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Abstract The sanitary sewerage connection rate is an

important indicator of advanced cities. Following the

construction of sanitary sewerages, the maintenance and

management systems are required for keeping pipelines

and facilities functioning well. These maintenance tasks

often require sewer workers to enter the manholes and the

pipelines, which are confined spaces short of natural ven-

tilation and have the potential for hazardous substances to

be present. Working in sewers could be easily exposed to a

risk of adverse health effects. This paper proposes the use

of Bayesian belief networks as a higher level of noncar-

cinogenic health risk assessment of sewer workers. On the

basis of the epidemiological studies, the actual hospital

attendance records and expert experiences, the Bayesian

belief networks is capable of capturing the probabilistic

relationships between the hazardous substances in sewers

and their adverse health effects, and accordingly inferring

the morbidity and mortality of the adverse health effects.

The provision of the morbidity and mortality rates of the

related diseases is more informative and can alleviate the

drawbacks of conventional methods.

Keywords Sanitary sewerage � Morbidity � Mortality �
Hazard quotient � Target organ-specific hazard index

Introduction

In terms of the length, 25.8 % of rivers in Taiwan are

moderately or severely polluted and discharging of

domestic sewage into rivers is one of the main causes. To

reduce the river pollution and improve residents’ living

environment and health, the fundamental solution is to

establish sanitary sewerages. A sanitary sewerage is a

separate underground carriage system specifically meant

for transporting sewage from houses and commercial

buildings to treatment or disposal. Indeed, it is widely

recognized that the sanitary sewerage connection rate

becomes an important indicator of advanced cities.

Although the sewerage connection rates of the major

cities in Taiwan still lag far behind those in the cities in

other developed countries, they are progressing rapidly.

Taipei City, a metropolis in northern Taiwan, reached the

sewerage connection rate of 100 % in 2010; In Kaohsiung

City, a metropolis in the south, the sewerage connection

rate was enhanced to 60.89 % in 2010 from 6.5 % of

1989.

Following the construction of sanitary sewerages, the

maintenance and management systems are needed to keep

pipelines and facilities functioning well. There are three

primary tasks in the maintenance and management sys-

tems: inspecting pipelines and facilities, investigating the

integrity of the sewerage, and dredging obstructions in

pipelines. These maintenance tasks often require sewer

workers to enter the manholes and the pipelines. However,

since the underground sewers are confined spaces short of

natural ventilation and the sewage generates hazardous
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substances such as toluene, trichloroethylene, trichlorom-

ethane, tetrachloroethylene, carbon monoxide, xylene and

hydrogen sulfide, working in sewers could easily lead to a

risk of adverse health effects. Therefore, some researchers

devoted themselves to study the health risk assessment

(HRA) of sewer workers (Lai et al. 2004; Yeh et al. 2011).

HRA is still an important issue in environmental

studies (Batayneh 2012; Shyam and Kalwania 2012; Tahir

et al. 2012; Xue et al. 2012; Liu et al. 2012). HRA is the

process for estimating the nature and probability of

adverse health effects in humans who may be exposed to

hazardous substances. Its four operational stages include

hazard identification, exposure assessment, dose–response

assessment, and risk characterization (California EPA

2001). Hazard identification aims to recognize any

potential health problem that a substance can cause;

exposure assessment determines the amount, duration, and

pattern of exposure to the substance; dose–response

assessment estimates how much of the substance it would

take to cause varying degrees of adverse health effects;

and risk characterization interprets the risk for the sub-

stance to cause cancer or other illnesses. Conventionally,

the risk characterization of noncarcinogenic substances

can be evaluated by the hazard quotient (HQ), the ratio of

the intake of a hazardous substance to its reference dose.

