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Abstract The present study attempts to use the metha-

nol–silver nanofluid filled heat pipe heat exchanger and

compares the effectiveness as well as the energy saving

with pure methanol. A heat pipe heat exchanger has been

tested in a test rig under steady-state conditions. The

lengths of both the evaporator and the condenser sections

of the heat exchanger were 700 mm, and its central adia-

batic section had a length of 160 mm. The heat exchanger

had 36 plate finned copper thermosyphons arranged in

three rows. The inlet air temperature across the evaporator

section was varied in the range of 33–43 �C while the inlet

air temperature to the condenser section was nearly con-

stant to be 13 �C. First, pure methanol was used as the

working fluid with a fill ratio of 50 % of the evaporator

section length, and then dilute dispersion of silver nano-

particles in methanol was employed as the working fluid.

The nanofluid used in the present study is 20 nm diameter

silver nanoparticles. The experiments were performed to

compare the heat pipe heat exchanger effectiveness and

energy saving, using nanofluid and pure methanol. The

inlet air relative humidity across the evaporator section was

varied between 35 and 80 %. The sensible effectiveness of

the heat pipe heat exchanger obtained from experiments

varied about 5–22 % for pure methanol and 9–32 % for

methanol–silver nanofluid. Based on these experimental

results, using methanol–silver nanofluid leads to energy

saving around 8.8–31.5 % for cooling and 18–100 % for

reheating the supply air stream in an air conditioning

system.
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Introduction

One of the important applications of heat pipe heat

exchangers (HPHE) for reducing energy consumption is in

air conditioning (HVAC) systems. The most interesting

function of HPHEs is to increase the dehumidification

capacity of the conventional air conditioning systems. In a

conventional HVAC system, the humidity is controlled by

cooling the supply air stream below its dew point tem-

perature. The cold air is then reheated to a temperature that

is suitable for the conditioned space.

For this purpose, external energy such as electric energy

is used. The evaporator of HPHE functions as the air pre-

cooler before cooling coil and the condenser of HPHE

functions as the air reheat before electric coil in a HVAC

system.

Key factors affecting on thermal performance of a

HPHE are: velocity, relative humidity (RH) and dry-bulb

temperature (DBT) of input air, type and filling ratio (FR)
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of the working fluid, number of rows and pipe material.

Many researchers have studied these factors (Vafai and

Wang 1992; Akbarzadeh and Wadowski 1996; Noie-

Baghban and Majideian 2000; Noie 2005; Vasiliev 2008;

Rahimi et al. 2010).

Studies show that solid metal particles suspended

in fluids cause heat transfer enhancement. Particles with

\100 nm diameter have high potential for increasing heat

transfer rate (Keblinski et al. 2002, 2005; Xue 2003; Wang

et al. 2003; Fan and Wang 2011). In practical applications,

the size and shape of nano particles are very important.

Thermal conductivity and convective heat transfer have

been studied for many of nano particles in water and eth-

ylene glycol.

Argonne National Laboratory has prepared a new clas-

sification of fluids for heat transfer named nanofluid

through suspending ultra-fine metallic and non-metallic

particles with nanometric sizes in fluids such as water,

engine oil and ethylene glycol.

Alumina (Al2O3), copper oxide (CuO) and silver are the

most common nanoparticles used in experimental investi-

gations by many researchers. Godson et al. (2010) have

concluded that the effective thermal conductivity of

nanofluids increases with volume fraction of nanoparticles.

The dependency of thermal conductivity enhancement of

nanofluids on particle shape has been emphasized by

Trisaksri and Wongwises (2007). Kakaç and Pra-

muanjaroenkij (2009) have investigated the convective

heat transfer enhancement with nanofluids. In another work

Das and Choi (2009) have studied the temperature depen-

dence of thermal conductivity enhancement in nanofluids

experimentally.

Although extensive researches on the heat pipe and

nanofluids have been conducted in literature, investigation

on cases combining both the HPHE and the high thermal

performance of nanofluids techniques has not been done

thoroughly. The idea of utilizing nanoparticles within the

working fluid of a heat pipe has become a subject of

interest in recent years. Gold nanofluid was used in a heat

pipe and the results showed that the thermal resistance of

the heat pipe with gold nanofluid is less than that of pure

water (Tsai et al. 2004). In addition, the heat transfer sur-

face in the evaporation region is covered by nanoparticles

and a thin porous of coating layer is formed on the surface

after completion of the evaporation process. Kang et al.

