al. 2005). When

a leverage point exists, the measuring station reads high

levels of pollution, which are primarily influenced by a

single source. Leverage points dilute the participation of

other data points and make R2 insensible to variations in

the emissions of other sources. In the present case, station

ZM7 (which is located in the middle of the mines) had the

highest pollutant concentrations. However, this station did

not become a leverage point in any of the correlation

analyses.

Table 4 also presents the results obtained using the

metrics specified in Table 1 to evaluate air quality results.

Bias and FB evaluate differences between paired pre-

dicted and measured values. By adjusting all of the

emission sources by the same constant such that m = 1 in

the linear correlation analysis, Bias and FB reach their

optimal values of zero. NMSE and RMSE evaluate the

dispersion of paired data; by adjusting each independent

emission source by a different constant such that R2 in the

linear correlation analysis becomes a maximum, one can

ensure that these 2 metrics reach their optimal minimum

values. FAC2, MG, and d are affected by the average

deviation and dispersion. R2 must be maximized and

m should be equal to 1 to ensure that these metrics reach

their optimum values.

Any combination of the metrics specified in Table 1 can

be used with the proposed methodology to evaluate the

accuracy of the emission inventories. However, it was

preferred to use linear correlation analysis, because it is

commonly used in many fields, there are several ready-to-

use tools to perform it, and the physical meaning of each of

its parameters is well understood.

Conclusion

In this study, it was attempted to quantify the accuracy and

precision of emission inventories for cases in which the

main sources of pollutants were well identified and there

were air quality data from several points ([3) over more

than 1 year. A backward air quality simulation approach

was proposed, in which each emission inventory was

weighted by a constant. A linear correlation was made

between the air quality results and experimental measure-

ments of pollutant concentration. The set of constants that

maximized R2 was identified and the slope of the correla-

tion equal to 1 was rendered.

When this methodology was applied to the case of the

mining region in northern Colombia, R2 was determined to

be an n-dimensional convex function with respect to the set

of n constants that affect each emission source; thus, there

existed a unique set of constants for which R2 was a global

maximum. R2 moved from 0.73 in the base case scenario to

0.75 in the optimum scenario. Mine 2 was found to over-

estimate its emission by 1/0.66, and the other mines

underestimated their emissions by a factor between 6.65

and 13.29. The result of 1 - R2 = 25.0% indicated that

there were relevant circumstances that locally affected each

monitoring station and were not included in the air quality

model. Stations ZM9 and ZM14 exhibited the largest dis-

persion. Although various metrics are available to evaluate

differences between air quality model results and measured

data, we chose to use a linear correlation analysis because

of its commonality and ease of use.
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