Multiple hazardous substances may affect the same organ

(or organ system) causing joint effect, and hence the target

organ-specific hazard index (TOSHI) sums the HQ scores

of multiple substances that have joint effect on a specific

organ (US EPA 2001). Several problems arise from using

HQ and TOSHI. First, the HQ score for non-critical

organs is overestimated because it is derived from the

reference dose of the most critical organ with the lowest

no-observed-adverse-effect level (NOAEL). Second, ref-

erence doses are usually derived from animal studies and

it is difficult to precisely manage the uncertainty in ani-

mal-to-human extrapolations. Third, as it sums all HQ

scores as a single score, TOSHI may be inappropriate for

evaluating the joint effect on a specific organ because it is

valid only if a common toxic mechanism exists. Fourth, it

is unlikely for a TOSHI score below 1.0 to result in

adverse noncancer health effects over a lifetime of expo-

sure, whereas a score above 1.0 does not necessarily

suggest a likelihood of adverse effects (US EPA 2001).

Compared with the probability, risk characterization of the

TOSHI is less clear or precise.

To solve these problems, this paper proposes the use of

Bayesian belief networks (BBN) (Pearl 1988) as a higher

level of HRA, denoted as the BBN-HRA, for noncarcino-

genic HRA of sewer workers. The BBN is a directed

acyclic graph with nodes denoting a set of random vari-

ables as nodes and arrows indicating their probabilistic

cause-effect dependencies. There are abundant previous

studies on the application of the BBN to environmental

issues . They can be roughly divided into four groups:

prediction, evaluation, diagnosis, and classification. For

example of prediction cases, Liao et al. (2010) used BBN

to predict the rate of human neural tube defects by con-

sidering the number of doctors, the use of pesticides and

fertilizer, the production of vegetable and fruit, per-capita

net incomes, elevation, NDVI, road and fault buffer,

influence of coal mines, and distances to the nearest fac-

tory. An example study of evaluation was the work of

Ticehurst et al. (2010) who used the BBN to complement

conventional analyses for exploring landholder manage-

ment of native vegetation. Dawsey et al. (2006) proposed a

diagnosis case, which used the BBN to integrate sensor

data with other validating evidence of contamination sce-

narios and then to identify the most probable contamination

release nodes in drinking water distribution systems. A

classic example can be found in the study of Newton

(2010) who used the BBN to produce Red List classifica-

tions of threatened species for taxa in situations where the

input data are uncertain.

The BBN is capable of capturing the probabilistic

relationships between the hazardous substances in sewers

and their (critical and non-critical) adverse health effects

and accordingly inferring the morbidity and mortality of

the adverse health effects if pollution concentrations are

given. The provision of the morbidity and mortality rates of

the related diseases is more informative and can alleviate

the uncertainty of the TOSHI.

The organization of this paper is as follows: the study

area is introduced in Sect. 2. In Sect. 2, a brief description

of the BBN, the development procedure of the BBN-HRA

for the case of sewer workers is elaborated. In Sect. 3, the

study area is introduced and its analysis results are then

presented to illustrate this model. Finally, conclusions and

future work are included in Sect. 4. This research has been

carried out in the Department of Safety, Health and Envi-

ronmental Engineering, Ming Chi University of Technol-

ogy (Taipei; Taiwan), from January to August 2011.

Materials and methods

Brief introduction of BBN

A Bayesian belief network consists of a directed acyclic

graph and an associated computational structure. In the

graph, the nodes represent random variables (Xi) with

several possible states while arrows connect pairs of nodes

to display their probabilistic cause–effect relationships.

Each node with parents has a conditional probability dis-

tribution table (CPT) that quantifies the uncertain effects

the parents have on the node, and those nodes without
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parent has a probability distribution over all possible states.

These probabilities are evaluated from historical data,

expert judgment, or their combination. For example, a root

node (T) can cause other nodes (A) and (B), and further

leading to a node (C), as shown in Fig. 1a. T has two

possible states {high (h), low (l)} and its associated prob-

ability distribution is {8.2 %, 91.8 %}. The possible states

of the other three variables are true (t) or false (f) and their

respective CPTs, as shown in Fig. 1a.