(2006) proved that using silver nano particles in distilled

water inside the grooved heat pipe increases its thermal

performance.

Other researchers have done similar experiments using

nanofluid in heat pipes and thermosyphons (Naphon et al.

2008, 2009; Noie et al. 2009; Kang et al. 2009; Qu et al.

2010; Parametthanuwat et al. 2010; Teng et al. 2010; Liu

and Zhu 2011; Huminic and Huminic 2011; Huminic et al.

2011; Liu et al. 2011). Shafahi et al. (2010) used a two-

dimensional analysis to study the thermal performance of a

cylindrical heat pipe utilizing Al2O3, TiO2 and CuO

nanofluids as the working fluids. The nanoparticles within

the liquid enhance the thermal performance of the heat pipe

by reducing the thermal resistance while enhancing the

maximum heat load it can carry. They also investigated the

effect of particle size on the thermal performance of the

heat pipe. It was found that smaller particles have a more

pronounced effect on the temperature gradient along the

heat pipe.

Because the types and the geometrical sizes of heat

pipes, the kinds of the base liquids, the kinds and sizes of

nanoparticles and the operating conditions widely varied

among these experiments; it is very difficult to quanti-

tatively make the comparison among different experi-

mental data. Also, most of the exiting researches

proposed only some qualitative conclusions. However,

the qualitative trends that the heat transfer was

enhanced by substituting nanofluids for the base fluid are

the same.

Thermal performance of HVAC systems can be

improved in many ways such as using HPHEs which are

high efficient heat conductors and can be used to enhance

heat transfer because of phase changes of working fluid

inside them. Silver has the highest thermal conductivity of

any metal, so the present study tries to use the methanol–

silver nanofluid filled HPHE and compares the effective-

ness as well as energy saving with pure methanol in a

HVAC system.

This research was carried out in Islamic Azad University

(Science and Research Branch) in 2010.

Materials and methods

Overview of relevant theory

The rate of energy saving using HPHE in HVAC systems

may be calculated by two methods:

1. Investigation of the sensible heat ratio (SHR), i.e., the

sensible load divided by the total load to determine

the dehumidification enhancement capability of the

HVAC system (Yau 2007a).

2. Investigation of the effectiveness coefficient for

calculating the performance of the heat pipe heat

exchanger itself rather than the whole HVAC system

(Yau 2007b).
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The effectiveness is judged to be the most relevant

indicator in determining the performance of a HPHE as a

means of energy savings, thus the second method was used.

The HPHE evaporator section functions as a pre-cooler

and the condenser section functions as a reheating coil as

illustrated in Fig. 1 and psychrometric chart in Fig. 2.

The effectiveness coefficient of the HPHE is defined as

the ratio of the actual heat transfer rate to the maximum

possible heat transfer rate.

eHPHE ¼
_qactual

_qmax

ð1Þ

where

_qactual ¼ _msðh1 � h2Þ ð2Þ

and

_qmax ¼ _mminðh1 � h4Þ: ð3Þ

From Eqs. (1–3), the total effectiveness coefficient (

”

t)

can be determined by:

et ¼
_ms

_mmin

h1 � h2

h1 � h4

� �
: ð4Þ

Because the air flow rate is constant in the present

research, therefore:

et ¼
h1 � h2

h1 � h4

� �
: ð5Þ

The enthalpies in Eqs. 1, 2 and 4 are determined from

the fundamental psychrometric relationship:

h ¼ ha þWhw ð6Þ

where ha is the specific enthalpy of dry air compo-

nent [KJ/kgair] and W is the humidity ratio in kgwater/kgair

and hw is the specific enthalpy of the water vapor

[KJ/kgwater].

Equation (6) may be approximated by:

h ¼ CpT þ Whg ð7Þ

where Cp is the specific heat of the dry air [KJ/kg K], T is

the dry-bulb temperature [�C] and hg is the specific

enthalpy of water vapor saturated at dry-bulb temperature

[KJ/kgwater].