In the computational structure of the BBN, the joint

probability distribution (JPD) of a set of related variables is

inferred from the observation. The JPD over variables

{X1, X2,……, Xn} can be formally represented as the

product of these CPDs:

PðX1;X2; . . .;XnÞ ¼
Y

i

P XijXi�1; . . .;X1ð Þ ð1Þ

In Fig. 1 of the Total Suspended Particles (TSP)

example, the JPD over variables {T, A, B, C} is

PðT ;A;B;CÞ ¼ PðCjA;B; TÞ � PðBjA; TÞ � PðAjTÞ
� PðTÞ ð2Þ

In Eq. (1), the calculation complexity can be largely

reduced if the conditional independence between some

variables can be determined. In the graph theory, the

conditional independence can be identified through the

concept of ‘‘d-separation.’’ Assume that X, Y, and E are

three sets of nodes. If every undirected path from a node in

X to a node in Y is d-separated by E, then X and Y are

conditionally independent given E. A set of nodes E

d-separates two sets of nodes X and Y if every undirected

path from a node in X to a node in Y is blocked given E. A

path is blocked given a set of nodes E if there is a node Z

on the path for which one of the following three conditions

holds: Z is in E and Z has one arrow on the path leading in

and another arrow on the path leading out (serial

connection); Z is in E and Z has two paths with arrows

leading out (diverging connection); neither Z nor any

descendant of Z is in E, and arrows on both paths lead into

Z (converging connection). In a case of three variables with

serial connection X1 ! X2 ! X3ð Þ or another case of three

variables with diverging connection ðX1  X2 ! X3Þ, X1

and X3 are conditionally independent given X2 because X2

‘‘d-separates’’ X1 and X3, which permits P(X3|X2, X1) =

P(X3|X2). However, in a case of three variables with

converging connection ðX1 ! X2  X3Þ, X1 and X3 are

conditionally dependent given X2, which makes P(X3|X2,

X1) = P(X3|X2). The identification of conditional inde-

pendence between some variables can enormously simplify

Eq. (1) as

PðX1;X2; . . .;XnÞ ¼
Y

i

P Xijparents of Xið Þ ð3Þ

The rule of total probability can help derive P(Xi = xi)

by marginalization, i.e. summing out over ‘‘irrelevant’’

variables:

Fig. 1 a Example for explaining mathematical basis of BBN; b a given probability distribution {0.8, 0.2} over {high, low} of T and the

associated inferred probabilities of other variables; c a given probability of 0.01 of A and the associated inferred probabilities of other variables
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P Xi ¼ xið Þ ¼
X

P X1;X2; . . .;Xi ¼ xi; . . .;Xnð Þ ð4Þ

where xi is the state of variable Xi.

Take again the example shown in Fig. 1b. T and C are

conditionally independent given {A, B}; A and B are con-

ditionally independent given T; thereby the JPD over

variables {T, A, B, C} (Eq. 2) becomes

PðT ;A;B;CÞ ¼ PðCjA;BÞ � PðBjTÞ � PðAjTÞ � PðTÞ
ð5Þ

Assume that the probability distribution over {high,

low} of T is predicted as {80 %, 20 %}; therefore,

P(T = h, A = t, B = t, C = t) is computed by P(C =

t|A = t, B = t) 9 P(B = t|T = h) 9 P(A = t|T = h) 9

P(T = h) = 0.91729 9 0.1673 9 0.09874 9 0.8 =

0.01212 = 1.212 %. Similarly, other JPDs can be

calculated, as shown in Table 1. Finally, P(A = t),

P(B = t) and P(C = t) can be computed by Eq. (4) as

9.25, 15.73, and 7.88 %, respectively, as shown in Fig. 1b.