In most analyses, because at low water vapor pressures

the enthalpy of superheated water vapor is a little different

from the enthalpy of saturated water vapor at the same

temperature, it may be a very good approximation:

hg ¼ 2501þ 1:84 T : ð8Þ

Taking Cp at a constant value of 1.005 kJ/kg K and

using Eq. (8), the Eq. (7) may be rewritten as:

h ¼ 1:005T þWð2501þ 1:84 TÞ: ð9Þ

Equation (5) may be used for calculating the sensible

energy effectiveness by substituting dry-bulb temperature T

instead of specific enthalpy h:

esen ¼
T1 � T2

T1 � T4

: ð10Þ

The temperature of the outlet air across the cooling coil

of the cooling unit was adjusted manually at 13 �C.

According to the psychometric chart, the absolute humidity

and the condensed water are calculated.

The percentage of energy saving by the evaporator (Se) and

the condenser (Sc) of the HPHE are calculated, respectively,

as:

Se ¼
_m1cpðT1 � T2Þ

_m1cpðT1 � T3Þ þ _mwaterk
ð11Þ

Sc ¼
_m4cpðT5 � T4Þ
_m4cpðT6 � T3Þ

ð12Þ

where T6 is the desired temperature in conditioned space

and k is the latent heat of water.

In this study, the total effectiveness coefficient and the

sensible energy effectiveness coefficient of a HPHE with

methanol as well as methanol–silver nanofluid as the

working fluids have been investigated in a semi-industrial

scale unit. Finally, the percentages of energy saving for

Fig. 1 Schematic of the diagram for setup test

Fig. 2 Psychrometric chart for HPHE overcooled and reheat pro-

cesses in the test setup
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both working fluids by the evaporator and the condenser

sections of HPHE were calculated.

For determining the sensible and total effectiveness, the

following conditions are assumed:

1. The test rig has a steady flow and the air is well mixed

at each measuring state so that all measured psychro-

metric properties are representative of each air state.

2. The HPHE is operating under steady-state conditions

for supply of fresh air and exhaust coil leaving air

during each experiment.

3. No external energy is supplied into or lost from the

HPHE between its inlet and outlet states (i.e., the

HPHE is fully insulated).

The experimental setup

The experiments were run in a test rig shown in Fig. 3,

which is consisted of seven different segments connected

to each other with a 50 cm 9 60 cm duct.

The heating section consists of five 1 kW, U-shaped

powered electrical heaters. These heaters are introduced to

the setup to control the input air dry-bulb temperature. The

2.2 kW centrifugal fan is controlled by the frequency of the

input power. The 0.1 m3 stainless steel vapor container has

30 1 kW electrical elements for heating water and control

vapor mass flow rate in the input air.

Preparation of nanoparticle suspension is the first step of

applying nanofluids in heat transfer enhancement. The

silver nanoparticles with the average diameter of 20 nm are

used in the present study where an ultrasonic homogenizer

was implemented to prepare the mixture of 100 mg/l

methanol–silver nanofluid.

The HPHE that was used in this research was made of

36 copper pipes with the specifications given in the

Table 1.

The heat duty of the cooling unit is approximately 7 kW

and a draining pipe is placed underneath the cooling coil

for condensed water.

The centrifugal fan blows inlet air into the duct with

controlled mass flow rate and its velocity is measured by

orifice meter. Before the orifice, the air is preheated by

passing through electrical heaters, and then it is humidified

inside the vapor container with a certain amount of vapor.

This air will be pre-cooled when contacts the evaporator of

the HPHE followed by cooling coil of the cooling unit

down to 13 �C. In this stage, the humidity of the air has

decreased and excess water is drained out of the system.

Finally, the air passing through the condenser of the HPHE

is reheated.