The previous example is one type of inference whose

evidences are given to the root node of a BBN and the

probabilities of the other nodes are then derived. In another

type of inference, evidences are provided in the interme-

diate nodes of a BBN and the probabilities of the other

nodes can be computed through Eq. (3) and Bayes’ rule. If

the probability of A is anticipated to be improved from 7.03

to 1.00 %, Eq. (5) should be rewritten as

PðT ;A;B;CÞ ¼ PðCjA;BÞ � PðBjTÞ � PðTjAÞ � PðAÞ
ð6Þ

Moreover, P(T = h|A = t) can be derived by Bayes’

rule:

PðT ¼ hjA¼ tÞ

¼ PðA¼ tjT ¼ hÞ�PðT ¼ hÞ
PðA¼ tjT ¼ hÞ�PðT ¼ hÞþPðA¼ tjT ¼ lÞ�PðT ¼ lÞ

¼ 0:009874� 0:082

0:009874� 0:082þ 0:006773� 0:918

¼ 0:11522 ð7Þ

where P(T) is the prior probability of T and P(T|A) is the

posterior probability given A. Similarly, P(T = l|A = t),

P(T = h|A = f) and P(T = l|A = f) are obtained as 88.48,

79.49, and 92.05 %, respectively. Finally, P(T = t),

P(B = t) and P(C = t) can be computed by Eq. (4) as 7.98,

12.11, and 4.48 %, respectively, as shown in Fig. 1c.

Identification of key factors and their causal

relationships

The primary hazardous substances which can cause

non-carcinogenic effects in sanitary sewerage are toluene,

trichloroethylene, trichloromethane, tetrachloroethylene,

carbon monoxide, xylene, and hydrogen sulfide. According

to related research (Lin 2005), the non-carcinogenic effects

of the seven hazardous substances are summarized

in Table 2. Toluene can lead to central nervous system

diseases, dermatitis, kidney diseases, and cardiovascu-

lar diseases; trichloroethylene induces dermatitis, liverTable 1 Calculations of joint probability distribution in Fig. 1b

State of

variable

P(T,A,B,C) = P(C|A,B) 9 P(B|T) 9 P(A|T) 9 P(T)

T A B C

h t t t 0.01212 = 0.91729 9 0.1673 9 0.09874 9 0.8

h t t f 0.00109 = 0.08271 9 0.1673 9 0.09874 9 0.8

h t f t 0.01568 = 0.23840 9 0.8327 9 0.09874 9 0.8

h f t t 0.03281 = 0.27204 9 0.1673 9 0.90126 9 0.8

h t f f 0.05010 = 0.76160 9 0.8327 9 0.09874 9 0.8

h f t f 0.08781 = 0.72796 9 0.1673 9 0.90126 9 0.8

h f f t 0.00621 = 0.01034 9 0.8327 9 0.90126 9 0.8

h f f f 0.59418 = 0.98966 9 0.8327 9 0.90126 9 0.8

l t t t 0.00146 = 0.91729 9 0.1171 9 0.06773 9 0.2

l t t f 0.00013 = 0.08271 9 0.1171 9 0.06773 9 0.2

l t f t 0.00285 = 0.23840 9 0.8829 9 0.06773 9 0.2

l f t t 0.00594 = 0.27204 9 0.1171 9 0.93227 9 0.2

l t f f 0.00911 = 0.76160 9 0.8829 9 0.06773 9 0.2

l f t f 0.01589 = 0.72796 9 0.1171 9 0.93227 9 0.2

l f f t 0.00170 = 0.01034 9 0.8829 9 0.93227 9 0.2

l f f f 0.16292 = 0.98966 9 0.8829 9 0.93227 9 0.2

h high, l low, t true, f false

Table 2 Hazardous substances in sanitary sewerage and their non-

carcinogenic effects

Air pollutant Adverse health effects

Toluene Central nervous system diseases

Dermatitis

Kidney diseases

Cardiovascular diseases

Trichloroethylene Dermatitis

Liver complaint

Cardiovascular diseases

Trichloromethane Central nervous system diseases

Kidney diseases

Liver complaint

Tetrachloroethylene Kidney diseases

Liver complaint

Carbon monoxide Cardiovascular diseases

Xylene Cardiovascular diseases

Respiratory system diseases

Hydrogen sulfide Respiratory system diseases
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complaint, and cardiovascular diseases; trichloromethane

can cause central nervous system diseases, kidney diseases,

and liver complaint; tetrachloroethylene induces kidney

diseases and liver complaint; carbon monoxide can lead to

cardiovascular diseases; xylene can cause cardiovascular

diseases and respiratory system diseases; and exposure to

hydrogen sulfide can result in respiratory system diseases.

These hazardous substances and the induced diseases are

the nodes in the BBN, as shown in Fig. 2.

Development of Cpts

Discretization of continuous variables

The seven hazardous substances are essentially continuous

variables. However, most BBN software cannot deal with

continuous variables so that the solution is to discretize

variables and build models over discrete domains. That is,

the values for each node in the BBN should be categorized

into the finite number of levels. How to discretize the

variables is more difficult a question because the number

and division points of the levels can make a notable dif-

ference in the complexity and precision of the resulting

model. The bigger the number of levels, the more complex

and precise the model is but more data are needed for it to

construct probabilistic dependencies. In practice, 2–10

levels are reported in ecological studies (Uusitalo 2007). In

this research, the concentrations of the seven hazardous

substances are divided into five levels, as shown in

Table 3.

Development of conditional probabilities

The difficulty of defining conditional probabilities arises

when the relevant literature on probabilistic relationships

between causes and effects is insufficient. In such situation,

experts are usually able to use subjective judgment to assist

in this task. In this paper, the determination of conditional

probabilities suffers this difficulty due to the lack of suf-

ficient information and therefore subjective judgment is

exploited. In Taiwan, the morbidities of central nervous

system diseases, dermatitis, kidney diseases, liver com-

plaint, cardiovascular diseases, respiratory system diseases,

and mortality for 20- to 59-year-old males are 11.36, 23.27,

1.11, 2.36, 3.57, 4.67, and 1.07 %, respectively (Taiwan

Department of Health 2009), which are baseline situations.

Subsequently, experts use their expertise to determine

the morbidities and mortality for the worst situations.

Fig. 2 BBN-HRA structure for

hazardous substances in sanitary

sewerage
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Therefore, morbidities of central nervous system diseases,

dermatitis, kidney diseases, liver complaint, cardiovascular

diseases, respiratory system diseases, and mortality for the

worst situations are 70.8, 66.4, 27.8, 42.4, 35.7, 46.7, and

5.59 %, respectively. The rest conditional probabilities

between baseline and worst situations are calculated based

on an interpolative basis.

Software

A widely used software package, Hugin (HUGIN EXPERT

A/S, Denmark), is employed to implement the BBN-HRA

model. Its graphical user interfaces make it easy for users

to build the network structure manually. It does offer the

mechanism for learning CPTs from cases, however, the

authors do not take advantage of it due to insufficient cases.

Ultimately, the BBN-HRA model contains 14 nodes

(variables), 22 arrows (causal relationships), 7 prior prob-

abilities, 7 CPTs, and 950 conditional probabilities, as

shown in Fig. 2. The BBN-HRA model is available free of

charge from the corresponding author.

Results and discussion

Study area

Kaohsiung City is a coastal city with a population of about

150 million and becomes the transportation and commer-

cial center in southern Taiwan. Besides, five industrial

zones, two export processing zones, and several other

important factories such as Taiwan Steel Corporation,

Taiwan International Shipbuilding Corporation, Chinese

Petroleum Corporation, etc., turn Kaohsiung City into an

industrial center as well. However, accompanied by the

rapid development of Kaohsiung City, environmental pol-

lution seriously affects the life quality of the residents.