First, all experiments were carried out using methanol

with 99 % purity and 50 % filling ratio of the evaporator

volume and then the same procedure was repeated using

methanol–silver nanofluid. At the beginning of the exper-

iment, the HPHE was evacuated by a vacuum pump to

reach an absolute pressure of 0.1 atm, subsequently, it was

filled with working fluid. The effect of inlet air dry-bulb

temperature and relative humidity on the effectiveness

coefficient of the HPHE with methanol as well as metha-

nol–silver nanofluid as the working fluids have been

investigated. Finally, the percentages of energy saving for

Fig. 3 Schematic of the test rig

Table 1 Specifications of the HPHE

External diameter of pipes 16 mm

Internal diameter of pipes 14 mm

Length of pipes 1560 mm

Thickness of pipes 1 mm

Fin type 0.4 mm thickness aluminum

plate, 300 fins/m

Pipe arrangement In-line SL = ST = 30 mm

Number of pipes NL = 3, NT = 12, N = 36
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both working fluids were calculated using Eqs. (11) and

(12).

Results and discussion

Figures 4 and 5 show the effect of inlet air RH on the total

effectiveness coefficient, sensible energy effectiveness

coefficient, evaporator energy saving and condenser energy

saving for nominal inlet HPHE evaporator DBT of 35 �C

and mass flow rate of 0.13 kg/s. The experimental results

demonstrated that using HPHE in these conditions, it is

possible to achieve around 8–10 % energy saving by the

evaporator and 16–22 % by the condenser of the HPHE for

reheating with pure methanol as the working fluid. But if

silver nanofluid is used in the same HPHE without

changing the other parameters, the rates of energy saving in

the evaporator and condenser will increase by 10–22 and

19–53 % respectively.

The HPHE with nanofluid as the working fluid gives the

total effectiveness coefficient of 1.6–3.5 times higher than

that with pure methanol (Fig. 4). The reason is that, the

silver nanoparticles within the liquid enhance the thermal

performance of the HPHE by reducing the thermal resis-

tance while enhancing the maximum heat load it can carry.

The low values of the total effectiveness coefficient and the

sensible energy effectiveness coefficient were attributed to

low mass flow rates and few rows of pipes in the HPHE.

The heat transfer coefficient enhancement may result

from two reasons. Firstly, the increase of the effective

thermal conductivity of the nanofluid can enhance the

conductive heat transfer. The second is attributed to the

turbulence effect of random motion (Brownian motion) of

nanoparticles in the base liquid and it is a nanoscale

effect.

It was observed that for all cases examined, Se, Sc,

”

t

and

”

s reduced as inlet RH for HPHE evaporator was

increased. These results imply that the moisture removal
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capability for the HVAC system with HPHE was increas-

ing with as the inlet RH for the HPHE evaporator is

increased. This was due to the fact that for the same inlet

DBT for HPHE evaporator, the higher RH means the

smaller enthalpy change to achieve apparatus dew point

temperature, and therefore the HPHE evaporator and

cooling coil, utilized a significant part of the cooling

capacity for dehumidification rather than temperature

reduction as shown by process 2–3 in Fig. 2.

The influence of inlet air DBT on Se, Sc,

”

t and

”

s for

silver nanofluid and pure methanol for mass flow rate of

0.15 kg/s and nominal relative humidity of 60 % are shown

in Figs. 6 and 7.

It is evident that, Se, Sc,

”

t and

”

s have been increased as

the nominal inlet HPHE evaporator DBT increased. In

other words, the results imply that the moisture removal

capability for the HVAC system with HPHE was increas-

ing with the inlet air DBT increment. The apparent devi-

ation at different inlet air DBT of

”

t and

”

s may be

attributed to the fact that, the main reason for the effec-

tiveness of HPHE is the evaporation and condensation of

the working fluid. The rate of vapor traveling from the

evaporator to the condenser is governed by the difference

in vapor pressure due to density differences caused by

temperature variations.

The vapor pressure over the hot liquid working fluid at

the evaporator section is higher than the equilibrium

vapor pressure over condensing working fluid at the

condenser section of the HPHE, and this pressure differ-

ence drives a rapid mass transfer to the condensing end

where the excess vapor condenses and releases its latent

heat.

At the same condition, test results showed the average

increase of 2.15 times in

”

t and 1.7 times in

”

s of HPHE

with nanofluid as compared with pure methanol.