Before 1989, the domestic sewage and industrial waste-

water were directly or indirectly discharged into the river,

threatening human and environmental health because the

sewage connection rate in this city was only 6.5 %.

Therefore, at that time the Kaohsiung City Government

launched the Kaohsiung City sewage system, as shown in

Fig. 3. The sewage connection rate in this city was

upgraded to 60.89 % in the end of 2010.

Lin (2005) analyzed the hazardous substances in the

Kaohsiung City sanitary sewerage and took nine sampling

points (from A to I, see Fig. 3) spreading over industrial,

commercial, and residential districts. He considered two

situations for each sample point, before ventilation and

with ventilation for 15 min. To illustrate our approach, this

Kaohsiung City

A BC

D
E

F
G
HI

Taiwan Strait

Sewage Treatment Plan

Trunk Main

Pipe

Sample Point

Fig. 3 Kaohsiung City sanitary sewerage and nine sample points (Lin

2005)

Table 3 Five concentration levels of hazardous substances in sanitary sewerage

Level Toluene

(ppm)

Trichloroethylene

(ppm)

Trichloromethane

(ppm)

Tetrachloroethylene

(ppm)

Carbon monoxide

(ppm)

Xylene

(ppm)

Hydrogen sulfide

(ppm)

Very

low

0–200 0–100 0–70 0–100 0–70 0–200 0–20

Low 201–400 101–200 71–140 101–200 71–140 201–400 21–40

Medium 401–600 201–300 141–210 201–300 141–210 401–600 41–60

High 601–800 301–400 211–280 301–400 211–280 601–800 61–80

Very

high

801– 401– 281– 401– 281– 801– 81–
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paper only adopts three sampling points (A, B, and

C) where the concentrations of the hazardous substances

are listed in Table 4. Sampling point A lies in an inter-

ception station, in which the concentration of tetrachlo-

roethylene is relatively high but still lower than the

standard value. Sampling points B and C are situated in a

residential district but close to an export processing zone;

therefore, the concentrations in trichloromethane and

tetrachloroethylene are extraordinary high. After 15-min

ventilation, the concentrations of hazardous substances in

the three sample points drop dramatically, as shown in

Table 4.

HRA through BBN

The information of the three sample points is inputted into

the BBN-HRA model. For example, the results of sampling

point B before ventilation are estimated as follows: central

nervous system diseases of 41.10 %, dermatitis of

23.27 %, kidney diseases of 14.47 %, liver complaint of

22.39 %, cardiovascular diseases of 5.58 %, respiratory

system diseases of 4.67 %, and mortality of 1.90 %, as

demonstrated in Fig. 4. After 15-min ventilation, the

morbidity and mortality rates in this sample point will

decrease to the baseline conditions; that is, central nervous

Fig. 4 BBN-HRA results for

sampling point B

Table 4 Measurements of

hazardous substances of case

study

ND not detection

Standard (8-h mean) Before ventilation Ventilation for 15 min

A B C A B C

Toluene (ppm) 100 5.4 28.8 ND 0.0026 0.0138 ND

Trichloroethylene (ppm) 50 5.2 ND ND 0.0025 ND ND

Trichloromethane (ppm) 10 4.5 327.3 131.3 0.0022 0.1572 0.0630

Tetrachloroethylene (ppm) 50 21.0 223.9 103.3 0.0101 0.1755 0.0496

Carbon monoxide (ppm) 35 0.5 85.4 84.4 0.0002 0.0410 0.0405

Xylene (ppm) 100 10.7 12.3 7.5 0.0051 0.0059 0.0036

Hydrogen sulfide (ppm) 10 ND 4.1 ND ND 0.0020 ND
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system diseases of 11.36 %, dermatitis of 23.27 %, kidney

diseases of 1.11 %, liver complaint of 2.36 %, cardiovas-

cular diseases of 3.57 %, respiratory system diseases of

4.67 %, and mortality of 1.07 %. The entire outcomes of

the morbidity and mortality rates for the three sample

points are listed from the 10th to 16th rows of Table 5. In

these rows, the results higher than the standard values are

denoted by single-underlines; obviously, they occur only in

sample points B and C before ventilation, including central

nervous system diseases, kidney diseases, liver complaint,

and cardiovascular diseases (Figs. 4 and 5).

Discussion: comparison of BBN-HRA with TOSHI

In risk characterization of noncarcinogenic substances,

the HRA can be evaluated by the HQ, the ratio of the

intake of a hazardous substance to its reference dose.

Multiple hazardous substances may affect the same organ

(or organ system) causing joint effect, and hence, the

TOSHI sums the HQ scores of multiple substances that

have joint effect on a specific organ (US EPA 2001). In

this case study, Fig. 3 shows that the target organ systems

of toluene are cardiovascular and respiratory systems;

trichloroethylene: dermatitis, liver complaint, and car-

diovascular system; trichloromethane: central nervous

system, kidney, and liver; tetrachloroethylene: kidney and

liver; carbon monoxide: cardiovascular system; xylene;

cardiovascular system and respiratory system; hydrogen

sulfide: respiratory system. On the basis of the toluene,

trichloroethylene, trichloromethane, tetrachloroethylene,

carbon monoxide, xylene, and hydrogen sulfide concen-

trations described in Sect. 3.1, their HQ and TOSHI

scores can be computed, as shown in the 17th–29th rows

of Table 5. The HQ and TOSHI scores reveal that tri-

chloromethane, tetrachloroethylene, and carbon monoxide

in sample points B and C before ventilation probably

cause central nervous system diseases, kidney diseases,

liver complaint, and cardiovascular diseases, and adverse

noncancer health effects; the rest hazardous substances

will not induce any adverse noncancer effect. The com-

parisons between the TOSHI and the BBN-HRA are dis-

cussed in the following.

The HQ score for non-critical organs is overestimated

because it is derived from the reference dose of the most

critical organ with the lowest NOAEL. The same HQ score

is assigned to all (critical or non-critical) organs due to the

Table 5 HRA analysis of case study

Standard (8-h mean) Before ventilation Ventilation for 15 min

A B C A B C

BBN-HRA

Central nervous system diseases (%) 11.36 11.36 41.10 18.80 11.36 11.36 11.36

Dermatitis (%) 23.27 23.27 23.27 23.27 23.27 23.27 23.27

Kidney diseases (%) 1.11 1.11 14.47 5.56 1.11 1.11 1.11

Liver complaint (%) 2.36 2.36 22.39 9.04 2.36 2.36 2.36

Cardiovascular diseases (%) 3.57 3.57 5.58 5.58 3.57 3.57 3.57

Respiratory system diseases (%) 4.67 4.67 4.67 4.67 4.67 4.67 4.67

Mortality (%) 1.07 1.07 1.90 1.42 1.07 1.07 1.07

HQ

Toluene 1.00 0.05 0.29 0.00 0.00 0.00 0.00

Trichloroethylene 1.00 0.10 0.00 0.00 0.00 0.00 0.00

Trichloromethane 1.00 0.45 32.73 13.13 0.00 0.02 0.01

Tetrachloroethylene 1.00 0.42 4.48 2.07 0.00 0.00 0.00

Carbon monoxide 1.00 0.01 2.44 2.41 0.00 0.00 0.00

Xylene 1.00 0.01 0.01 0.01 0.00 0.00 0.00

Hydrogen sulfide 1.00 0.00 0.41 0.00 0.00 0.00 0.00

Central nervous system diseases 1.00 0.50 33.02 13.13 0.00 0.02 0.01

TOSHI

Dermatitis 1.00 0.16 0.29 0.00 0.00 0.00 0.00

Kidney diseases 1.00 0.92 37.50 15.20 0.00 0.02 0.01

Liver complaint 1.00 0.97 37.21 15.20 0.00 0.02 0.01

Cardiovascular diseases 1.00 0.18 2.74 2.42 0.00 0.00 0.00

Respiratory system diseases 1.00 0.01 0.42 0.01 0.00 0.00 0.00
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general absence of organ-specific reference doses. In