The experimental results from Fig. 7 demonstrated that

using HPHE in a HVAC system, it is possible to achieve

around 3.5–25 % energy saving by the evaporator for pre-

cooling and 13–80 % by the condenser of the HPHE for

reheating with pure methanol as the working fluid. But if

silver nanofluid is used in the same HPHE without

changing the other parameters, the rates of energy saving

by the evaporator and condenser will increase by 8.8–31.5

and 18–100 % respectively.

It was also found that where air supply was needed

above 40 �C DBT, the condenser of the HPHE could be

used as a reheater to replace the conventional reheating coil

to control relative humidity as shown in Fig. 7.

Figures 4, 5, 6, 7 illustrated that using silver nanofluid

causes the enhancement of heat transfer and the effec-

tiveness coefficient of the HPHE in all experiments.

This is fully compatible with previous results reported

by researchers because metallic nano particles such as

silver due to its high conductivity coefficient, leads to

improving the heat transfer rate of the working fluid.

Addition of nanoparticles to fluid changes the heat transfer

mechanism so that besides thermal conductivity increase,

Brownian motion, dispersion, and fluctuation of nanopar-

ticles especially near wall it leads to increase in the energy

exchange rates and augments heat transfer rate between the

fluid and the evaporator section wall (Zeinali Heris et al.

2006, 2007). An increase in the nanoparticles volume

fraction intensifies the interaction and collision of nano-

particles. Also diffusion and relative movement of these

particles near the tube wall leads to rapid heat transfer from

the HPHE wall to nanofluid. In other words, increasing the

concentration of nanoparticles intensifies the mechanisms

responsible for enhanced heat transfer. A major thermal

resistance of HPHE is caused by the formation of vapor

bubbles at the liquid–solid interface. A larger bubble

nucleation size creates a higher thermal resistance that

prevents the transfer of heat from the solid surface to the

liquid. The suspended nanoparticles tend to bombard the

vapor bubbles during the bubble formation. Therefore, it is

expected that the nucleation size of vapor bubble is much

smaller for fluid with suspended nanoparticles than that

without them. Also during nucleate boiling some nano-

particle precipitate on surface and form a layer whose

morphology depends on the nanoparticle materials. It is

well known that a thin liquid microlayer developed

underneath a vapor bubbled growing at a solid surface.

Therefore, it is postulated that microlayer evaporation of

the nanoparticle initially contained in it could be the reason

for the formation of porous layer. Therefore, using nano-

fluid of a metal such as silver increases the thermal effi-

ciency of HPHE and saves energy consumption in air

conditioning systems.

Conclusion

New experimental data on the effectiveness of HPHE and

energy saving enhancement with nanofluids in HVAC

systems are presented. The following conclusions were

drawn from the present study:

1. The experiments carried out in this work show using

HPHE in a HVAC system, it is possible to achieve

around 3.5–25 % energy saving by the evaporator for

pre-cooling and 13–80 % by the condenser of the

HPHE for reheating with pure methanol as the working

fluid.
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2. If silver nanofluid is used in the same HPHE without

changing the other parameters, the rates of energy

saving by the evaporator and condenser will increase

by 8.8–31.5 and 18–100 % respectively.

3. The HPHE with nanofluid as the working fluid gives

the total effectiveness coefficient of 1.6–3.5 times

higher than that with pure methanol.

4. It was also found that where air supply was needed

above 40 �C DBT, the condenser of the HPHE could

be used as a reheater to replace the conventional

reheating coil to control relative humidity.

5. The low values of the total effectiveness coefficient

and the sensible energy effectiveness coefficient were

attributed to low mass flow rates and few rows of pipes

in the HPHE.

6. The investigation showed that the effectiveness of the

HPHE can be increased with increasing the inlet air

dry-bulb temperature and it is reduced as the evapo-

rator inlet air relative humidity is increased.

7. As a result, the higher thermal performance of the

nanofluid has proved its potential as substitute for

conventional pure fluids in the HPHE. Therefore, on

the basis of the results obtained in this work, the

application of this type of heat exchanger instead of

conventional reheat coils with silver nanofluid as the

working fluid results in energy saving.

To reveal this unprecedented phenomenon, further

studies on nanofluid behavior in HPHE and properties of

nanofluid must be performed.
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