Table 5, the HQ score of trichoromethane in sample point

B before ventilation is transferred to central nervous sys-

tem, kidney, and liver simultaneously although it is known

that the critical effects occur in central nervous system. On

the other hand, the BBN-HRA is developed according to

epidemiological studies, the actual hospital attendance

records, and expert experiences to elaborate the respective

morbidity and mortality rates of all the related diseases

under certain pollution concentrations. The results of BBN-

HRA in sample point B before ventilation in Table 5 reveal

that the critical effect of trichoromethane is central nervous

system diseases while its non-critical effects are kidney and

liver diseases.

The above additive assumption in TOSHI indicates that

it is unlikely for a TOSHI score below 1.0 to result in

adverse noncancer health effects over a lifetime of expo-

sure. whereas a score above 1.0 does not necessarily sug-

gest a likelihood of adverse effects (US EPA 2001). In

Table 5, the TOSHI score of cardiovascular system in

sample point B before ventilation is 2.74, which makes it

difficult to decide whether it will cause illness or not.

However, through BBN-HRA calculation an increase of

cardiovascular disease from 3.57 to 5.58 % is more

informative.

Conclusion

This study proposed a BBN-HRA model for sewer workers

with features including the representation of probabilistic

relationships between hazardous substances and adverse

human effects through the graph structures of the BBN, the

construction of dose–response relationships by CPTs of the

BBN, and the capability of predicting morbidity and

mortality rates of the related diseases with the inference

mechanism of the BBN. This BBN-HRA model can

address some problems of applying the TOSHI to HRA. Its

graph structure can pinpoint the relationships between

hazardous substances and the induced diseases. Moreover,

on the basis of epidemiological studies, actual hospital

attendance records and expert experiences, the BBN-HRA

can specifically identify the probability of each induced

disease under certain concentration of a hazardous sub-

stance, which can overcome the problem of overestimation

of HQ for non-critical organs. The BBN-HRA model

provides more concrete information on the morbidity and

mortality rates of all the related diseases, thus reducing the

uncertainty in the TOSHI.

The BBN-HRA model was demonstrated by a practical

case study, which shows that with no ventilation in sewers,

the probabilities for the workers in the worst situation

Fig. 5 BBN-HRA results for

sampling point C
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(sample point B) to contract central nervous system dis-

eases, dermatitis, kidney diseases, liver complaint, cardio-

vascular diseases, respiratory system diseases, and

mortality were 41.10, 23.27, 14.47, 22.39, 5.58, 4.67, and

1.90 %, respectively. However, a 15-min ventilation

reduced the abovementioned probabilities to the baseline

condition, that is, 11.36, 23.27, 1.11, 2.36, 3.57, 4.67, and

1.07 %, respectively.

The authors suffered several difficulties in applying the

BBN to HRA and they still need further endeavor to solve.

The first one was to discretize appropriately the variables

because the bigger the number of discretization, the more

complex and precise the CPTs are, but more data are

needed. In this paper, five concentration levels of hazard-

ous substances were adopted but they required more solid

study in future research. The second difficulty was to

gather sufficient epidemiological studies to avoid sub-

jective judgments. The third difficulty came from insuffi-

cient studies on the joint effects of multiple pollutants,

which compelled us to use expert experiences in aggre-

gating conditional probabilities. Indeed, the last two diffi-

culties are not due to the model itself, but for the lack of

relevant epidemiological studies to support this model. If

these difficulties can be overcome, the BBN will be very

beneficial in HRA.
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